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• Topics:

➢ Concepts and terminology in longitudinal models

➢ Modeling person dependency

➢ Fixed and random intercepts

➢ Fixed and random time slopes

➢ From multilevel models (MLMs) to single-level structural 
equation models (SEMs) to multilevel SEMs (M-SEMs)

➢ Time-invariant predictors

➢ Details



Sources of Longitudinal Relations

• Between-Person (BP) Variation:

➢ “INTER-individual differences” from “time-invariant” measures

➢ All longitudinal studies that begin as cross-sectional studies have this

• Within-Person (WP) Variation:

➢ “INTRA-individual differences” from “time-varying” measures

➢ Only longitudinal studies can provide this extra type of information!

• Longitudinal studies allow examination of both types 
of relationships simultaneously (and their interactions)

➢ Any variable measured over time usually has both BP and WP variation

➢ BP = more/less than other people; WP = more/less than usual

• I use “person” here, but ”between” units can be anything that 
is measured repeatedly (e.g., schools, countries, companies…)
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A Longitudinal Data Continuum
• Within-Person (WP) Change: Expect systematic effect(s) of time

➢ e.g., “(Latent) Growth Curve Models” → Time is meaningfully sampled

➢ If magnitude or direction of change differs across individuals, then 
the outcome’s variance and covariance will change over time, too!

• Within-Person (WP) Fluctuation: Few expected effects of time

➢ Outcome just varies/fluctuates over time (e.g., emotion, mood, stress)

➢ Time is just a way to get lots of data per person (e.g., EMA studies)

➢ Lends itself to questions about effects of relative changes and inconsistency
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Why Do Longitudinal Research?
• To explore within-person change over time and its relations

➢ On average (→ fixed effects): e.g., Does my new treatment result 
in greater (or faster) improvement than the standard approach?

➢ BP differences (→ random effects): e.g., Do some people improve 
more (or more rapidly) over time than others? And if so, why?

➢ Because cross-sectional age differences ≠ longitudinal age changes!

➢ Btw, this is the purpose of “(latent) growth curve models”

• To explore within-person fluctuation, “dynamics”, and their relations

➢ On average (→ fixed effects): e.g., When you sleep less than usual, are you more 
impatient than usual the next day, too (or vice-versa, as “reciprocal” relations)?

➢ BP differences (→ random effects): e.g., Are some people more 
affected by (relative) sleep deficits than others? And if so, why?

➢ Btw, this is (often) the purpose of “multilevel models” or “multilevel SEM”, 
as well as “cross-lag panel models” (or “auto-regressive cross-lag models)”

• To explore within-person (in)stability and its relations

➢ e.g., Why are some people moodier than others?

➢ e.g., Does inconsistency precede long-term age-related decline?

➢ Btw, this is the purpose of “location–scale mixed effects models”
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Sources of “Time” in Longitudinal Data
• What aspects of “time” are relevant?

➢ WP change: e.g., time in study, age, grade, time to/from event

➢ WP fluctuation: e.g., time of day, day of week, day in study

• Does time vary within persons (WP) AND between persons (BP)?

➢ If people differ in time at the study beginning (e.g., accelerated designs), 

we will need to differentiate BP time effects from WP time effects

➢ If there is more than one kind of WP “time” (e.g., occasions within days), 

we will need to differentiate distinct sources of WP time effects

• Is time balanced or unbalanced?

➢ Balanced = shared measurement schedule (not necessarily equal interval)

▪ Although some people may miss some occasions, making their data “incomplete”

➢ Unbalanced = people have different possible time values

▪ By definition, the possible outcomes are at least partially “incomplete” across persons

▪ This may be a consequence of using a time metric that also varies between persons 
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The Two Sides of *Any* Model

• Model for the Means:

➢ Aka Fixed Effects, Structural Part of Model

➢ What you are used to caring about for testing hypotheses

➢ How the expected outcome for a given observation varies 
as a function of values on known predictor variables

▪ Fixed effects are estimated constants that multiply predictors

• Model for the Variance:

➢ Aka Random Effects and Residuals, Stochastic Part of Model

➢ What you *were* used to making assumptions about instead

➢ How residuals are distributed and related across sampling 
dimensions (persons, occasions) → these relationships are known 
as “dependency” and this is the primary way that longitudinal 
models differ from “regular” regression models
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➢ Fixed and random intercepts

➢ Fixed and random time slopes

➢ From multilevel models (MLMs) to single-level structural 
equation models (SEMs) to multilevel SEMs (M-SEMs)

➢ Time-invariant predictors

➢ Details



Modeling Longitudinal Dependency
• Outcomes from the same sampling unit (i.e., person) will have 

one or more sources of dependency → correlated residuals

➢ If ignored, dependency in a longitudinal outcome will result in incorrect 

fixed effect standard errors and p-values (well-known problem) 

➢ If ignored, dependency in a longitudinal predictor variable will result in 

incorrect fixed effect estimates, too (relatively less well-known problem)

▪ Because time-varying predictors have both BP and WP variation—stay tuned!

• The sources of residual correlation of occasions from same 

person can be captured by a model in three main ways:

1. Fixed effects: Add Person ID as a predictor (via N-1 dummy codes)

2. (Multivariate) alternative covariance structures (ACS):

Just allow correlation over occasions to exist (for unknown reasons)

3. Add a “level” (or more): Use random effect (latent factor) variances, 

as possible within multilevel or structural equation modeling
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1. Modeling Longitudinal Dependency
• Fixed effects: Add Person ID as a categorical predictor 

• Estimate fixed effects of 𝑁 − 1 dummy codes for person ID

➢ Person ID main effects capture dependency due to mean differences

➢ Interactions of Person ID with time-varying predictors (like time)

capture other predictor-specific sources of person dependency

• Pro: Does adequately control for person dependency

➢ Very common in econometrics, political science, sociology…

➢ Does a better job in studies with “few” persons (< 15ish)

➢ Useful to make individual-specific conclusions 

(i.e., as in aggregated N-of-1 randomized control trials)

• Con: Does not allow prediction of WHY any of those 

individual differences occurred 

➢ Model would be saturated with respect to between-person differences
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https://academic.oup.com/jpepsy/article/39/2/138/885269


2. Modeling Longitudinal Dependency
• Alternative multivariate variance–covariance structures: Change model 

to allow correlation over occasions (and any residual heterogeneity) to exist

• Is only possible given balanced data (all people on same schedule) and 
conditionally normal outcomes (i.e., not when using generalized models)

• Is the basis of repeated measures ANOVA, of which there are 2 kinds

➢ “Univariate approach”: residuals have equal variance and equal correlations 
across all repeated measures outcomes—but this “compound symmetry” 
pattern can only possibly hold if all people change the same!

➢ “Multivariate approach”: all residual variances and correlations are separately 
estimated—but this “unstructured” (MANOVA) model becomes difficult-to-
impossible given many outcomes (especially with few people)

➢ Estimation using ordinary least squares → listwise deletion of missing data 

• Switching to maximum likelihood estimation uses all complete occasions 
AND offers more choices for patterns of residual variance and correlation

➢ Btw, residual maximum likelihood = ordinary least squares given complete outcomes

➢ e.g., Compound Symmetry Heterogeneous (diff variances, equal correlation) 

➢ Options that use time-lagged covariances also require equal-interval occasions: 
e.g., First-order auto-regressive, moving average, or antedependence; Toeplitz
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3. Modeling Longitudinal Dependency
• Add a “level” → Add random effect (latent variable) variances

• Random effect = model term that each person gets their own 

version of (in theory); directly incorporated by estimating the 

variance of each random effect across persons → BP differences

➢ Capture patterns of non-constant variance and covariance for testable reasons 

➢ Works for general or generalized models (i.e., for any kind of outcome)

➢ Works for balanced or unbalanced longitudinal data

• More generally, a “level” is a dimension of sampling that has 

unexplained outcome variability represented by 1+ random effects

➢ “time” is not a level once sufficient fixed effects for its mean diffs are included

➢ e.g., Randomized Control Trial (RCT) of 5 monthly occasions → 2 levels 

(1. within-person, 2. between-person)

➢ e.g., Ecological Momentary Assessment (EMA) design of 4 observations per day 

for 3 weeks → 3 levels (1. within-day, 2. between-day, 3. between-person)
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A Statistician’s World View
• Outcome type: General (normal) vs. Generalized (not normal)

• Dimensions of sampling: One (so one variance term per outcome) vs. 

