Concepts, Terminology, and
Time-Invariant Predictors
in Longitudinal Modeling

- Topics:
> Concepts and terminology in longitudinal models
> Modeling person dependency
> Fixed and random intercepts
> Fixed and random time slopes

> From multilevel models (MLMs) to single-level structural
equation models (SEMs) to multilevel SEMs (M-SEMs)

> Time-invariant predictors
> Details
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Sources of Longitudinal Relations

Between-Person (BP) Variation:
> "INTER-individual differences” from “time-invariant’ measures

> All longitudinal studies that begin as cross-sectional studies have this

Within-Person (WP) Variation:

> "INTRA-individual differences” from “time-varying” measures

> Only longitudinal studies can provide this extra type of information!

Longitudinal studies allow examination of both types
of relationships simultaneously (and their interactions)

> Any variable measured over time usually has both BP and WP variation
> BP = more/less than other people; WP = more/less than usual

| use “person” here, but "between” units can be anything that
IS measured repeatedly (e.g., schools, countries, companies...)
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A Longitudinal Data Continuum

- Within-Person (WP) Change: Expect systematic effect(s) of time
> e.g. "(Latent) Growth Curve Models” - Time is meaningfully sampled

> If magnitude or direction of change differs across individuals, then
the outcome’s variance and covariance will change over time, too!

- Within-Person (WP) Fluctuation: Few expected effects of time
> Outcome just varies/fluctuates over time (e.g., emotion, mood, stress)
> Time is just a way to get lots of data per person (e.g., EMA studies)
> Lends itself to questions about effects of relative changes and inconsistency

Pure WP Change Pure WP Fluctuation
— ,
\

Time Time
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Why Do Longitudinal Research!?

- To explore within-person change over time and its relations

> On average (= fixed effects): e.g., Does my new treatment result
in greater (or faster) improvement than the standard approach?

> BP differences (= random effects): e.g., Do some people improve
more (or more rapidly) over time than others? And if so, why?

> Because cross-sectional age differences # longitudinal age changes!
> Btw, this is the purpose of “(latent) growth curve models”

- To explore within-person fluctuation, “dynamics”, and their relations

> On average (= fixed effects): e.g., When you sleep less than usual, are you more
impatient than usual the next day, too (or vice-versa, as “reciprocal” relations)?

> BP differences (= random effects): e.g., Are some people more
affected by (relative) sleep deficits than others? And if so, why?

> Btw, this is (often) the purpose of “multilevel models” or “multilevel SEM”,
as well as “cross-lag panel models” (or “auto-regressive cross-lag models)”

- To explore within-person (in)stability and its relations
> e.g., Why are some people moodier than others?
> e.g. Does inconsistency precede long-term age-related decline?
> Btw, this is the purpose of “location—scale mixed effects models”
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Sources of “Time” in Longitudinal Data

- What aspects of “time” are relevant?
> WP change: e.g., time in study, age, grade, time to/from event

> WP fluctuation: e.g., time of day, day of week, day in study

- Does time vary within persons (WP) AND between persons (BP)?

> If people differ in time at the study beginning (e.g., accelerated designs),
we will need to differentiate BP time effects from WP time effects

> If there is more than one kind of WP “time” (e.g., occasions within days),
we will need to differentiate distinct sources of WP time effects

. |s time balanced or unbalanced?

> Balanced = shared measurement schedule (not necessarily equal interval)
Although some people may miss some occasions, making their data “incomplete”

> Unbalanced = people have different possible time values
By definition, the possible outcomes are at least partially “incomplete” across persons

This may be a consequence of using a time metric that also varies between persons
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The Two Sides of *Any* Model

- Model for the Means:
> Aka Fixed Effects, Structural Part of Model
> What you are used to caring about for testing hypotheses

> How the expected outcome for a given observation varies
as a function of values on known predictor variables

= Fixed effects are estimated constants that multiply predictors

- Model for the Variance:
> Aka Random Effects and Residuals, Stochastic Part of Model
> What you *were* used to making assumptions about instead

> How residuals are distributed and related across sampling
dimensions (persons, occasions) = these relationships are known
as "dependency”’ and this is the primary way that longitudinal
models differ from “regular” regression models
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Modeling Longitudinal Dependency

- Outcomes from the same sampling unit (i.e., person) will have
one or more sources of dependency - correlated residuals

> If ignored, dependency in a longitudinal outcome will result in incorrect
fixed effect standard errors and p-values (well-known problem)

> If ignored, dependency in a longitudinal predictor variable will result in
incorrect fixed effect estimates, too (relatively less well-known problem)

Because time-varying predictors have both BP and WP variation—stay tuned!

- The sources of residual correlation of occasions from same
person can be captured by a model in three main ways:

1. Fixed effects: Add Person ID as a predictor (via N-1 dummy codes)

2. (Multivariate) alternative covariance structures (ACS):
Just allow correlation over occasions to exist (for unknown reasons)

3.  Add a “level” (or more): Use random effect (latent factor) variances,
as possible within multilevel or structural equation modeling
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1. Modeling Longitudinal Dependency

- Fixed effects: Add Person ID as a categorical predictor

- Estimate fixed effects of N — 1 dummy codes for person ID

> Person ID main effects capture dependency due to mean differences

> Interactions of Person ID with time-varying predictors (like time)
capture other predictor-specific sources of person dependency

- Pro: Does adequately control for person dependency
> Very common in econometrics, political science, sociology...
> Does a better job in studies with “few” persons (< 15ish)

> Useful to make individual-specific conclusions
(i.e., as in )

- Con: Does not allow prediction of WHY any of those
individual differences occurred ®

> Model would be saturated with respect to between-person differences
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https://academic.oup.com/jpepsy/article/39/2/138/885269

2. Modeling Longitudinal Dependency

- Alternative multivariate variance—covariance structures: Change model
to allow correlation over occasions (and any residual heterogeneity) to exist

- Is only possible given balanced data (all people on same schedule) and
conditionally normal outcomes (i.e., not when using generalized models)

- Is the basis of repeated measures ANOVA, of which there are 2 kinds

> "Univariate approach”: residuals have equal variance and equal correlations
across all repeated measures outcomes—nbut this “compound symmetry”
pattern can only possibly hold if all people change the same!

> "Multivariate approach”: all residual variances and correlations are separately
estimated—~but this “unstructured” (MANOVA) model becomes difficult-to-
impossible given many outcomes (especially with few people)

> Estimation using ordinary least squares = listwise deletion of missing data ®

- Switching to maximum likelihood estimation uses all complete occasions
AND offers more choices for patterns of residual variance and correlation

> Btw, residual maximum likelihood = ordinary least squares given complete outcomes
> e.g., Compound Symmetry Heterogeneous (diff variances, equal correlation)

> Options that use time-lagged covariances also require equal-interval occasions:
e.g., First-order auto-regressive, moving average, or antedependence; Toeplitz
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3. Modeling Longitudinal Dependency

- Add a “level” &> Add random effect (latent variable) variances

- Random effect = model term that each person gets their own
version of (in theory); directly incorporated by estimating the
variance of each random effect across persons - BP differences

> Capture patterns of non-constant variance and covariance for testable reasons
> Works for general or generalized models (i.e., for any kind of outcome)

> Works for balanced or unbalanced longitudinal data

- More generally, a “level” is a dimension of sampling that has
unexplained outcome variability represented by 1+ random effects

> “time” is not a level once sufficient fixed effects for its mean diffs are included

> e.g., Randomized Control Trial (RCT) of 5 monthly occasions = 2 levels
(1. within-person, 2. between-person)

> e.g., Ecological Momentary Assessment (EMA) design of 4 observations per day
for 3 weeks 2> 3 levels (1. within-day, 2. between-day, 3. between-person)

MWPALD: Lecture |



A Statistician’s WWorld View

OQutcome type: General (normal) vs. Generalized (not normal)

Dimensions of sampling: One (so one variance term per outcome) vs.
Multiple (so multiple variance terms per outcome) > OUR WORLD

- General Linear Models: conditionally normal outcome distribution,
fixed effects (identity link; only one dimension of sampling)

Note: OLS is
only for GLM

- Generalized Linear Models: any conditional outcome distribution,
fixed effects through link functions, no random effects (one dimension)