Multiple (so multiple variance terms per outcome) → OUR WORLD

• General Linear Models: conditionally normal outcome distribution, 

fixed effects (identity link; only one dimension of sampling)

• Generalized Linear Models: any conditional outcome distribution, 

fixed effects through link functions, no random effects (one dimension)

• General Linear Mixed Models: conditionally normal outcome distribution, 

fixed and random effects (identity link, but multiple sampling dimensions)

• Generalized Linear Mixed Models: any conditional outcome distribution,

fixed and random effects through link functions (multiple dimensions)

➢ Not this week—Many of the same concepts, but with more complexity in estimation

• “Linear” means fixed effects predict the link-transformed conditional mean 

of DV in a linear combination of (effect*predictor) + (effect*predictor)…
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Note: OLS is 

only for GLM



Multilevel Model (MLM) Word Salad
• MLM is the same as other terms you have heard of:

➢ Linear Mixed-Effects Model (fixed + random effects, 
of which intercepts and slopes are specific kinds of effects)

➢ Random Coefficients Model (because coefficients also = effects)

➢ Hierarchical Linear Model (not same as hierarchical regression)

• Special cases of MLM:

➢ Random Effects ANOVA or Repeated Measures ANOVA

➢ (Latent) Growth Curve Model (where “Latent” implies SEM software)

▪ Btw, most MLMs can be equivalently estimated as single-level SEMS

➢ Within-Person Fluctuation Model (e.g., for EMA or daily diary data)

▪ See also “dynamic” SEM or multilevel SEM (even without measurement models!) 

➢ Clustered/Nested Observations Model (e.g., for kids in schools)

▪ If followed over time in same group, is “clustered longitudinal model”

➢ Cross-Classified Models (e.g., teacher “value-added” models)

➢ Psychometric Models (e.g., factor analysis, item response theory, SEM) 
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The Two Sides of a General Linear Model

𝑦𝑖 = 𝛽0 + 𝛽1(𝑥1𝑖) + 𝛽2(𝑥2𝑖) + ⋯ + 𝑒𝑖

• Model for the Means (→ Predicted Values):

➢ Each person’s expected (predicted) outcome is a weighted linear 
function of his/her values on 𝑥1𝑖 and 𝑥2𝑖 (and any other predictors); 
each variable is measured once per person

➢ Estimated constants are called fixed effects (here, 𝛽0, 𝛽1, and 𝛽2)

➢ Number of fixed effects will show up in formulas as 𝒌 (so 𝒌 = 𝟑 here)

• Model for the Variance (→ “Piles” of Variance):

➢ 𝑒𝑖 ∼ N 0, 𝜎𝑒
2
→ ONE (BP) source of residual (unexplained) error

➢ In GLMs, 𝑒𝑖 has a mean of 0 with some estimated constant variance 𝜎𝑒
2, 

is normally distributed, is unrelated to 𝑥1𝑖 and 𝑥2𝑖 , and is independent
across all observations (which is just one outcome per person here)

➢ There is only ONE source of residual variance in the above GLM 
because it was designed for only ONE (BP) dimension of sampling!
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Our focus now



An “Empty Means” General Linear Model

→ Single-Level Model for the Variance
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Adding Repeated Occasions →

Two-Level Model for the Variance
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Hypothetical Longitudinal Data
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Only One Kind of “Error” in a 

Single-Level Model for the Variance
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eti represents all yti variance

e1i

e2i e3i
e4i

e5i



Two Distinct Kinds of “Error” in a 

Two-Level Model for the Variance
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U0i

U0i = random intercept that represents BP mean variance in yti

eti = residual that represents WP variance in yti

e1i

e2i e3i
e4i

e5i

In other words: U0i represents a source of 

constant dependency (covariance) due to 

mean differences in yti across persons



Empty Means, Two-Level Model
yti variance → 2 sources:

Level-2 Random Intercept 

Variance (of U0i, as 𝛕𝐔
𝟐
𝟎
):

→ Between-Person variance in means

→ INTER-Individual differences from

GRAND mean to be explained 

by time-invariant predictors

Level-1 Residual Variance

(of eti, as 𝛔𝐞
𝟐):

→ Within-Person variance

→ INTRA-Individual differences from 

OWN mean to be explained 

by time-varying predictors
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Empty Means Models:

Single-Level vs. Two-Level

• Empty Means, Single-Level Model (used for 1 occasion):

yi = β0 + ei

➢ β0 = fixed intercept = grand mean

➢ ei = residual deviation from GRAND mean

• Empty Means, Two-Level Model (for 2+ occasions):

yti = β0 + U0i + eti

➢ β0 = fixed intercept = grand mean

➢ U0i = random intercept = individual deviation from GRAND mean

➢ eti = time-specific residual deviation from OWN mean
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Two-Level Model Using Multilevel Notation:

Empty Means, Random Intercept Model

GLM Empty Model:

• yi = β0 + ei

MLM Empty Model:

• Level 1:  

yti = β0i + eti

• Level 2: 

β0i = γ00 + U0i
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3 Parameters: 
Model for the Means (1): 

• Fixed Intercept γ00

Model for the Variance (2):

• Level-1 WP Variance of eti → 𝛔𝐞
𝟐

• Level-2 BP Variance of U0i → 𝛕𝐔
𝟐
𝟎

Fixed Intercept 

= mean of person 

means (because 

no predictors yet) 

Random Intercept 

= individual-specific 

deviation from 

predicted intercept

Residual = time-specific deviation 

from individual’s predicted outcome 

Composite equation:  

yti =  (γ00 + U0i ) + eti



A “Random Intercept” Model for the Variance
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To be added to R in order to form V, G is pre-

and post-multiplied by an N x 1 Z matrix that 

holds the values of the predictors with random 

effects (just the intercept here): 

N = total obs

n = # occasions

(5 here)

T
i i i i i = +V Z G Z R



Intraclass Correlation (ICC)

ICCs for two-level longitudinal data:

ICC =
BP

BP +WP
=

Intercept Var.

Intercept Var. +Residual Var.
=

𝛕𝐔
𝟐
𝟎

𝛕𝐔
𝟐
𝟎
+ 𝛔𝐞

𝟐

• ICC = Proportion of total variance that is between persons

• ICC = Correlation of occasions from same person (in VCORR)

• ICC is a standardized way to express dependency due to person mean 

differences → effect size for constant person dependency
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Augmenting the Empty Means, 

Random Intercept Model with Time

• 2 questions about the possible effects of “time” (e.g., time 
in study in WP change; time of day or day of week in WP fluctuation):

1. Is there an effect of time on average?

➢ Is the line connecting the sample means not flat?

➢ If so, you need FIXED effect(s) of time

2. Does the average effect of time vary across 
individuals?

➢ Does each individual need their own version of that line?

➢ If so, you need RANDOM effect(s) of time

• Let’s look at examples using linear time effects to start…
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Fixed and Random Effects of Time
(Note:  The intercept is random in every figure)
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A. No Fixed, No Random B. Yes Fixed, No Random

C. No Fixed, Yes Random D. Yes Fixed, Yes Random



B. Fixed Linear Time, Random Intercept Model 
(4 parameters: effect of time is FIXED only)

Multilevel Model

Level 1: yti = β0i + β1i(Timeti) + eti

Level 2: β0i = γ00 + U0i β1i = γ10 

Composite Model

yti = (γ00 + U0i) + (γ10)(Timeti) + eti
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Fixed Intercept 

= predicted mean 

outcome at time 0

Fixed Linear Time Slope

= predicted mean rate 

of change per unit time

Random Intercept = individual-specific deviation 

from fixed intercept → estimated variance of 𝛕𝐔
𝟐
𝟎

Residual = time-specific deviation from individual’s 

predicted outcome → estimated variance of 𝛔𝐞
𝟐

β0i β1i

Because the effect of 

time is fixed, everyone is 

predicted to change at 

exactly the same rate



C or D: Random Linear Time Model (6 parms)

Multilevel Model

Level 1: yti = β0i + β1i(Timeti) + eti

Level 2: β0i = γ00 + U0i β1i = γ10 + U1i

Composite Model

yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti
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Fixed Intercept 

= predicted mean 

outcome at time 0

Fixed Linear Time Slope

= predicted mean rate 

of change per unit time

Random Intercept = 

individual-specific deviation 

from fixed intercept at time 0 

→ estimated variance of 𝛕𝐔
𝟐
𝟎

Random Linear Time Slope= 

individual-specific deviation 

from fixed linear time slope 

→ estimated variance of 𝛕𝐔
𝟐
𝟏

Residual = time-specific deviation from individual’s 

predicted outcome → estimated variance of 𝛔𝐞
𝟐

β0i β1i

Also has an 

estimated 

covariance

of random 

intercepts 

and slopes  

of 𝛕𝐔𝟎𝟏



Random Linear Time Model
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6 Parameters:

2 Fixed Effects:

γ00 Intercept, γ10 Slope

U0i Random Intercept 

Variance = 𝛕𝐔
𝟐
𝟎

U1i Random Slope 

Variance = 𝛕𝐔
𝟐
𝟏

Random Int-Slope 

Covariance = 𝛕𝐔𝟎𝟏

eti Residual 

Variance = 𝛔𝐞
𝟐



Random Linear Time Models Imply:
• People differ from each other systematically in TWO ways—in 

intercept (U0i) and time slope (U1i), which implies TWO kinds of BP 
variance, which translates to TWO sources of person dependency 
(covariance or correlation in the outcomes from the same person)

• If so, after controlling for both BP intercept and slope differences 
(by estimating the τU

2
0

and τU
2
1

variances in the G matrix), the eti

residuals (whose variance and covariance are estimated in the R
matrix) should be uncorrelated with homogeneous variance 
across time, as shown (or else a different R matrix is needed):
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Choices in Modeling Variances: Random 

Intercept Only (Compound Symmetry)

If the time slopes are the same across people, then people 
differ from each other systematically in only 1 way 
(i.e., their U0i level) → THIS IS COMPOUND SYMMETRY.

Here, the time slopes 

are same across 

persons, so the 

variances are the 

same across time.

yti = (γ00 + U0i) + (γ10)(Timeti) + eti

If the same slope fits all persons, 

then all occasions should be 

equally correlated over time (and 

thus only due to U0i variance).
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Choices in Modeling Variances:

Random Intercepts and Time Slopes

Minimum 

variance

Increasing 

variance

Increasing 

variance

If time slopes differ across 

persons, the outcome 

variance and covariance 

then must differ over time! 

If slopes are different across people, then people differ 
from each other systematically in 2 ways (U0i and U1i) 
→ this implies compound symmetry will NOT hold.
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yti = (γ00 + U0i) +

(γ10 + U1i)(Timeti)

+ eti



Random Linear Time Model 
(6 parameters: effect of time is RANDOM)

• Scalar “mixed” model equation per person:
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Xi = n x k values of predictors with 

fixed effects, so can differ per person 

(k = 2: intercept, linear time)

γ = k x 1 estimated fixed effects, 

so will be the same for all persons

(γ00 = intercept, γ10 = linear time)

Zi = n x u values of predictors with 

random effects, so can differ per person 

(u = 2: intercept, linear time)

Ui = u x 2 estimated individual random 

effects, so can differ per person

Ei = n x n time-specific residuals, 

so can differ per person
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Random Linear Time Model 
(6 parameters: effect of time is RANDOM)

• Predicted total variances and covariances per person:
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Zi = n x u values of predictors with 

random effects, so can differ per 

person (u = 2: int., time slope)

Zi
T = u x n values of predictors with 

random effects (just Zi transposed)

Gi = u x u estimated random 

effects variances and covariances, 

so will be the same for all persons

(τU
2
0

= int. var., τU
2
1

= slope var.)

Ri = n x n time-specific residual 

variances and covariances, 

so will be same for all persons 

(here, just diagonal σe
2)
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• V for two persons also with different n per person:

• The “block diagonal” does not need to be the same size or 
contain the same time observations per person…

• R matrix can also include non-0 covariance or differential 
residual variance across time (as in ACS models), although 
many models based on the idea of a “lag” won’t work for 
unequal-interval time (but AR1 can be modified to work)

Building V across persons: 
Random Linear Time Model
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The Bigger Picture
• Random effects (new “piles” of variance, partitioned 

out of what used to be a single residual variance) are 
used to capture sources of person dependency

➢ Random intercept → constant correlation over time due 
to person mean differences → univariate RM ANOVA

➢ Random time slope(s) → non-constant correlation over time 
and non-constant variance over time due to between-person 
differences in rate(s) of change over time

➢ Foreshadowing: random time-varying 𝑥𝑡𝑖 slope → heterogeneity over 𝑥𝑡𝑖

• After accounting for BP level-2 random effects (intercepts, 
and any slopes for change over time), WP level-1 residuals 
are usually assumed uncorrelated with constant variance

➢ But these are both testable assumptions! (fewer alternatives 
in unbalanced data, largely due to software inflexibility)

➢ All sources of person dependency related to time should 
be addressed before considering other predictors!

➢ Any longitudinal model not accounting for person dependency due to 
intercepts (at a minimum) is most likely to be WAY wrong (AR-CLPM!)
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Summary: “Handling” Person Dependency
• The process of fitting “unconditional models for time” 

(fixed and random effects) can be depicted as follows:

Residual

Variance

(𝛔𝐞
𝟐)

Residual

Variance

(𝛔𝐞
𝟐)

Residual

Variance

(𝛔𝐞
𝟐)

BP Int

Variance

(𝛕𝐔
𝟐
𝟎
)

BP Slope

Variance

(𝛕𝐔
𝟐
𝟏
)

Level 2, Between-

Person Differences

Level 1, Within-

Person Differences

BP Int

Variance

(𝛕𝐔
𝟐
𝟎
)

01U covariance
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Summary: Unconditional Models for Time

Role of “Time” in the Model for the Means:

• WP Change  → describe pattern of average change (e.g., growth curves)

• WP Fluctuation → describe average time-specific trends that may not have 
been expected (e.g., reactivity, day of the week, circadian/schedule effects)

Role of “Time” in the Model for the Variance:

• WP Change  → describe individual differences in change (random effects)
→ this allows variances and covariances to differ over time

• WP Fluctuation → mostly describe pattern(s) of covariance over time
(may need random effects of time for differing variances)
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Families of Nonlinear Change
• Polynomial functions (e.g., time2, time3) → see details on next slides

➢ Best suited for time slopes that should change directions 
(in which time is treated as continuous)

• Piecewise (linear spline) functions

➢ Best suited for distinct phases of time (known “knot” points)

➢ Otherwise, location of “latent” knots can be model parameters

• Linear effect of log(time) → exponential-ish

➢ Good for time slopes that should level off (hit upper or lower asymptote)

➢ Adding quadratic log(time) adjusts how fast the time slope levels off

• Latent basis → single slope with estimated nonlinearity

➢ In SEM software, for random time slope factor: fix first loading to 0, last loading to 1, 
and estimate the other loadings to capture proportion of change by each occasion

• Truly nonlinear models (e.g., logistic, exponential)

➢ Harder to estimate, particularly for random effects variances
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Interpreting Quadratic Fixed Effects

A Quadratic time slope is a two-way interaction: time*time

• Fixed quadratic time = “half the rate of acceleration/deceleration”

• So to interpret it as how the linear time slope changes per unit time, 

you must multiply the quadratic slope coefficient by 2

• If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?

➢ Instantaneous linear rate of Δ at time 0 = 4.0, at time 1 = 4.6…

• Btw, the “twice” part comes from taking the derivatives of the function:
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Interpreting Quadratic Fixed Effects

A Quadratic time effect is a two-way interaction: time*time

• Fixed quadratic = “half the rate of acceleration/deceleration”

• So to interpret it as how the linear time slope changes per unit time, 

you must multiply the quadratic slope coefficient by 2

• If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?