- General Linear Mixed Models: conditionally normal outcome distribution,
fixed and random effects (identity link, but multiple sampling dimensions)

- Generalized Linear Mixed Models: any conditional outcome distribution,
fixed and random effects through link functions (multiple dimensions)

> Not this week—Many of the same concepts, but with more complexity in estimation

- “Linear” means fixed effects predict the link-transformed conditional mean

of DV in a linear combination of (effect*predictor) + (effect*predictor)...
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Multilevel Model (MLM) Word Salad

- MLM is the same as other terms you have heard of:

> Linear Mixed-Effects Model (fixed + random effects,
of which intercepts and slopes are specific kinds of effects)

> Random Coefficients Model (because coefficients also = effects)
> Hierarchical Linear Model (not same as hierarchical regression)

- Special cases of MLM:
> Random Effects ANOVA or Repeated Measures ANOVA
> (Latent) Growth Curve Model (where “Latent” implies SEM software)

Btw, most MLMs can be equivalently estimated as single-level SEMS
> Within-Person Fluctuation Model (e.g., for EMA or daily diary data)
See also “dynamic” SEM or multilevel SEM (even without measurement models!)
> Clustered/Nested Observations Model (e.g., for kids in schools)
If followed over time in same group, is “clustered longitudinal model”
> Cross-Classified Models (e.g., teacher "value-added” models)
> Psychometric Models (e.g., factor analysis, item response theory, SEM)
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The Two Sides of a General Linear Model

Vi =|Bo + p1(x1;) + f2(x2;) + ||+ ei-\

. Model for the Means (> Predicted Values): | ©Qur focus now

» Each person’s expected (predicted) outcome is a weighted linear
function of his/her values on x1; and x2; (and any other predictors);
each variable is measured once per person

» Estimated constants are called fixed effects (here, S,, f1, and f3,)
» Number of fixed effects will show up in formulas as k (so k = 3 here)

- Model for the Variance (= “Piles” of Variance):
> e; ~ N(0,62)-> ONE (BP) source of residual (unexplained) error

> In GLMs, e; has a mean of 0 with some estimated constant variance o7,
Is normally distributed, is unrelated to x1; and x2;, and is independent
across all observations (which is just one outcome per person here)

> There is only ONE source of residual variance in the above GLM
because it was designed for only ONE (BP) dimension of sampling!
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An “Empty Means” General Linear Model
—> Single-Level Model for the Variance

Y= Byt e

Filling in values:

32 =QY(L + —58

}"\ Model

y; = “y-hat” model-| | for the
predicted outcome|| Means

y; residual
Mean = 89.55 (“error”) variance:

Std. Dev. = 15.114 /\
/ N=1334 2(yi — Y )2
N-1

20—
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Adding Repeated Occasions =2
Two-Level Model for the Variance

Full Sample Distribution 5 Occasions (t); 3 People (i)

Yi Per F Y per time
person — and person

14

12

10

80

60

Mean = 89.55
Std. Dev. =15.114

40 N = 1,334

20—
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Hypothetical Longitudinal Data
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Only One Kind of “Error” in a
Single-Level Model for the Variance

12 -
e, represents all y,; variance
10
8 = . >
em{ e [ eSi{

/e '
4
2
0

1 2 3 4 5

Time
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Two Distinct Kinds of “Error” in a
Two-Level Model for the Variance

12 -
U,; = random intercept that represents BP mean variance in y,
e, = residual that represents WP variance in y,
10 -
8 /B — = i |
I
Ugi |
6 )
|
——= — &=
€1
4
In other words: U, represents a source of
2 constant dependency (covariance) due to
mean differences in y,; across persons
0

1 2 3 4 5
Time
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Empty Means, Two-Level Model

140 }meti
| N | JEJRJE R R R AL I‘llw .......................... ‘ :..

Y,; variance - 2 sources:

Level-2 Random Intercept
Variance (of Uy, as t{,):

120 /
U0i Between-Person variance in means
100 | INTER-Individual differences from
S GRAND mean to be explained
80

[

20

-

by time-invariant predictors

Level-1 Residual Variance
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(of e,;, as 62):
>  Within-Person variance

> INTRA-Individual differences from
OWN mean to be explained
by time-varying predictors
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Empty Means Models:
Single-Level vs. Two-Level

- Empty Means, Single-Level Model (used for 1 occasion):

yi = Bo + &
> By = fixed intercept = grand mean

> ; = residual deviation from GRAND mean

- Empty Means, Two-Level Model (for 2+ occasions):

Vi = Bo + Ug; + €y
> B = fixed intercept = grand mean

> Uy = random intercept = individual deviation from GRAND mean

> e, = time-specific residual deviation from OWN mean

MWPALD: Lecture |
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Two-Level Model Using Multilevel Notation:
Empty Means, Random Intercept Model

GLM Empty Model: 3 Parameters:
_ Model for the Means (1):
" i s BO i Fixed Intercept
MLM Empty Model: Pt Yoo
T Model for the Variance (2):
. Level 1:

. Level-1 WP Variance of e; > o2

. = B . + @,.
Vi o t'\ - Level-2 BP Variance of Uy, = t%o

- Level 2:

B . = Yoo + U.. Residual = time-specific deviation

Oi 00 0i from individual’s predicted outcome
/ AN

Fixed Intercept Random Intercept

= mean of person || = individual-specific composite equation.

means (because deviation from )

no predictors yet) || predicted intercept Yi = (Voo T UOi) + €y
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A “Random Intercept” Model for the Variance

Total Predicted |} +o2 ), T, T,
Data Matrix is 2 2,2 2 2 2 N = total obs
called V Matrix, Y Up * e v Yo Us n = # occasions
and each Ty, W, Ty +0r Ty, T (5 here)
persongets | g ol

eir own! , ) ; , , ,

T, Ty, Ty, Ty,  Tu, T O |

Level 2, BP Variance Level 1, WP Variance
Unstructured G Matrix Diagonal (VC) R Matrix
(RANDOM statement) (REPEATED statement)
Each person has same 1x 1 G Each person has same n x n R

matrix = equal variances and 0
covariances across time (and
NO covariance across persons)

matrix (no covariance across
persons in two-level model)

1 Random |:T :| _05 0 0 0 0 ]
Intercept U 2
: , 0 o2 0 0 0
Variance only 1 Residual o 0 & 0 o
. o2

To be added to R in order to form V, G is pre- Variance only 0 0 0 o2 o0
and post-multiplied by an N x 1 Z matrix that _
holds the values of the predictors with random 10 0 0 0 o¢
effects (just the intercept here): V, = Z,G,Z] +R,
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Intraclass Correlation (ICC)

ICCs for two-level longitudinal data:
2

(e BP Intercept Var. Ty
~ BP+ WP Intercept Var. +Residual Var. 1}  + o2
V matrix VCORR Matrix
4ot % & % |[1 IcC IcC IcC IcCT
Cov(y,, 2 d+et i 4 ||ICC 1 ICC ICC ICC
Cort(y,.y,) = 1,Y2) Cdeed 46

= \/Var(yl)*\/Var(yz) 1:60 rﬁo 160+0§ 160 Iﬂo ICC ICC 1 ICC ICC
@ @ % d+et @, ||ICC ICC ICC 1 ICC
i 1:60 rﬁo 160 Tﬁo Tﬁoﬂis_ _|CC ICC ICC ICC 1 )

- ICC = Proportion of total variance that is between persons
- |ICC = Correlation of occasions from same person (in VCORR)

- ICC is a standardized way to express dependency due to person mean
differences > effect size for constant person dependency
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Augmenting the Empty Means,
Random Intercept Model with Time

- 2 questions about the possible effects of “time” (e.g. time
in study in WP change; time of day or day of week in WP fluctuation):

1. Is there an effect of time on average?
> |s the line connecting the sample means not flat?
> If so, you need FIXED effect(s) of time

2. Does the average effect of time vary across
individuals?

> Does each individual need their own version of that line?
> If so, you need RANDOM effect(s) of time

- Let's look at examples using linear time effects to start...
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Fixed and Random Effects of Time

(Note: The intercept is random in every figure)

A. No Fixed, No Random

B. Yes Fixed, No Random

C. No Fixed, Yes Random

R

<

D. Yes Fixed, Yes Random

——
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B. Fixed Linear Time, Random Intercept Model
(4 parameters: effect of time is FIXED only)

i Residual = time-specific deviation from individual’s
Multilevel Model predicted outcome = estimated variance of ¢?2

. . /
Level 1: Vi = Boi + B1;(Timey) + ey
Fixed Intercept Fixed Linear Time Slope
= predicted mean = predicted mean rate
outcome at time 0 of change per unit time
\
Level 2: Boi = Yoo+ Uoi  B1i = Y1o

p

Random Intercept = individual-specific deviation
from fixed intercept > estimated variance of IIZJO

Composite MOde| Because the effect of

time is fixed, everyone is

(VOO + UOJ/ + %Q)(Tlmetl) + €@; | predicted to change at

T exactly the same rate
BOI B1|
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C or D: Random Linear Time Model (6 parms)

) Residual = time-specific deviation from individual’s
Multilevel Model predicted outcome - estimated variance of ¢?