➢ Instantaneous linear rate of Δ at time 0 = 4.0, at time 1 = 4.6…

• The “twice” part also comes from 

what you remember about the

role of interactions with respect 

to their constituent main effects:

• Because time is interacting with itself, there is no second “main effect” 

in the model for the interaction to modify. So the quadratic time slope 

gets applied twice when added to the one (main) linear time slope
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Examples of Fixed Quadratic Time Trends
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Summary: Unconditional Models for Time
• Each source of correlation or dependency goes into a new variance 

component (or “pile” of variance) until each source meets the usual 

assumptions of GLM: normality, independence, constant variance

• Example two-level longitudinal model:

Residual

Variance

(𝛔𝐞
𝟐)

BP Slope

Variance

(𝛕𝐔
𝟐
𝟏
)

BP Int

Variance

(𝛕𝐔
𝟐
𝟎
)

𝛕
𝐔𝟎𝟏

covariance

Level 2 (two sources of) 

Between-Person Variation:

gets accounted for by 

person-level predictors

Level 1 (one source of) 

Within-Person Variation:

gets accounted for by 

time-level predictors

FIXED effects make variance 

go away (explain variance).

RANDOM effects just make 

a new pile of variance.

Soon we will add predictors to account for each pile!
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Concepts, Terminology, and 

Time-Invariant Predictors 

in Longitudinal Modeling
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• Topics:

➢ Concepts and terminology in longitudinal models

➢ Modeling person dependency

➢ Fixed and random intercepts

➢ Fixed and random time slopes

➢ From multilevel models (MLMs) to single-level structural 
equation models (SEMs) to multilevel SEMs (M-SEMs)

➢ Time-invariant predictors

➢ Details



Translating MLMs into SEMs...
• “Random effects” = “pile of variance’’ = “variance components”

➢ Random effects represent “person*predictor” interaction terms

➢ Random intercept → person*intercept (person “main effect”)

➢ Random linear slope → person*time interaction

➢ Capture specific patterns of covariation of unknown origin…

▪ Why do people need their own random intercepts and slopes?

(We can add person-level predictors to answer these questions)

• Random effects can also be seen as latent variables

➢ Latent variable = unobservable construct (ability or trait)

▪ Latent variables are created from the common variance across indicators

▪ In longitudinal data, the latent variables can be thought of as 

“general tendency” and “propensity to change” as created by 

measuring the same outcome over time (occasions → indicators)

➢ Let’s see how MLMs can be estimated as single-level SEMs…
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Structural Equation Models (SEMs)
• Measurement model: yis = μi + λiFs + eis

➢ Observed response for item i and subject s
= intercept of item i (μi)

+ subject s’s latent trait/factor (Fs), item-weighted by λi

+ residual error (eis) of item i and subject s

• Two big differences when using two factors for longitudinal data:

➢ Usually two factors for “level” and “change” (intercept and slope):
yti = (γ00 + U0i) + (γ10 + U1i)timeti + eti → so each U → F

➢ Fixed effects → factor means; random effects → factor variances

➢ The occasion-specific intercepts μi cannot be separately identified 
from the “intercept” latent factor and therefore must be fixed to 0

➢ Factor loadings λi for how each outcome relates to the latent factor 
are (usually) pre-determined by how much time has passed →
fixed to the difference in time across longitudinal outcomes

➢ Unbalanced time requires “definition variables” → use variables for person-
specific time loadings rather than fixing loadings to same values for all

▪ In Mplus, is TSCORES option; could not find an equivalent option in R lavaan
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Random Effects as Latent Variables

• Single-level model for the variance → 𝛔𝐞
𝟐 only 

➢ yti = γ00 + eti

➢ After controlling for the fixed intercept (factor mean), 

level-1 residuals are predicted to be uncorrelated

L2 Int

Y1 Y2 Y3 Y4

e1 e2 e3 e4

1 1 1 1

Int Var

𝛕𝐔𝟎
𝟐 = 𝟎

Mean of the intercept factor 

= fixed intercept γ00

Loadings of intercept factor = 1 

(all occasions contribute equally)

Indicator intercepts = 0 (always)

L2 variance of intercept factor

𝛕𝐔
𝟐
𝟎
= 0 so far

L1 residual variance (𝛔𝐞
𝟐) is predicted

to be equal across occasions= = =
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Random Effects as Latent Variables

• Two-level model for the variance → add 𝛕𝐔
𝟐
𝟎

➢ yti = γ00 + U0i + eti

➢ After controlling for the random intercept (factor mean and 

variance), level-1 residuals are predicted to be uncorrelated
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Y1 Y2 Y3 Y4

e1 e2 e3 e4

Int Var 

𝛕𝐔𝟎
𝟐 =?

Mean of the intercept factor 

= fixed intercept γ00

Loadings of intercept factor= 1 

(all occasions contribute equally)

L2 variance of intercept factor

𝛕𝐔
𝟐
𝟎
= random intercept variance

L1 residual variance (𝛔𝐞
𝟐) is predicted

to be equal across occasions

= = =

1 1 1 1



Random Effects as Latent Variables

• Fixed linear time, random intercept model:

➢ yti = γ00 + (γ10Timeti) + U0i + eti

➢ After controlling for the fixed linear time slope (factor mean)

and random intercept (factor mean and variance), 

level-1 residuals are predicted to be uncorrelated
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= fixed linear slope γ10
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= 0

L2 Linear

Time0
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Random Effects as Latent Variables

• Random linear time model:

➢ yti = γ00 + (γ10Timeti) + U0i + (U1iTimeti) + eti

➢ After controlling for the random linear time slope and

random intercept (both factor means and variances), 

level-1 residuals are predicted to be uncorrelated
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Random Linear Time Model: 

From MLM to Single-Level SEM

yti = γ00 + (γ10Timeti) + U0i + (U1iTimeti) + eti
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Level-1 R Matrix

Level-1 

Z Matrix

𝛕𝐔𝟎𝟏= ?

Level-2 G Matrix
For unbalanced time, you 

need “definition variables” 

(like Mplus TSCORES) that 

allow different loadings 

(→ occasions) per person

Btw, allowing different 

residual variances for 

every occasion is going 

to be redundant with the 

random effects—they 

already predict variance 

to change over time!



Random Linear Time Model: 

From MLM to Multilevel SEM

yti = γ00 + (γ10Timeti) + U0i + (U1iTimeti) + eti
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Multilevel SEM (or what I prefer to call 

“multivariate MLM” in absence of a true 

measurement model) uses a long 

(stacked) data structure with one row per 

level-1 unit (so per occasion per person), 

just like univariate MLM. 

The difference is that in M-SEM, multiple 

variables (predictors or outcomes) can 

have their variance partitioned into BP 

intercepts, BP slopes, and WP residuals at 

the same time (with additional features 

for autoregressive relations possible in 

“dynamic SEM”, which is still M-SEM).

L1 𝒚𝒕𝒊
Residual 𝒆𝒕𝒊

𝑴 = 𝟎,
𝑽 = 𝝈𝒆

𝟐

L2 𝒚𝒕𝒊
Time Slope 𝜷𝟏𝒊

𝑴 = 𝜸𝟏𝟎,

𝑽 = 𝝉𝑼𝟏

𝟐

𝝉𝑼𝟎,𝑼𝟏
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L1 𝑻𝒊𝒎𝒆𝒕𝒊
𝜷𝟏𝒊
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1

1
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Summary:  Three Frameworks for the 

Estimation of Longitudinal Models
• Multilevel/Mixed/Hierarchical Linear Models: MLM → I start here

➢ Person dependency is captured primarily by random effects (through “levels” in 
stacked/long data, so occasions can be unbalanced and have multiple types of WP time)

➢ Univariate MLMs (single outcome over time) are common (SAS, SPSS, or STATA MIXED; 
R lme4 and nlme), have REML and denominator DF for small samples, but can’t do it all!

• Single-Level Structural Equation Models: SEM

➢ Person dependency is captured by latent variables (through multivariate outcomes 
in wide, single-level data, so univariate occasions are treated as observed boxes)

➢ Single-level SEM is common (Mplus, R lavaan), but may not work for unbalanced data 
or designs with more than one level of time (e.g., occasions within days within persons)

➢ SEM software does not have REML or denominator DF (DDF) → bad for small samples

• Multilevel Structural Equation Models: M-SEMs 

➢ Estimated on stacked/long data, are more flexible for unbalanced time, less available 
(Mplus mainly), but may break down in small N ( b/c no REML, no DDF, more parameters)

➢ What is “multilevel SEM” (M-SEM) to others, I call “multivariate MLM” when they do 
not include true latent variable measurement models (i.e., as used in CFA, IFA, or IRT)
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Concepts, Terminology, and 

Time-Invariant Predictors 

in Longitudinal Modeling
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• Topics:

➢ Concepts and terminology in longitudinal models

➢ Modeling person dependency

➢ Fixed and random intercepts

➢ Fixed and random time slopes

➢ From multilevel models (MLMs) to single-level structural 
equation models (SEMs) to multilevel SEMs (M-SEMs)

➢ Time-invariant predictors

➢ Details



Modeling Time-Invariant Predictors
• Which independent variables can be time-invariant predictors?

➢ Aka, “person-level” or “level-2” or predictors (𝒙𝒊) in two-level models

➢ Includes substantive predictors, controls, and predictors of missingness

➢ Includes anything that either does not change across time, or that might 
change across time but that you’ve only measured once (you may need 
to argue why this is conceptually ok or limit conclusions accordingly)

➢ Also includes BP variance in time or time-varying predictors (stay tuned)

• All predictors should be centered so that 0 values are meaningful: 

➢ This is needed to create a meaningful fixed/random intercept, and/or 
meaningful fixed main effects of predictors also included in interactions 

▪ e.g., if fixed effects of X, Z, and X*Z, the main effect of X is specifically for Z=0

➢ Quantitative predictors can be centered at any constant, such as 
the sample mean (common, and useful if it has an unfamiliar scale) 
or any meaningful reference (better for translating across studies)

➢ Categorical predictors can have their dummy-code contrasts created 
for you as “factor” variables (e.g., SAS CLASS, SPSS BY, STATA i.), but not in 
Mplus; I do not like ± 1 coding for group differences (because then 0 = ???)

▪ I find indicator or sequential dummy-coding variants most useful
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Beware of Missing Predictors
• Any cases missing model predictors that are not part 

of the joint likelihood* will not be used in that model

➢ Not great for time or time-varying predictors (Missing At Random-ish)

➢ Really bad for time-invariant predictors (listwise deletion, MCAR)

• Better options for missing predictors:

➢ *Bring the predictor into the joint likelihood (only possible in software 
for truly multivariate MLMs, such as Mplus, or in SEM programs)

▪ Its mean, variance, and covariances “get found” as model parameters

▪ Predictor then has distributional assumptions (default is multivariate normal), 
which may not be plausible for all predictors

▪ Mplus v. 8 still will not do this for non-normal “predictors” in multivariate MLM

➢ Multiple imputation (and analysis of *each* imputed dataset)

▪ Imputation also requires distributional assumptions for imputed variables!

▪ Also requires all parameters of interest for the analysis model to be in the 
imputation model, too (which is problematic for interactions or random effects)
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The Role of Time-Invariant Predictors 

in the Model for the Means

• In Within-Person Change Models → Adjust growth curve
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Main effect of 𝑥𝑖, no 

interaction with time

 Time →

Interaction with time, 

main effect of 𝑥𝑖?

 Time →

Main effect of 𝑥𝑖, and 

interaction with time

 Time →



The Role of Time-Invariant Predictors 

in the Model for the Means

• In Within-Person Fluctuation Models → Adjust mean level
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No main effect of 𝑥𝑖

 Time →

Main effect of 𝑥𝑖

 Time →



The Role of Time-Invariant Predictors 

in the Model for the Variance

• Beyond fixed effects in the model for the means, time-

invariant predictors can be used to allow heterogeneity of 

variance at their level or below in “location–scale models”

• e.g., Group as a predictor of heterogeneity of variance: 

➢ At level 2: Amount of individual differences in intercepts and/or slopes 

differs between control and treatment (assumed constant by default!)

➢ At level 1: Amount of within-person residual variation differs 

between control and treatment (assumed constant by default!)

▪ In within-person fluctuation model: differential volatility over time

▪ In within-person change model: differential volatility/inconsistency 

remaining after controlling for fixed and random effects of time

• These models are harder to estimate and may require custom 

algorithms (e.g., SAS NLMIXED; in Mplus v 8+ using “logV”)
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Why Level-2 Predictors Cannot* Have 

Random Effects in Two-Level Models
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Random Slopes for Time

Time 

(or Any Level-1 Predictor)

Random Slopes for Group?

Group 

(or any Level-2 Predictor)

You cannot make a line out of a dot, so level-2 

effects cannot vary randomly over persons.

* Level-2 predictors can be included as predictors of heterogeneity of variance, 

which technically is a random slope of sorts (but interpretation is different)



Sources of Explained Variance by 

Person-Level-2 Time-Invariant Predictors

• Fixed effects of level-2 predictors by themselves:

➢ Level-2 (BP) main effects reduce level-2 random intercept variance

➢ Level-2 (BP) interactions also reduce level-2 random intercept variance

• Fixed effects of cross-level interactions (level-1* level-2):

➢ If a level-1 predictor is random, any cross-level interaction with it 
will reduce its corresponding level-2 BP random slope variance

▪ e.g., if time is random, then pred1*time, pred2*time, and pred1*pred2*time
can each reduce the level-2 random linear time slope variance

➢ If the level-1 predictor not random, any cross-level interaction 
with it will reduce the level-1 WP residual variance instead

▪ e.g., if time2 does not have a level-2 random slope, then pred1*time2, 
pred2*time2, and pred1*pred2*time2 will reduce the level-1 residual variance 
→ Different quadratic slopes by pred1 and pred2 create better level-1 
trajectories, thus reducing level-1 residual variance around the trajectories

MWPALD: Lecture 1 63



Variance Explained… Continued
• Pseudo-R2 is named that way for a reason… piles of variance 

can shift around, such that it can actually become negative

➢ Sometimes is a sign of model mis-specification (but not always)

➢ See Rights & Sterba (2019, 2020) for alternative calculation of pseudo-R2

▪ Ensure positive R2 values, but they don’t quantify R2 for slope variances (boo)

• A simple alternative: Total R2 (Singer & Willett, 2003)

➢ Generate model-predicted ො𝑦𝑡𝑖 from fixed effects only (NOT including 
random effects, so no cheating) and correlate it with observed 𝑦𝑡𝑖

➢ Then square that correlation → total R2 (same as in GLM regression)

➢ Total R2 = total reduction in overall outcome variance across levels

➢ Can be “unfair” in models with large unexplained sources of variance 
(i.e., for sampling dimensions you didn’t have predictors for)

• MORAL OF THE STORY: Specify EXACTLY which kind(s) of R2

you used—give the formula and a reference!!
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Example: Individual Trajectories 

101 older adults, 6 occasions within 2 weeks
Number Match Size 3 RT by Session

500

1000

1500

2000

2500
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4500
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Session

M
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Number Match 3 Response Times (RT) by Session
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1,500

1,550

1,600

1,650

1,700

1,750

1,800

1,850

1,900

1,950
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c

Session

Example Mean RT by Session: 

Baseline Models for the Means
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Saturated Means (ANOVA) Model 

= 6 parameters (1 mean per session)

Empty Means Model = 1 fixed intercept
(means predicted to be equal over sessions)



Example Variance in RT by Session: 

Baseline Models for the Variance
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Session

Unstructured Variance–Covariance Model 

= 21 parameters (all variances and covariances)

Random Intercept Only Model 

= 2 parameters (𝛕𝐔
𝟐
𝟎

and 𝛔𝐞
𝟐)

(variances predicted to be equal over sessions)



Random Quadratic Time Unconditional Model

Level 1:     RTti = β0i + β1iTimeti + β2iTimeti
2 + eti

Level 2 Equations (one per β):

β0i = γ00 +      U0i

β1i = γ10 +      U1i

β2i = γ20 +      U2i
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Fixed Effect Subscripts:

1st = which level-1 term

2nd = which level-2 term

# of Possible Time-Related 

Slopes by # of Occasions (n):

# Fixed time slopes = n – 1

# Random time slopes = n – 2

Need n = 4 occasions to fit 

random quadratic time model

Intercept

for person i

Linear Time 

Slope for 

person i

Quadratic 

Time Slope

for person i

Fixed (mean) 

Intercept

Fixed (mean)

Linear Slope

Fixed (mean)

Quad Slope

Random 

(Deviation) 

Intercept

Random 

(Deviation) 

Linear Slope

Random 

(Deviation) 

Quad Slope

Time = session − 1

REML estimation using 

stacked data (univ MLM)

Ui covariances also estimated
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Adding Reasoning (0=22) as a Time-Invariant Predictor:

Is RT Improvement Predicted by Fluid Intelligence?