. v
Level 1: Vi = Boi + B1;(Timey) + ey
Fixed Intercept Fixed Linear Time Slope
= predicted mean = predicted mean rate
outcome at time 0 of change per unit time

\
Level 2: Boi = Yoo+ Uoi Byi = V1o + /Uh

Random Intercept = Random Linear Time Slope= Also has an
individual-specific deviation individual-specific deviation estimated
from fixed intercept at time 0 | | from fixed linear time slope covariance
-> estimated variance of tﬁo - estimated variance of 1% ’ of random
- intercepts
Composite Model and s|o';es
of 1y,,

(Voo + Ug) + (Vm + U;)(Timey) + ey
BOi B1|
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Random Linear Time Model
yti = (VOO + UOI) + (V1o+ U1|)(T|met|) + et|

leed Random leed Random error for
Intercept Intercept Slope Slope person i
Deviation Deviation at time t
& Mean A P2 ——Linear (Mean) —— Linear (P2) 6 ParameterS:
32 .
/A}eti:-l 2 Fixed Effects:
28 / Yoo INtercept, y,0 Slope
24 A _—
__+2{ U,; Random Intercept
Variance = g,

U,; Random Slope

- _ .2
Variance = 1y,

¢ / Random Int-Slope

Outcome
= = N
N o o
<
o
o
1
[N
R
<
=
o
I
Ol

8 .
_ 4LA/ Covariance = Ty,
4
0 1 2 3 e, Residual
Time Variance = o2
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Random Linear Time Models Imply:

- People differ from each other systematically in TWO ways—in
intercept (Uy) and time slope (Uy;), which implies TWO kinds of BP
variance, which translates to TWO sources of person dependency
(covariance or correlation in the outcomes from the same person)

- If so, after controlling for both BP intercept and slope differences
(by estimating the t{;, and t{;, variances in the G matrix), the e,
residuals (whose variance and covariance are estimated in the R

matrix) should be uncorrelated with homogeneous variance
across time, as shown (or else a different R matrix is needed):

Level-2 Level-1 R matrix:
G matrix RI_EPEATED TYPE:V(_: G and R combine to create a total
RANDOM s 0 0 O V matrix whose per-person
TYPE=UN 0 62 0 0 structure depends on the specific
{rﬁo ruul 0 Oe 2 time occasions for each person
5 © in Z (flexible for unbalanced time)
Ty, Ty, |0 0 0 o
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Choices in Modeling Variances: Random
Intercept Only (Compound Symmetry)

Here, the time slopes
are same across
persons, so the Yo T T TS T,
. Tu Tu Ty Ty Ty, T Oe
variances are the - : “ C T
same across time.

Yi = (Yoo + Ugi) + (Y10)(Timey) + €y,

If the same slope fits all persons,
then all occasions should be

equally correlated over time (and
o thus only due to U, variance).

If the time slopes are the same across people, then people
differ from each other systematically in only 1 way

(e, their Uy, level) > THIS IS COMPOUND SYMMETRY.
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Choices in Modeling Variances:
Random Intercepts and Time Slopes

. @
Increasing

Yii = (Yoo + Ugi) + . o
. variance
+ €y . °
o
Increasing o °
variance
< ®
If time slopes differ across
Minimum persons, the outcome
variance variance and covariance

then must differ over time!

If slopes are different across people, then people differ
from each other systematically in 2 ways (Uy; and U;;)
- this implies compound symmetry will NOT hold.
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Random Linear Time Model
(6 parameters: effect of time is RANDOM)

- Scalar "mixed” model equation per person:

—_ * *

Yi T AT |4 UK X: = n x k values of predictors with
(Voi | [10 10 (e, fixed effects, S0 Can diff-er per person

Vi | _ 11 [Yoo} N 11 [Um } N e (k = 2: intercept, linear time)

Yai % % Y10 % % i €2i v = k x 1 estimated fixed effects,
RENENERS LT T | i _ so will be the same for all persons
Yoi | [ Yoot Y10(0)| [Ugi+ Ui(0)]| ey | (Yoo = INtercept, vy, = linear time)

Yai |~ | Yoot Y10(1) n Ugi+ Uy(1) +| €1 | | Z;=nxuvalues of predictors with

Yoi Yoo+ Y10(2) | | Usit Ugi(2) | | | | random effects, so can differ per person
[ Yai | [Yoot V03] [Uait U3 ] [ ] [(u=2:intercept, linear time)
(Voi | [ Yoot ¥20(0) + Ugi+ UL (0) + ey | U, = u x 2 estimated individual random

Vi | | Yoo Yo(1) T Ugi+ Ug (1) + ey effects, so can differ per person

Yoi Yoo Y10(2) T Ugi T Uy (2) + ey : . ,

_ fv (N+U-+U..(3) + e E; = n x n time-specific residuals,

| Yai | [Yoot V10(3) oi T Upi(3) +eg | so can differ per person
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Random Linear Time Model
(6 parameters: effect of time is RANDOM)

- Predicted total variances and covariances per person:

V, =2z * G * ZT + R
0], (62 0 0 0]

v.— 11|, Ty, [1111],10 oo O O

P12 Ty Ty, 0123 ooggo
13] |0 0 0 o

V, matrix =
complicated ©

=1y, + [(time)2 Ty, J - [2 (time)ty ] +G,
V; matrix: Covariance[y ,Ys ]

= 160 + [(A + B)tuol ] + [(AB)TEJJ

V; matrix: Variance[y me |

MWPALD: Lecture |

Z; = n x u values of predictors with
random effects, so can differ per
person (u = 2: int., time slope)

Z;" = u x n values of predictors with
random effects (just Z; transposed)

G; = u x u estimated random
effects variances and covariances,
so will be the same for all persons
(T, = Int. var., T, = slope var.)

R; = n x n time-specific residual
variances and covariances,

so will be same for all persons
(here, just diagonal ¢2)
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Building V across persons:

Random Linear Time Model
V for two persons also with different n per person:

V= z G * Z" ¥ R
> _
1 0.0l0 0] i oeozooooo
1100 0 ||ty tw| O O . |0 oo 0 00 0 O
1200 0 [ " g2 1 1 1 110 0 0} g g420/0 0 0
v= 1300 0|l * 0 0 1001020300 0 0], 00 640 0 0
oo 1 02l 0 O |t T o 0 0 0j|1 1 1 O
0 0iall o o l.. 2%L0O 0 0 0[021435] |0 0 0 Ofc; O 0
0 0 I135| tuy U “ |0 0 0 0[0 o2 0
) | |0 0 0 0[0 0 &7

- The "block diagonal” does not need to be the same size or
contain the same time observations per person...

- R matrix can also include non-0 covariance or differential
residual variance across time (as in ACS models), although
many models based on the idea of a “lag” won't work for
unequal-interval time (but AR1 can be modified to work)

MWPALD: Lecture |
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The Bigger Picture

- Random effects (new “piles” of variance, partitioned
out of what used to be a single residual variance) are
used to capture sources of person dependency

> Random intercept - constant correlation over time due
to person mean differences = univariate RM ANOVA

> Random time slope(s) - non-constant correlation over time
and non-constant variance over time due to between-person
differences in rate(s) of change over time

> Foreshadowing: random time-varying x;; slope = heterogeneity over x;;

- After accounting for BP level-2 random effects (intercepts,
and any slopes for change over time), WP level-1 residuals
are usually assumed uncorrelated with constant variance

> But these are both testable assumptions! (fewer alternatives
in unbalanced data, largely due to software inflexibility)

> All sources of Eerson dependency related to time should
be addressed before considering other predictors!

> Any longitudinal model not accounting for person dependency due to
intercepts (at a minimum) is most likely to be WAY wrong (AR-CLPM!)

MWPALD: Lecture |
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Summary: “‘Handling” Person Dependency

- The process of fitting “unconditional models for time”
(fixed and random effects) can be depicted as follows:

Fixed effect(s) .
Level 1, Within- of WP time Residual

Person Differences Residual

/ Variance
\ Ty, |covariance

Level 2, Between-
Person Differences

Variance
(62)
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Summary: Unconditional Models for Time

Pure WP Change Pure WP Fluctuation
"Growth Curve "EMA"
/ Modeling”
- >
\
Time Time

Role of “Time” in the Model for the Means:

- WP Change -> describe pattern of average change (e.g., growth curves)

- WP Fluctuation - describe average time-specific trends that ma?/ not have
been expected (e.qg., reactivity, day of the week, circadian/schedule effects)

Role of “Time” in the Model for the Variance:

- WP Change -> describe individual differences in change (random effects)
- this allows variances and covariances to differ over time

- WP Fluctuation - mostly describe pattern(s) of covariance over time
(may need random effects of time for differing variances)
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Families of Nonlinear Change

Polynomial functions (e.g., time?, time3) = see details on next slides

> Best suited for time slopes that should change directions
(in which time is treated as continuous)

Piecewise (linear spline) functions
> Best suited for distinct phases of time (known “knot” points)
> Otherwise, location of “latent” knots can be model parameters

Linear effect of log(time) - exponential-ish
> Good for time slopes that should level off (hit upper or lower asymptote)
> Adding quadratic log(time) adjusts how fast the time slope levels off

Latent basis = single slope with estimated nonlinearity

> In SEM software, for random time slope factor: fix first loading to 0, last loading to 1,
and estimate the other loadings to capture proportion of change by each occasion

Truly nonlinear models (e.g., logistic, exponential)
> Harder to estimate, particularly for random effects variances
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Interpreting Quadratic Fixed Effects

A Quadratic time slope is a two-way interaction: time*time

- Fixed quadratic time = "half the rate of acceleration/deceleration”

- So to interpret it as how the linear time slope changes per unit time,
you must multiply the quadratic slope coefficient by 2

- If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?

> Instantaneous linear rate of A at time 0 = 4.0, attime 1 = 4.6...

- Btw, the "twice” part comes from taking the derivatives of the function:

Intercept (Position) at Time T: y; =50.0 + 4.0T + 0.3T?

First Derivative (Velocity) at Time T: ;(yTT) =4.0+0.6T

2

Second Derivative (Acceleration) at Time T: % =0.6
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Interpreting Quadratic Fixed Effects

A Quadratic time effect is a two-way interaction: time*time

- Fixed quadratic = “half the rate of acceleration/deceleration”

- So to interpret it as how the linear time slope changes per unit time,
you must multiply the quadratic slope coefficient by 2

- If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?

> Instantaneous linear rate of A attime 0 = 4.0, attime 1 = 4.6...

Y =By + B X +B,Z+P;XZ

- The "twice” part also comes from Effect of X =B, +B5Z
what you reme.mber gbout the Effect of Z =B, +B,X
role of interactions with respect _ L
to their constituent main effects:  |Yr =Bo +B.Timer +___ +P;Times

Effect of Time; =, +2B;Time;

- Because time is interacting with itself, there is no second “main effect”
in the model for the interaction to modify. So the quadratic time slope
gets applied twice when added to the one (main) linear time slope
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Examples of Fixed Quadratic Time Trends

Accelerating Positive Function

—-Linear Slope = +4, Quadratic Slope =+0.3

Decelerating Positive Function

=== Linear Slope=+4, Quadratic Slope=-0.3

80
75
70
65
60
55
50
45
40 40
0 1 2 3 4 5 0 1 2 3 4 5
Tume Time
Decelerating Negative Function Accelerating Negative Function
—® Linear Slope = -4, Quadratic Slope =+0.3 —[+ Linear Slope = -4, Quadratic Slope=-0.3
60 60
55 P a0
. By SO S 4
50 = - 34 45 ""E]- - <3
45 Tl . 28 40 R
. 22 ) ~J58
40 Tl o ﬂ:: -1.0 35 i E - -64
i T s ey S
35 25 L T0
30 20 TR
0 1 2 3 4 5 0 1 2 3 4 5
Tune Time
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Summary: Unconditional Models for Time

- Each source of correlation or dependency goes into a new variance
component (or “pile” of variance) until each source meets the usual
assumptions of GLM: normality, independence, constant variance

- Example two-level longitudinal model:

Level 1 (one source of)
Within-Person Variation:
gets accounted for by
time-level predictors

Level 2 (two sources of)
Between-Person Variation:
gets accounted for by
person-level predictors

Variance

GA) RANDOM effects just make
a new pile of variance.

i FIXED effects make variance
Residual go away (explain variance).

Multiple BP
time slope
variances are
possible...

T‘t covariance T
01 ,

Soon we will add predictors to account for each pile!
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Concepts, Terminology, and
Time-Invariant Predictors
in Longitudinal Modeling

- Topics:
> Concepts and terminology in longitudinal models
> Modeling person dependency
> Fixed and random intercepts
> Fixed and random time slopes

> From multilevel models (MLMs) to single-level structural
equation models (SEMs) to multilevel SEMs (M-SEMs)

> Time-invariant predictors
> Details
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Translating MLMs into SEMs...

- "Random effects” = “pile of variance” = “variance components”
> Random effects represent “person*predictor” interaction terms
> Random intercept - person*intercept (person “main effect”)
> Random linear slope - person*time interaction

> Capture specific patterns of covariation of unknown origin...

Why do people need their own random intercepts and slopes?
(We can add person-level predictors to answer these questions)

- Random effects can also be seen as latent variables

> Latent variable = unobservable construct (ability or trait)

Latent variables are created from the common variance across indicators

In longitudinal data, the latent variables can be thought of as
“general tendency” and “propensity to change” as created by
measuring the same outcome over time (occasions = indicators)

> Let's see how MLMs can be estimated as single-level SEMs...
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Structural Equation Models (SEMs)

- Measurement model: y,, = p. + AF, + e,

> Observed response for item i and subject s
= intercept of item ( (u;)
+ subject s's latent trait/factor (F,), item-weighted by A,
+ residual error (e;,) of item { and subject s

- Two big differences when using two factors for longitudinal data:

> Usually two factors for “level” and “change” (intercept and slope):
Vi = (Yoo + Ug) + (Y10 + Uy;)time,; + e, > soeachU > F

> Fixed effects = factor means; random effects = factor variances

> The occasion-specific intercepts p; cannot be separately identified
from the “intercept” latent factor and therefore must be fixed to 0

> Factor loadings A, for how each outcome relates to the latent factor
are (usually) pre-determined by how much time has passed -
fixed to the difference in time across longitudinal outcomes

> Unbalanced time requires “"definition variables” - use variables for person-
specific time loadings rather than fixing loadings to same values for all

In Mplus, is TSCORES option; could not find an equivalent option in R lavaan
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Random Effects as Latent Variables

- Single-level model for the variance 2 o2 only

> ¥t = Yoo + €y Mean of the intercept factor
= fixed intercept y,,

Loadings of intercept factor = 1
(all occasions contribute equally)

Int Var

2 _
Ty, = 0

Indicator intercepts = 0 (always)

L2 variance of intercept factor
T§,= 0 so far

Y, || Y,
L1 residual variance (02) is predicted
€ ) =\%3)=\& to be equal across occasions

> After controlling for the fixed intercept (factor mean),
level-1 residuals are predicted to be uncorrelated
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Random Effects as Latent Variables

- Two-level model for the variance - add tj,,

Mean of the intercept factor
= fixed intercept y,,

Loadings of intercept factor= 1
(all occasions contribute equally)

L2 variance of intercept factor

tlzjo= random intercept variance

L1 residual variance (0?) is predicted
to be equal across occasions

> After controlling for the random intercept (factor mean and
variance), level-1 residuals are predicted to be uncorrelated
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Random Effects as Latent Variables