Level 1:  RTti = β0i +  β1iTimeti + β2iTimeti
2 + eti

Level 2 Equations (one per β):

β0i = γ00 +    γ01Reasi  +   U0i

β1i = γ10 +    γ11Reasi   +    U1i

β2i = γ20 +    γ21Reasi   +    U2i

69

Intercept

for person i

Linear Slope

for person i

Quad Slope

for person i

Fixed Intercept 

when Time=0 

and Reas=22

Fixed Linear 

Time Slope 

when Time=0 

and Reas=22

Fixed Quad 

Time Slope 

when Reas=22

Random (Deviation) 

Intercept after 

controlling for Reas

Random (Deviation) 

Linear Time Slope after 

controlling for Reas

Random (Deviation) 

Quad Time Slope after 

controlling for Reas

Δ in Intercept per 

unit Δ in Reas

Δ in Linear Time 

Slope per unit Δ in 

Reas (=Reas*time)

Δ in Quad Time 

Slope per unit Δ in 

Reas (=Reas*time2)
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Reasoning (0=22) as a Time-Invariant Predictor:

Is RT Improvement Predicted by Fluid Intelligence?

Level 1:  RTti =  β0i + β1iTimeti + β2iTimeti
2 + eti

Level 2 Equations (one per β):

β0i = γ00 + γ01Reasi  + U0i

β1i = γ10 + γ11Reasi  + U1i

β2i = γ20 + γ21Reasi  + U2i

• Composite equation: 

• yti = (γ00 + γ01Reasi + U0i)+

(γ10 + γ11Reasi  + U1i)Timeti + 

(γ20 + γ21Reasi  + U2i)Timeti
2 + eti
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Each fixed slope of reasoning 

will predict the random Ui

variance in its level-2 equation if 

present, or eti residual variance 

otherwise. That’s why random 

slopes should be tested before

adding cross-level interactions!

γ11 and γ21 are known as 

“cross-level” interactions 

(level-1 predictor by 

level-2 predictor)
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Reasoning (0=22) as a Time-Invariant Predictor:

Is RT Improvement Predicted by Fluid Intelligence?
RTti = (1966 + −27*Reasi +U0i)+

(−120 + −3.6*Reasi +U1i)Timeti + 

(13 +1.2*Reasi +U2i)Timeti
2 + eti
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Reasoning by Quadratic Change over Sessions

Reasoning 17 Reasoning 22 Reasoning 27

BP Pseudo-R2 Values:

Intercept U0i = .049

Linear Time U1i =−.006

Quadratic Time U2i = .024

WP Residual eti = 0

People with better reasoning: 

• started out faster/lower 

(intercept at session 1), 

• improved more initially 

(linear slope at session 1),

• and had a greater rate of 

deceleration with practice

(quadratic slope*2!)



Example: Syntax by Univariate 

MLM Program (Stacked Data)
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SAS:
PROC MIXED DATA=work.Example2 COVTEST METHOD=REML;

CLASS ID;

MODEL RT = time timesq reas time*reas timesq*reas / SOLUTION DDFM=Satterthwaite;

RANDOM INTERCEPT time timesq / GCORR TYPE=UN SUBJECT=ID;

RUN; 

R (lmer from lme4 package)—using lmertest package, which does provide correct denominator DF:

model2 = lmer(data=Example2, REML=TRUE,
formula=RT~1+time+timesq+reas+reas

+time:reas+timesq:reas+(1+time+timesq|ID))
summary(model2, ddf="Satterthwaite")

STATA:
mixed RT time timesq reas time#reas timesq#reas, || ID: time timesq, ///

variance reml covariance(un) dfmethod(satterthwaite) dftable(pvalue)

SPSS:

MIXED RT BY ID WITH time timesq reas

/METHOD = REML

/PRINT = SOLUTION TESTCOV

/FIXED = time timesq reas time*reas timesq*reas

/RANDOM = INTERCEPT time timesq | COVTYPE(UN) SUBJECT(ID).



Should I have used a “latent” growth curve 

model (on wide data in SEM) instead?
RTti = (γ00  + γ01Reasi + U0i)+

(γ10  + γ11Reasi + U1i)Timeti + 

(γ20 + γ21Reasi  + U2i)Timeti
2+eti
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𝑹𝑻𝟎𝒊 𝑹𝑻𝟏𝒊 𝑹𝑻𝟐𝒊 𝑹𝑻𝟑𝒊 𝑹𝑻𝟒𝒊

1
1

1

1

1

0

1
2 3

4

1 1 1 1 1

𝑹𝑻𝟓𝒊

1

L1 Residual 𝒆𝒕𝒊 (𝑴 = 𝟎, 𝑽 = 𝝈𝒆
𝟐)

L2

Linear Time 

Slope 𝜷𝟏𝒊

𝑰 = 𝜸𝟏𝟎,

𝑽 = 𝝉𝑼𝟏

𝟐 5

L2

Intercept 𝜷𝟎𝒊

𝑰 = 𝜸𝟎𝟎,
𝑽 = 𝝉𝑼𝟎

𝟐

1

L2

Quadratic 

Time Slope 𝜷𝟐𝒊

𝑰 = 𝜸𝟐𝟎,

𝑽 = 𝝉𝑼𝟐

𝟐

1

25

16

9
4

1

0

L2 𝑹𝒆𝒂𝒔𝒊
𝜸𝟏𝟏

𝜸𝟐𝟏
𝜸𝟎𝟏

Cons: 

• No REML, no DDF →

Type I error for small N

• Requires balanced time 

(or definition variables for 

individual time loadings)

Pros: 

• Latent basis nonlinear 

change (fix 1st loading to 

0, last to 1, estimate other 

loadings for % change)

• More flexibility in WP 

residual heterogeneity of 

variance and covariance

• Change in latent variables 

instead of observed



Example: Mplus Single-Level SEM Syntax
Just showing MODEL part, which would be preceded by DATA, 
VARIABLE, and ANALYSIS as usual (estimated using wide data)
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!!!!! Random quadratic model of change 

! Factor loadings fixed by @ 

Int BY RT0@1 RT1@1 RT2@1 RT3@1 RT4@1  RT5@1; 

Lin BY RT0@0 RT1@1 RT2@2 RT3@3 RT4@4  RT5@5; 

Qua BY RT0@0 RT1@1 RT2@4 RT3@9 RT4@16 RT5@25;

! Factor intercepts estimated = fixed effects

[Int Lin Qua];

! Level-2 factor variances estimated (in G)

Int Lin Qua;

! Level-2 factor covariances estimated (in G)

Int Lin Qua WITH Int Lin Qua;

! Per-occasion intercepts fixed to 0

[RT0@0 RT1@0 RT2@0 RT3@0 RT4@0 RT5@0];

! Level-1 residual variances held equal (in R) 

RT0 RT1 RT2 RT3 RT4 RT5 (ResVar);

! Fixed effects of reasoning → latent factors

Int Lin Qua ON reas;

!!!!! Random latent basis model of change

! Factor loadings fixed by @ 

Int BY RT0@1 RT1@1 RT2@1 RT3@1 RT4@1 RT5@1; 

Slp BY RT0@0 RT1*  RT2*  RT3*  RT4*  RT5@1; 

! Loadings estimated as 0.57, 0.76, 0.90, 0.97

! Factor intercepts estimated = fixed effects

[Int Slp];

! Level-2 factor variances estimated (in G)

Int Slp;

! Level-2 factor covariance estimated (in G)

Int WITH Slp;

! Per-occasion intercepts fixed to 0

[RT0@0 RT1@0 RT2@0 RT3@0 RT4@0 RT5@0];

! Level-1 residual variances held equal (in R) 

RT0 RT1 RT2 RT3 RT4 RT5 (ResVar);