- Fixed linear time, random intercept model:

> Yi = Yoo + (Y1oTimey) + Uy, + ey

Linear
Time Var
2 =0

Mean of the linear time factor
= fixed linear slope y,,

Loadings of linear time factor

= occasions (keep real time)

L2 variance of linear time factor
2 _
Ty,=0

> After controlling for the fixed linear time slope (factor mean)
and random intercept (factor mean and variance),
level-1 residuals are predicted to be uncorrelated
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Random Effects as Latent Variables

- Random linear time model:

> Yi = Yoo + (Y1oTimey) + Uy, + (UyTimey) + ey

To1~=

Linear
Time Var

Mean of the linear slope factor
= fixed linear slope y,,

Loadings of linear slope factor

é b C) = occasions (keep real time)
&)= @ =&/ =\& Variance of linear time factor
15, = random slope variance

> After controlling for the random linear time slope and
random intercept (both factor means and variances),
level-1 residuals are predicted to be uncorrelated
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Random Linear Time Model:
From MLM to Single-Level SEM

Yii = Yoo + (YioTimey) + Uy + (Uy;Timey) + ey

For unbalanced time, you

Level-2 G Matrix Linear need “definition variables”

-2 (like Mplus TSCORES) that
: allow different loadings
int | _ [ Linear (= occasions) per person

Slope /L evel-1

/ Z Matrix Btvy, aIIowm-g different
residual variances for

Int Var

every occasion is going

Y, Y, Y3 \
to be redundant with the
random effects—they
: - : already predict variance

. to change over time!
Level-1 R Matrix
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Random Linear Time Model:
From MLM to Multilevel SEM

Yii = Yoo + (YioTimey) + Uy + (Uy;Timey) + ey

Tuo,Uq

L2 y;;
Intercept B;

M = 1;00;
V = TUO

L2 y;;
Time Slope ;

M=};10»
. V - TUI

L1y,
Residual e,;

M =0,
V = o2
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L1 Time,;

Multilevel SEM (or what | prefer to call
“multivariate MLM" in absence of a true
measurement model) uses a long
(stacked) data structure with one row per

level-1 unit (so per occasion per person),
just like univariate MLM.

The difference is that in M-SEM, multiple
variables (predictors or outcomes) can
have their variance partitioned into BP
intercepts, BP slopes, and WP residuals at
the same time (with additional features
for autoregressive relations possible in

"dynamic SEM”, which is still M-SEM).




Summary: Three Frameworks for the

Estimation of Longitudinal Models
- Multilevel/Mixed/Hierarchical Linear Models: MLM - | start here

> Person dependency is captured primarily by random effects (through “levels” in
stacked/long data, so occasions can be unbalanced and have multiple types of WP time)

> Univariate MLMs (single outcome over time) are common (SAS, SPSS, or STATA MIXED;
R Ime4 and nIlme), have REML and denominator DF for small samples, but can't do it all!

- Single-Level Structural Equation Models: SEM

> Person dependency is captured by latent variables (through multivariate outcomes
in wide, single-level data, so univariate occasions are treated as observed boxes)

> Single-level SEM is common (Mplus, R lavaan), but may not work for unbalanced data
or designs with more than one level of time (e.g., occasions within days within persons)

> SEM software does not have REML or denominator DF (DDF) - bad for small samples

- Multilevel Structural Equation Models: M-SEMs

> Estimated on stacked/long data, are more flexible for unbalanced time, less available
(Mplus mainly), but may break down in small N ( b/c no REML, no DDF, more parameters)

> What is “‘multilevel SEM" (M-SEM) to others, | call “multivariate MLM" when they do
not include true latent variable measurement models (i.e., as used in CFA, IFA, or IRT)
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Concepts, Terminology, and
Time-Invariant Predictors
in Longitudinal Modeling

- Topics:
> Concepts and terminology in longitudinal models
> Modeling person dependency
> Fixed and random intercepts
> Fixed and random time slopes

> From multilevel models (MLMs) to single-level structural
equation models (SEMs) to multilevel SEMs (M-SEMs)

> Time-invariant predictors
> Detalls

MWPALD: Lecture |
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Modeling Time-Invariant Predictors

- Which independent variables can be time-invariant predictors?
> Aka, "“person-level” or “level-2" or predictors (x;) in two-level models
> Includes substantive predictors, controls, and predictors of missingness

> Includes anything that either does not change across time, or that might
change across time but that you've only measured once (you may need
to argue why this is conceptually ok or limit conclusions accordingly)

> Also includes BP variance in time or time-varying predictors (stay tuned)

- All predictors should be centered so that 0 values are meaningful:

> This is needed to create a meaningful fixed/random intercept, and/or
meaningful fixed main effects of predictors also included in interactions

e.g., If fixed effects of X, Z, and X*Z, the main effect of X is specifically for Z=0

> Quantitative predictors can be centered at any constant, such as
the sample mean (common, and useful if it has an unfamiliar scale)
or any meaningful reference (better for translating across studies)

> Categorical predictors can have their dummy-code contrasts created
for you as “factor” variables (e.g., SAS CLASS, SPSS BY, STATA i.), but not in
Mplus; | do not like + 1 coding for group differences (because then 0 = ?7??)

| find indicator or sequential dummy-coding variants most useful
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Beware of Missing Predictors

- Any cases missing model predictors that are not part
of the joint likelihood* will not be used in that model

> Not great for time or time-varying predictors (Missing At Random-ish)
> Really bad for time-invariant predictors (listwise deletion, MCAR)

- Better options for missing predictors:

> *Bring the predictor into the joint likelihood (only possible in software
for truly multivariate MLMs, such as Mplus, or in SEM programs)
Its mean, variance, and covariances “get found” as model parameters

Predictor then has distributional assumptions (default is multivariate normal),
which may not be plausible for all predictors

Mplus v. 8 still will not do this for non-normal “predictors” in multivariate MLM

> Multiple imputation (and analysis of *each* imputed dataset)

Imputation also requires distributional assumptions for imputed variables!

Also requires all parameters of interest for the analysis model to be in the
imputation model, too (which is problematic for interactions or random effects)
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The Role of Time-Invariant Predictors
in the Model for the Means

- In Within-Person Change Models > Adjust growth curve

Main effect of x;, no Interaction with time,  Main effect of x;, and
interaction with time main effect of x;? interaction with time
° o
() < @
@ ---------------------
.................... .
o
< Time 2 < Time 2 & Time S
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The Role of Time-Invariant Predictors
in the Model for the Means

- In Within-Person Fluctuation Models > Adjust mean level

No main effect of x; Main effect of x;
®) e Y e
T G . " S
© ©
S ——
8}
< Time - < Time 2
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The Role of Time-Invariant Predictors
in the Model for the Variance

- Beyond fixed effects in the model for the means, time-
invariant predictors can be used to allow heterogeneity of
variance at their level or below in “location-scale models”

- e.g., Group as a predictor of heterogeneity of variance:

> At level 2: Amount of individual differences in intercepts and/or slopes
differs between control and treatment (assumed constant by default!)

> At level 1. Amount of within-person residual variation differs
between control and treatment (assumed constant by default!)

« In within-person fluctuation model: differential volatility over time

= In within-person change model: differential volatility/inconsistency
remaining after controlling for fixed and random effects of time

- These models are harder to estimate and may require custom
algorithms (e.g., SAS NLMIXED; in Mplus v 8+ using “logV")
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Why Level-2 Predictors Cannot™ Have
Random Effects in Two-Level Models

Random Slopes for Time Random Slopes for Group?

Time Group _
(or Any Level-1 Predictor) (or any Level-2 Predictor)

You cannot make a line out of a dot, so level-2
effects cannot vary randomly over persons.