! Fixed effects of reasoning → latent factors

Int Slp ON reas;

Note: There are Mplus syntax shortcuts for growth models I am not using: (1) to be 

explicit about what the model contains, (2) to not estimate separate residual variances



Example: R Single-Level SEM Syntax
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RandQuadSyntax = "

# Factor loadings fixed by *

Int =~ 1*RT0 + 1*RT1 + 1*RT2 + 1*RT3 +  1*RT4 +  1*RT5

Lin =~ 0*RT0 + 1*RT1 + 2*RT2 + 3*RT3 +  4*RT4 +  5*RT5

Qua =~ 0*RT0 + 1*RT1 + 4*RT2 + 9*RT3 + 16*RT4 + 25*RT5

# Factor intercepts estimated = fixed effects

Int ~ 1;  Lin ~ 1;  Qua ~ 1

# Level-2 factor variances estimated (in G)

Int ~~ Int;  Lin ~~ Lin;  Qua ~~ Qua

# Level-2 factor covariances estimated (in G)

Int ~~ Lin + Qua;  Lin ~~ Qua

# Per-occasion intercepts fixed to 0

RT0 ~ 0; RT1 ~ 0; RT2 ~ 0 

RT3 ~ 0; RT4 ~ 0; RT5 ~ 0

! Level-1 residual variances held equal (in R) 

RT0 ~~ (ResVar)*RT0;  RT1 ~~ (ResVar)*RT1

RT2 ~~ (ResVar)*RT2;  RT3 ~~ (ResVar)*RT3

RT4 ~~ (ResVar)*RT4;  RT5 ~~ (ResVar)*RT5

# Fixed effects of reasoning --> latent factors

Int + Lin + Qua ~ reas

"

RQModel = lavaan(data=Example2wide, 

model=RandQuadSyntax, 

estimator="ML", mimic="mplus")

summary(RQModel, fit.measures=TRUE, rsquare=TRUE, 

standardized=TRUE)

LatentBasisSyntax = "

# Factor loadings fixed by *

Int =~ 1*RT0 + 1*RT1 + 1*RT2 + 1*RT3 +  1*RT4 +  1*RT5

Slp =~ 0*RT0 +   RT1 +   RT2 +   RT3 +    RT4 +  1*RT5

# Loadings estimated as 0.57, 0.76, 0.90, 0.97

# Factor intercepts estimated = fixed effects

Int ~ 1;  Slp ~ 1

# Level-2 factor variances estimated (in G)

Int ~~ Int;  Slp ~~ Slp

# Level-2 factor covariances estimated (in G)

Int ~~ Slp

# Per-occasion intercepts fixed to 0

RT0 ~ 0; RT1 ~ 0; RT2 ~ 0 

RT3 ~ 0; RT4 ~ 0; RT5 ~ 0

! Level-1 residual variances held equal (in R) 

RT0 ~~ (ResVar)*RT0;  RT1 ~~ (ResVar)*RT1

RT2 ~~ (ResVar)*RT2;  RT3 ~~ (ResVar)*RT3

RT4 ~~ (ResVar)*RT4;  RT5 ~~ (ResVar)*RT5

# Fixed effects of reasoning --> latent factors

Int + Slp ~ reas

"

LBModel = lavaan(data=Example2wide, 

model=LatentBasisSyntax, 

estimator="ML", mimic="mplus")

summary(LBModel, fit.measures=TRUE, rsquare=TRUE, 

standardized=TRUE)

Note: There are lavaan syntax shortcuts for growth models I am not using: (1) to be 

explicit about what the model contains, (2) to not estimate separate residual variances



Should I have used “multilevel SEM” 

(on long data) instead? Not in this case…
RTti = (γ00  + γ01Reasi + U0i)+

(γ10  + γ11Reasi + U1i)Timeti + 

(γ20 + γ21Reasi  + U2i)Timeti
2+eti
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Cons: 

• No REML, no DDF →

Type I error for small N

• Requires balanced time 

(or definition variables for 

individual time loadings)

Pros: 

• Latent basis nonlinear 

change (fix 1st loading to 

0, last to 1, estimate other 

loadings for % change)

• More flexibility in WP 

residual heterogeneity of 

variance and covariance

• Change in latent variables 

instead of observed

𝜸𝟐𝟏

L1

Residual 𝒆𝒕𝒊
𝑴 = 𝟎,
𝑽 = 𝝈𝒆

𝟐

L2 Linear

Time Slope 𝜷𝟏𝒊

𝑰 = 𝜸𝟏𝟎,

𝑽 = 𝝉𝑼𝟏

𝟐

L2 

Intercept 𝜷𝟎𝒊

𝑰 = 𝜸𝟎𝟎,

𝑽 = 𝝉𝑼𝟎

𝟐

L1 

𝑻𝒊𝒎𝒆𝒕𝒊𝜷𝟏𝒊

L1 𝑹𝑻𝒕𝒊

1

1

L1 

𝑻𝒊𝒎𝒆𝒕𝒊
𝟐

1

L2 Quadratic

Time Slope 𝜷𝟐𝒊

𝑰 = 𝜸𝟐𝟎,

𝑽 = 𝝉𝑼𝟐

𝟐

𝜷𝟐𝒊

1

L2 𝑹𝒆𝒂𝒔𝒊

𝜸𝟏𝟏𝜸𝟎𝟏



Example: Mplus M-SEM Syntax
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%WITHIN%

RT;                  ! Level-1 residual variance

Lin | RT ON time;    ! Create beta1i placeholder

Qua | RT ON timesq;  ! Create beta2i placeholder

%BETWEEN%

[RT Lin Qua]; ! Intercepts

RT Lin Qua;                    ! Level-2 random effect variances

RT Lin Qua WITH RT Lin Qua;    ! Level-2 random effect covariances

RT Lin Qua ON reas;            ! Fixed effects of reasoning

Just showing MODEL part, which would be preceded by DATA, 
VARIABLE, and ANALYSIS as usual (estimated using long data)

• Note: R’s lavaan package does have M-SEM capability, 

but it is much more limited than M-SEM in Mplus:

➢ Listwise deletion for any rows (occasions) with missing values

➢ No random slopes!



• Question of interest: Why do people change differently?

➢ We’re trying to predict individual differences in intercepts and slopes 

(i.e., reduce or explain the variances of the level-2 random effects)

➢ So level-2 random effects variances are then conditional on predictors 

→ actually random effects variances left over (aka “level-2 residuals”)

➢ Can calculate pseudo-R2 for each level-2 random effect variance 

between models with fewer versus more parameters as:

Fixed Effects of Time-Invariant Predictors

2 fewer more

fewer

random variance random variance
Pseudo R  = 

random variance

−

β0i = γ00 + γ01Reasi + U0i

β1i = γ10 + γ11Reasi + U1i

β2i = γ20 + γ21Reasi + U2i

β0i = γ00 + U0i

β1i = γ10 + U1i

β2i = γ20 + U2i
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Fixed Effects of Time-Invariant Predictors

• What about predicting level-1 effects with no random variance?

➢ If the random linear time slope is n.s., can I test interactions with time?

➢ “NO”: If a level-1 effect does not vary randomly over individuals, then it 
has “no” variance to predict (so cross-level interactions with that level-1 
effect are not necessary); its SE and DDF could be inaccurate SE if 𝝉𝑼

𝟐
𝟏
≠0

➢ “YES”: Because power to detect random effects is lower than power to 
detect fixed effects (especially with small L2n), cross-level interactions 
can still be significant even if there is “no” (≈0) variance to be predicted

➢ Saying yes requires new vocabulary…

This should be ok to do…

β0i = γ00 +  γ01Reasi + U0i

β1i = γ10 +  γ11Reasi + U1i

β2i = γ20 +  γ21Reasi + U2i

Is this still ok to do?

β0i = γ00 +  γ01Reasi + U0i

β1i = γ10 +  γ11Reasi

β2i = γ20 +  γ21Reasi
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3 Types of Effects: Fixed, Random, and 

Systematically (Non-Randomly) Varying

Let’s say we have a significant fixed linear effect of time. 

What happens after we test a group*time interaction?