* Level-2 predictors can be included as predictors of heterogeneity of variance,
which technically is a random slope of sorts (but interpretation is different)
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Sources of Explained Variance by
Person-Level-2 Time-Invariant Predictors

- Fixed effects of level-2 predictors by themselves:
> Level-2 (BP) main effects reduce level-2 random intercept variance
> Level-2 (BP) interactions also reduce level-2 random intercept variance

- Fixed effects of cross-level interactions (level-1* level-2):

> If a level-1 predictor is random, any cross-level interaction with it
will reduce its corresponding level-2 BP random slope variance

= e.qg. if time is random, then pred1*time, pred2*time, and pred1*pred2*time
can each reduce the level-2 random linear time slope variance

> |If the level-1 predictor not random, any cross-level interaction
with it will reduce the level-1 WP residual variance instead

e.g., if time? does not have a level-2 random slope, then pred1*time?,
pred2*time?, and pred1*pred2*time? will reduce the level-1 residual variance
—> Different quadratic slopes by pred1 and pred2 create better level-1
trajectories, thus reducing level-1 residual variance around the trajectories
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Variance Explained... Continued

. Pseudo-R? is named that way for a reason... piles of variance
can shift around, such that it can actually become negative

> Sometimes is a sign of model mis-specification (but not always)
> See Rights & Sterba (2019, 2020) for alternative calculation of pseudo-R?

Ensure positive R? values, but they don't quantify R? for slope variances (boo)

- A simple alternative: Total R? (Singer & Willett, 2003)

> Generate model-predicted y;; from fixed effects only (NOT including
random effects, so no cheating) and correlate it with observed y;;

> Then square that correlation - total R? (same as in GLM regression)
> Total R? = total reduction in overall outcome variance across levels

> Can be "unfair” in models with large unexplained sources of variance
(i.e., for sampling dimensions you didn’t have predictors for)

- MORAL OF THE STORY: Specify EXACTLY which kind(s) of R?
you used—qive the formula and a reference!!
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Example: Individual Trajectories
|01 older adults, 6 occasions within 2 weeks

Number Match 3 Response Times (RT) by Session

4500

4000

3500

3000

RT

2500

2000

1500 -

1000

500
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Example Mean RT by Session:
Baseline Models for the Means

2,000
1,950
1,900
1,850
1,800
1,750
1,700
1,650
1,600
1,550
1,500

RT in msec
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_§ Saturated Means (ANOVA) Model
\ = 6 parameters (1 mean per session)

N\

N

Empty Means Model = 1 fixed intercept
(means predicted to be equal over sessions)

e e DO === =@ === =9=====0
*\
1 2 3 4 5 6

Session
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Example Variance in RT by Session:
Baseline Models for the Variance

325,000

Unstructured Variance-Covariance Model
= 21 parameters (all variances and covariances)

300,000

Random Intercept Only Model
275,000 = 2 parameters (1, and o2)
(variances predicted to be equal over sessions)

250,000

225,000

Variance in RT in msec

200,000

175,000

Session
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Random Quadratic Time Unconditional Model

Level 1:

Level 2 Equations (one per ):

RT; = Boi + ByiTime,; + B Timey® + e,

Boi =

Intercept
for person (

BT“ =
Linear Time

Slope for
person (

BTZi =
Quadratic

Time Slope
for person (
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Yoo *
Fixed (mean)
Intercept

Yio *

Fixed (mean)
Linear Slope

\gzo +
Fixed (mean)
Quad Slope

UOi
Random

(Deviation)
Intercept

Us;

Random
(Deviation)
Linear Slope

Us;
Random
(Deviation)
Quad Slope

Time = session - 1

REML estimation using
stacked data (univ MLM)

U. covariances also estimated

Fixed Effect Subscripts:
1st = which level-1 term
2nd = which level-2 term

# of Possible Time-Related

Slopes by # of Occasions (n):

# Fixed time slopes = n -1
# Random time slopes = n -2

Need n = 4 occasions to fit
random quadratic time model
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Adding Reasoning (0=22) as a Time-Invariant Predictor:
Is RT Improvement Predicted by Fluid Intelligence!?

Level 1: RTy; = Bo; + By Timey + By Time,? + e
Level 2 Equations (one per f):

Boi = \:oo + VTO1ReaSi + Uy

Intercept Fixed Intercept A in Intercept per Random (Deviation)

for person i when Time=0 unit A in Reas Intercept after
and Reas=22 controlling for Reas

By = Yio + VYiiReas; + UT1i

Linear Slope Fixed Linear Ain Linear Time Random (Deviation)

for person i Time Slope Slope per unitAin Linear Time Slope after
when Time=0 Reas (=Reas*time) controlling for Reas
and Reas=22

By = Y20 + \{21Reasi T UTZi

T
Quad Slope Fixed Quad A in Quad Time Random (Deviation)
for person ( Time Slope Slope per unit A in Quad Time Slope after
when Reas=22 Reas (=Reas*time?)  controlling for Reas
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Reasoning (0=22) as a Time-Invariant Predictor:
Is RT Improvement Predicted by Fluid Intelligence!?

Level 1: RTy; = Bg; + By;Timey + B, Time,? + e

Level 2 Equations (one per f):

Boi = Yoo + YoiReas; + Uy,
Bii = VY10 + ViiReas; + Uy;

Boi = Va0 + Y2iReas; + Uy

- Composite equation:
* ¥ii = (Yoo *+ Yo1Reas; + Ug) +

Y11 and y,, are known as
“cross-level” interactions
(level-1 predictor by
level-2 predictor)

Each fixed slope of reasoning
will predict the random Ui,
variance in its level-2 equation if
present, or e;; residual variance
otherwise. That's why random
slopes should be tested before
adding cross-level interactions!

(V10 + Yi1Reas; + U;;)Time, +
(Vo + Vo1Reas: + U,.)Time,? + e,
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Reasoning (0=22) as a Time-Invariant Predictor:

Is RT Improvement Predicted by Fluid Intelligence!?

RT,; = (1966 + —27*Reas; +U,;) + :3|: PSt‘!utCllC;-R2 \ézlges:
. nterce =
(-120 + -3.6*Reas; +U,)Time, + LineaerimeOU" - 06

(13 +1.2*Reas; +U,,)Time,? + e,; |Quadratic Time U,; = .024

WP Residual e; = 0
Reasoning by Quadratic Change over Sessions - -
—e—Reasoning 17 —#-Reasoning 22 —— Reasoning 27 People with better reasoning:

2200 e started out faster/lower
(intercept at session 1),
* Iimproved more initially

2000 \‘ . .

-\ \\ (linear slope at session 1),
1900 « and had a greater rate of
1800 1A \-\ \ deceleration with practice

2100

RT (msec)

\ \'\.\. - (quadratic slope*2!)
1700 i
1600 \\ —

1500

Session
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Example: Syntax by Univariate
MLM Program (Stacked Data)

PROC MIXED DATA=work.Example2 COVTEST METHOD=REML;
CLASS 1ID;
MODEL RT = time timesq reas time*reas timesg*reas / SOLUTION DDFM=Satterthwaite;
RANDOM INTERCEPT time timesq / GCORR TYPE=UN SUBJECT=ID;

RUN;

R (Imer from Ime4 package)—using Imertest package, which does provide correct denominator DF:
model2 = Tmer(data=Example2, REML=TRUE,
formula=RT~1+time+timesqg+reas+reas
+time:reas+timesq:reas+(1l+time+timesq|ID))
summary(model2, ddf="sSatterthwaite')

STATA:
mixed RT time timesq reas time#reas timesqgffireas, || ID: time timesq, ///
variance reml covariance (un) dfmethod(satterthwaite) dftable (pvalue)

SPSS:
MIXED RT BY ID WITH time timesq reas
/METHOD = REML
/PRINT = SOLUTION TESTCOV
/FIXED = time timesq reas time*reas timesqg*reas
/RANDOM = INTERCEPT time timesq | COVTYPE (UN) SUBJECT (ID).
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Should | have used a “latent” growth curve
model (on wide data in SEM) instead!?

Cons:

RT,; = (Yoo + Yoi1Reas; + Uy) +
(V10 + Yi1Reas; + U,.)Time, +
(Vo + V21Reas; + U,.)Time,%+e,

Y11

—— L2 Reas;

No REML, no DDF >
Type | error for small N
Requires balanced time
(or definition variables for
(ndividual time loadings)

L2
Linear Time
Slope By; L2 Y21
. Quadratic
i = Time Slope B5;

- D < o\ /

.
~ % % 7 ~d, 7 R4
RTO, HRT1,- \ RT2, ‘RTS,- HRT4,- HRTS,-

1 1 1 1 1 1

L1 Residual e;; (M = 0,V = ¢2)
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Pros:

Latent basis nonlinear
change (fix Tst loading to
0, last to 1, estimate other
loadings for % change)
More flexibility in WP
residual heterogeneity of
variance and covariance
Change in latent variables
instead of observed
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Example: Mplus Single-Level SEM Syntax

Just showing MODEL part, which would be preceded by DATA,
VARIABLE, and ANALYSIS as usual (estimated using wide data)

Factor
Int BY
Lin BY
Qua BY

loadings fixed by @
RTOQ@1 RT1@1 RT2@1 RT3@1 RT4@1 RT5@1;
RTOQO0 RT1@1 RT2@2 RT3@3 RT4@4 RT5@5;

Factor intercepts estimated = fixed effects
[Int Lin Qual];

Level-2 factor variances estimated (in G)
Int Lin Qua;

Level-2 factor covariances estimated (in G)
Int Lin Qua WITH Int Lin Qua;

Per-occasion intercepts fixed to 0
[RTOQRO RT1@0 RT2@0 RT3Q@0 RT4Q@0 RT5@O0];

Level-1 residual variances held equal (in R)
RTO RT1 RT2 RT3 RT4 RT5 (ResVar);

Fixed effects of reasoning - latent factors
Int Lin Qua ON reas;

RTOQRO0 RT1@1 RT2@4 RT3@9 RT4@16 RT5@25;

Random latent basis model of change

Factor loadings fixed by @

Int BY RTO@1 RT1@1 RT2@1 RT3@1 RT4@1 RT5Q1;
Slp BY RTO0@O RT1* RT2* RT3* RT4* RT5Q1;
Loadings estimated as 0.57, 0.76, 0.90, 0.97

Factor intercepts estimated = fixed effects
[Int Slp];

Level-2 factor variances estimated (in G)
Int Slp;

Level-2 factor covariance estimated (in G)
Int WITH Slp;

Per-occasion intercepts fixed to 0
[RTORO RT1@0 RT2@0 RT3@0 RT4Q0 RT5@O0];

Level-1 residual variances held equal (in R)
RTO RT1 RT2 RT3 RT4 RT5 (ResVar) ;

Fixed effects of reasoning -2 latent factors
Int Slp ON reas;

Note: There are Mplus syntax shortcuts for growth models | am not using: (1) to be
explicit about what the model contains, (2) to not estimate separate residual variances
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Example: R Single-Level SEM Syntax

RandQuadSyntax = "

# Factor loadings fixed by *

Int =~ 1*RTO + 1*RT1l + 1*RT2 + 1*RT3 + 1*RT4
Lin =~ O*RTO + 1*RT1 + 2*RT2 + 3*RT3 + 4*RT4
Qua =~ O*RTO + 1*RT1 + 4*RT2 + 9*RT3 + 16*RT4

# Factor intercepts estimated = fixed effects
Int ~1; Lin ~ 1; Qua ~ 1

# Level-2 factor variances estimated (in G)
Int ~~ Int; Lin ~~ Lin; Qua ~~ Qua

# Level-2 factor covariances estimated (in G)
Int ~~ Lin + Qua; Lin ~~ Qua

# Per-occasion intercepts fixed to 0
RTO ~ 0; RT1 ~ 0; RT2 ~ 0
RT3 ~ 0; RT4 ~ 0; RT5 ~ O

! Level-1 residual variances held equal (in R)

RTO0 ~~ (ResVar)*RTO; RT1l ~~ (ResVar) *RT1l
RT2 ~~ (ResVar)*RT2; RT3 ~~ (ResVar) *RT3
RT4 ~~ (ResVar)*RT4; RT5 ~~ (ResVar) *RT5

+ 1*RT5
+ 5*RT5
+ 25*RT5

# Fixed effects of reasoning --> latent factors

Int + Lin + Qua ~ reas
RQModel = lavaan (data=Example2wide,
model=RandQuadSyntax,

estimator="ML", mimic="mplus")
summary (RQModel, fit.measures=TRUE, rsquare=TRUE,

standardized=TRUE)

Note: There are lavaan syntax shortcuts for growth models | am not using: (1) to be

LatentBasisSyntax = "
# Factor loadings fixed by *

Int =~ 1*RTO + 1*RT1 + 1*RT2 + 1*RT3 + 1*RT4 +
Slp =~ O0*RTO + RT1 + RT2 + RT3 + RT4 +
# Loadings estimated as 0.57, 0.76, 0.90, 0.97

# Factor intercepts estimated = fixed effects
Int ~1; Slp ~ 1

# Level-2 factor variances estimated (in G)
Int ~~ Int; Slp ~~ Slp

# Level-2 factor covariances estimated (in G)
Int ~~ Slp

# Per-occasion intercepts fixed to 0
RTO ~ 0; RT1 ~ 0; RT2 ~ O
RT3 ~ 0; RT4 ~ 0; RT5 ~ 0

! Level-1 residual variances held equal (in R)
RTO ~~ (ResVar)*RTO; RT1l ~~ (ResVar) *RT1l
RT2 ~~ (ResVar)*RT2; RT3 ~~ (ResVar) *RT3
RT4 ~~ (ResVar)*RT4; RT5 ~~ (ResVar) *RT5

# Fixed effects of reasoning --> latent factors

Int + Slp ~ reas

LBModel = lavaan (data=Example2wide,
model=LatentBasisSyntax,

estimator="ML", mimic="mplus")
summary (LBModel, fit.measures=TRUE, rsquare=TRUE,

standardized=TRUE)

1*RT5
1*RT5

explicit about what the model contains, (2) to not estimate separate residual variances
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Should | have used “multilevel SEM”
(on long data) instead? Not in this case...

RT,; = (Yoo + Yoi1Reas; + Uy) +
(V10 + Yi1Reas; + U,.)Time, +
(Vo + V21Reas; + U,.)Time,%+e,

L2 Reas;

Y11

ITZ Quadratic L2 L2 Linear
Time Slope B5; Intercept Bo; Time Slope B1;
I =120, I =Yoo, I'=1710,

— 42
V =1y, 2

V:TUO z

V:TUI

L1 z
2 (_d’_

Timey; Bai B1i Time,

L1
Residual e;;
M =0,

V = o2
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Example: Mplus M-SEM Syntax

Just showing MODEL part, which would be preceded by DATA,
VARIABLE, and ANALYSIS as usual (estimated using long data)

SWITHINS
RT; ! Level-1 residual variance
Lin | RT ON time; ! Create betali placeholder
Qua | RT ON timesq; ! Create beta2i placeholder
$BETWEENS

[RT Lin Qua];

RT Lin Qua;

RT Lin Qua WITH RT Lin Qua;
RT Lin Qua ON reas;

Intercepts

Level-2 random effect wvariances
Level-2 random effect covariances
Fixed effects of reasoning

- Note: R's lavaan package does have M-SEM capability,
but it is much more limited than M-SEM in Mplus:

> Listwise deletion for any rows (occasions) with missing values

> No random slopes!
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Fixed Effects of Time-Invariant Predictors

- Question of interest: Why do people change differently?

> We're trying to predict individual differences in intercepts and slopes
(i.e., reduce or explain the variances of the level-2 random effects)

> So level-2 random effects variances are then conditional on predictors
—> actually random effects variances left over (aka “level-2 residuals”)

Boi = Yoo + Uy ‘ Boi = Yoo * YoiReas; + Uy,
B1ii = Y10 + Uy; " B1i = Y10 + Yi1Reas; + Uy;
Bai = Y20 + Uy; Bai = Y20 + Y2:1Reas; + U,

> Can calculate pseudo-R? for each level-2 random effect variance
between models with fewer versus more parameters as:

Pseudo R? = random variancey,,., — random variance, ..

random variances,, .,
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Fixed Effects of Time-Invariant Predictors

- What about predicting level-1 effects with no random variance?

>

If the random linear time slope is n.s., can | test interactions with time?

This should be ok to do... Is this still ok to do?
Boi = Yoo + YoiReas; + Uy, Boi = Yoo + YoiReas; + Uy,
B1i = Y10 + Vi1Reas; + Uy, B1i = Y10 + YiiReas,
B2i = Y20 + V21Reas; + Uy, B2i = Y20 + Y21Reas;

“NO": If a level-1 effect does not vary randomly over individuals, then it
has “no” variance to predict (so cross-level interactions with that level-1

effect are not necessary); its SE and DDF could be inaccurate SE if rﬁl;éo

“YES": Because power to detect random effects is lower than power to
detect fixed effects (especially with small L2n), cross-level interactions
can still be significant even if there is “no” (=0) variance to be predicted

Saying yes requires new vocabulary...
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3 Types of Effects: Fixed, Random, and
Systematically (Non-Randomly) Varying

Let's say we have a significant fixed linear effect of time.
What happens after we test a group*time interaction?

Non-Significant Significant

Group*Time effect? Group*Time effect?
Random time slope Linear effect of time | Linear effect of time is
initially not significant is FIXED systematically varying
Random time initially sig, --- Linear effect of time is
not sig. after group*time systematically varying
Random time initially sig, | Linear effect of time Linear effect of time
still sig. after group*time is RANDOM is RANDOM

The effects of level-1 predictors (time-level) can be fixed, random, or
systematically varying. The effects of level-2 predictors (person-level) can
only be fixed or systematically varying (nothing to be random over...yet).

MWPALD: Lecture | 80



Are Systematically Varying Effects ok?

- YES, so long as you haven't accidentally omitted a “sizeable”
random slope variance (i.e.,, made a Type Il error)

- How to know? Consider significance of slope variance AND
Slope Reliability (see Hoffman & Templin, under revision)

r%lz random slope variance T%I

o2 = residual variance SR = >
L1n = L1 sample size per L2 unit T%Il + Oe .
o4, = variance of L1 predictor Lin * 074

- Simulation examining L2n = 10 to 50 and L1n = 3 to 10
suggests keeping nonsignificant random slope variances with
SR > .20 when using REML or SR > .15 when using ML
maintains acceptable Type | errors for cross-level interactions
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Concepts, Terminology, and
Time-Invariant Predictors
in Longitudinal Modeling

- Topics:
> Concepts and terminology in longitudinal models
> Modeling person dependency
> Fixed and random intercepts
> Fixed and random time slopes

> From multilevel models (MLMs) to single-level structural
equation models (SEMs) to multilevel SEMs (M-SEMs)

> Time-invariant predictors
> Details
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Details: ML vs. REML Estimation

- What are REML and ML? Two flavors of likelihood estimation:
- REML = “Restricted (or residual) maximum likelihood”

> Only available for general linear models or general linear mixed models
(that assume normally distributed residuals); not in any SEM software

> |s same as OLS given complete outcomes, but it doesn’t require them

& )2
> Estimates variances the same way as in OLS (accurate) 2 Z(y]’i; i'“)

- ML = “"Maximum likelihood” (also called FIML*)

> |s more general, is available for the above plus for non-normal
outcomes and latent variable models (CFA/SEM/IRT; multilevel SEM)

> Is NOT the same as LS: it under-estimates variances by Xy — ¥1:)?
not accounting for the # of estimated fixed effects > N

*FI = Full information =2 it uses all the original data (they both do)
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Details: ML vs. REML Estimation

Remember “population” | “Population” “Sample”
vs. “sample” formulas S0 = 9’ XAk
for calculating variance? N N — k
All comparisons ML REML

must have same N!!!

In software:

Only choice in SEM or M-
SEM; available in MLM

Default in univariate
general MLM programs

In estimating
variances, it treats
fixed effects as...

Known (df for having to
also estimate fixed effects
is not factored in)

Unknown (df for having
to estimate fixed effects
is factored in)

So, in small samples,
L2 variances will be...

Too small (less difference
after N=30-50 or so)

Unbiased (correct)

But because it indexes
the fit of the...

Entire model
(means + variances)

Variances model only

You can compare
models differing in...

Fixed and/or random
effects (either/both)

Random effects only
(same fixed effects)
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Details: Assessing Significance

- Model for the Means - which fixed effects of predictors
should be included in the model (e.g., main effects, interactions)

> Significance tests do not require assessment of relative model fit
using —2ALL (can always use univariate or multivariate Wald tests)

> Effect sizes can come from the significance tests (e.g., t > Cohen’s d
or partial r), or from reductions in variance (pseudo-R? or total-R?)

- Model for the Variance - what pattern(s) of variance and
covariance the residuals from the same unit have; what
random effects are needed to describe these pattern(s)

> Significance tests DO require assessing relative model fit via —2ALL

Cannot use the Wald test p-values for variances because those p-values
use a two-sided sampling distribution, but variances cannot be negative

> Effect sizes (less commonly provided) can come from random effects
confidence intervals (Cl) or random effects reliability measures

= Random Effect 95% CI = fixed effect + (1.96*\/ Random Variance)
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Pseudo-R? Effect Size of Fixed Effects

. Pseudo-R? = proportion of variance accounted for by fixed effects of
predictors in each pile of variance - multiple pseudo-R? values

- For example, a fixed linear effect of WP time will reduce level-1 residual
variance o2 in R by this much:

Pseudo R = residual varianceg,,,, — residual variance,, "fewer” = "was” = from
° residual variance,, ., model with fewer parameters
: "“more” = "is" = from
, _ was — is .
More generally, Pseudo R* = e model with more parameters

- But whenever only level-1 residual variance o2 is reduced, the level-2
random intercept variance T%O will INCREASE as a result. Why?

> Likelihood-based estimates of “true” r%o use (o2 / level-1 n) as correction factor
for the amount of between-person difference attributable to chance:
True tj;, = Observed tj, - (o2 / level-1 n)

> For example: observed level-2 150:4.65, level-1 62=7.06, n=4

True r%(): 4.65 -(7.60/4) = 2.88 in empty means model
Add fixed linear time slope = reduce o2 from 7.06 to 2.17 (Pseudo-R? = .69)
But now True r%oz 4.65 -(2.17/4) = 4.10 in fixed linear time model
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Details: Significance of Fixed Effects

Denominator DF
is infinite
(Proper Wald test)

Denominator DF is
estimated instead
("Modified” Wald test)

Numerator DF = 1
(test one fixed effect) is
Univariate Wald Test

use z distribution
(all of SEM;
Mplus MLM, STATA
MIXED default)

use t distribution
(R nlme or Ime4; SAS; SPSS;
STATA MIXED with
dfmethod and small)

Numerator DF > 1
(test 2+ fixed effects) is
Multivariate Wald Test

use y?distribution
(Mplus,
STATA default)

use F distribution

(R glht; SAS, SPSS;

STATA MIXED with
dfmethod and small)

Options for estimating
Denominator DF (DDF)

not applicable

R, SAS, STATA:
Kenward-Roger
R, SAS, STATA, SPSS:

Satterthwaite
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Details: Comparing Models for the Variance

- Two strategies for choosing a model for the variance:
> Does the more complex model fit better (than a simpler model)?

> Does the simpler model fit worse (than a more complex model)?

- Nested models are compared using a “likelihood ratio test”:
—2ALL test (aka, "x? test” in SEM; “deviance difference test” in MLM)

"fewer” = from model with fewer parameters Results of 1. & 2. must
“more” = from model with more parameters be positive values!

1. Calculate —2ALL: if given -2LL, do -2ALL = (-2LLs,) — (-2LL
if given  LL, do —2ALL = -2 *(LL¢,, — LL

2. Calculate Adf = (# Parms_ ..) —
3. Compare -2ALL to x? distribution with df = Adf
4. Get p-value (e.g., from Excel CHIDIST, R anova, or STATA LRTEST)

more)

more)

(# Parm S‘fewer)
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Details: Comparing Models for the Variance

- What your p-value for the —2ALL test means:

> |If you ADD parameters, then your model can get better
(if —2ALL test is significant ) or not better (not significant)

> |f you REMOVE parameters, then your model can get worse
(if —2ALL test is significant ) or not worse (not significant)

- Nested or non-nested models can also be compared by
Information Criteria that also reflect model parsimony

> No significance tests or critical values, just “smaller is better”

> AIC = Akaike IC = -2LL + 2 *(#parameters)

> BIC = Bayesian IC = -2LL + log(N)*(#parameters)

> What “parameters” means depends on flavor (except in STATA):

« ML = ALL parameters; REML = variance model parameters only
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