Linear effect of time is 

systematically varying

Linear effect of time 

is FIXED

Linear effect of time is 

systematically varying

---

Linear effect of time 

is RANDOM

Linear effect of time 

is RANDOM

Random time slope 

initially not significant

Random time initially sig, 

not sig. after group*time

Random time initially sig, 

still sig. after group*time

Significant 

Group*Time effect?

Non-Significant 

Group*Time effect?

The effects of level-1 predictors (time-level) can be fixed, random, or 

systematically varying. The effects of level-2 predictors (person-level) can 

only be fixed or systematically varying (nothing to be random over…yet).
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Are Systematically Varying Effects ok?

• YES, so long as you haven’t accidentally omitted a “sizeable” 

random slope variance (i.e., made a Type II error)

• How to know? Consider significance of slope variance AND 

Slope Reliability (see Hoffman & Templin, under revision)

• Simulation examining L2n = 10 to 50 and L1n = 3 to 10 

suggests keeping nonsignificant random slope variances with 

SR > .20 when using REML or SR > .15 when using ML 

maintains acceptable Type I errors for cross-level interactions
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SR =
𝝉𝑼
𝟐
𝟏

𝝉𝑼
𝟐
𝟏
+

𝝈𝒆
𝟐

𝑳𝟏𝒏 ∗ 𝝈𝑳𝟏
𝟐

𝝉𝑼
𝟐
𝟏
= random slope variance

𝝈𝒆
𝟐 = residual variance

𝑳𝟏𝒏 = L1 sample size per L2 unit

𝝈𝑳𝟏
𝟐 = variance of L1 predictor



Concepts, Terminology, and 

Time-Invariant Predictors 

in Longitudinal Modeling
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• Topics:

➢ Concepts and terminology in longitudinal models

➢ Modeling person dependency

➢ Fixed and random intercepts

➢ Fixed and random time slopes

➢ From multilevel models (MLMs) to single-level structural 
equation models (SEMs) to multilevel SEMs (M-SEMs)

➢ Time-invariant predictors

➢ Details



Details: ML vs. REML Estimation

• What are REML and ML? Two flavors of likelihood estimation:

• REML = “Restricted (or residual) maximum likelihood”

➢ Only available for general linear models or general linear mixed models 

(that assume normally distributed residuals); not in any SEM software

➢ Is same as OLS given complete outcomes, but it doesn’t require them

➢ Estimates variances the same way as in OLS (accurate) →

• ML = “Maximum likelihood” (also called FIML*)

➢ Is more general, is available for the above plus for non-normal 

outcomes and latent variable models (CFA/SEM/IRT; multilevel SEM)

➢ Is NOT the same as LS: it under-estimates variances by 

not accounting for the # of estimated fixed effects →

*FI = Full information→ it uses all the original data (they both do)
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σ 𝑦𝑡𝑖 − ෝ𝒚𝒕𝒊
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σ 𝑦𝑡𝑖 − ෝ𝒚𝒕𝒊
2

𝑁



Details: ML vs. REML Estimation
Remember “population” 

vs. “sample” formulas 

for calculating variance?
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All comparisons 

must have same N!!!
ML REML

In software: Only choice in SEM or M-

SEM; available in MLM

Default in univariate 

general MLM programs

In estimating 

variances, it treats 

fixed effects as…

Known (df for having to 

also estimate fixed effects 

is not factored in)

Unknown (df for having 

to estimate fixed effects 

is factored in)

So, in small samples, 

L2 variances will be…

Too small (less difference 

after N=30-50 or so)

Unbiased (correct)

But because it indexes 

the fit of the…

Entire model

(means + variances)

Variances model only 

You can compare 

models differing in…

Fixed and/or random 

effects (either/both)

Random effects only 

(same fixed effects)

σ 𝑦𝑖 − ෝ𝒚𝒕𝒊
2

𝑁 − 𝑘

σ 𝑦𝑖 − ෝ𝒚𝒕𝒊
2

𝑁

“Population” “Sample”



Details: Assessing Significance
• Model for the Means → which fixed effects of predictors 

should be included in the model (e.g., main effects, interactions)

➢ Significance tests do not require assessment of relative model fit 
using −2ΔLL (can always use univariate or multivariate Wald tests)

➢ Effect sizes can come from the significance tests (e.g., t → Cohen’s d
or partial r), or from reductions in variance (pseudo-R2 or total-R2)

• Model for the Variance → what pattern(s) of variance and 
covariance the residuals from the same unit have; what 
random effects are needed to describe these pattern(s)

➢ Significance tests DO require assessing relative model fit via −2ΔLL

▪ Cannot use the Wald test p-values for variances because those p-values 
use a two-sided sampling distribution, but variances cannot be negative

➢ Effect sizes (less commonly provided) can come from random effects 
confidence intervals (CI) or random effects reliability measures

▪
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( )Random Effect 95% CI = fixed effect ± 1.96* Random Variance   



Pseudo-R2 Effect Size of Fixed Effects
• Pseudo-R2  = proportion of variance accounted for by fixed effects of 

predictors in each pile of variance → multiple pseudo-R2 values

• For example, a fixed linear effect of WP time will reduce level-1 residual 

variance σe
2 in R by this much:

• But whenever only level-1 residual variance σe
2 is reduced, the level-2 

random intercept variance τU
2
0

will INCREASE as a result. Why?

➢ Likelihood-based estimates of “true” τU
2
0

use (σe
2 / level-1 n) as correction factor 

for the amount of between-person difference attributable to chance:

True 𝛕𝐔
𝟐
𝟎

= Observed 𝛕𝐔
𝟐
𝟎

− (𝛔𝐞
𝟐 / level-1 n)

➢ For example: observed level-2 τU
2
0
=4.65, level-1 σe

2=7.06, n=4

▪ True τU
2
0
= 4.65 −(7.60/4) = 2.88 in empty means model

▪ Add fixed linear time slope → reduce σe
2 from 7.06 to 2.17 (Pseudo-R2 = .69)

▪ But now True τU
2
0
= 4.65 −(2.17/4) = 4.10 in fixed linear time model
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2 fewer more
e

fewer

2

residual variance   residual variance
Pseudo R  =       

residual variance

was  is
More generally, Pseudo R  = 

was

−

−

“fewer” = “was” = from 

model with fewer parameters

“more” = “is” = from 

model with more parameters



Details: Significance of Fixed Effects
Denominator DF 

is infinite

(Proper Wald test)

Denominator DF is 

estimated instead

(“Modified” Wald test)

Numerator DF = 1 

(test one fixed effect) is 

Univariate Wald Test

use 𝒛 distribution

(all of SEM; 

Mplus MLM, STATA 

MIXED default)

use 𝒕 distribution

(R nlme or lme4; SAS; SPSS; 

STATA MIXED with 

dfmethod and small)

Numerator DF > 1

(test 2+ fixed effects) is 

Multivariate Wald Test

use 𝝌𝟐 distribution

(Mplus, 

STATA default)

use 𝑭 distribution

(R glht; SAS, SPSS; 

STATA MIXED with 

dfmethod and small)

Options for estimating 

Denominator DF (DDF)

not applicable R, SAS, STATA: 

Kenward-Roger 

R, SAS, STATA, SPSS: 

Satterthwaite
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Details: Comparing Models for the Variance

• Two strategies for choosing a model for the variance:

➢ Does the more complex model fit better (than a simpler model)?

➢ Does the simpler model fit worse (than a more complex model)?

• Nested models are compared using a “likelihood ratio test”: 

−2ΔLL test (aka, “χ2 test” in SEM; “deviance difference test” in MLM)

1. Calculate −2ΔLL:  if given −2LL, do −2ΔLL = (−2LLfewer)  – (−2LLmore)

if given LL, do −2ΔLL = −2 *(LLfewer – LLmore)

2. Calculate  Δdf = (# Parmsmore)  – (# Parmsfewer)

3. Compare −2ΔLL to χ2 distribution with df = Δdf

4. Get p-value (e.g., from Excel CHIDIST, R anova, or STATA LRTEST)
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Results of 1. & 2. must 

be positive values!

“fewer” = from model with fewer parameters

“more” = from model with more parameters



Details: Comparing Models for the Variance

• What your p-value for the −2ΔLL test means:

➢ If you ADD parameters, then your model can get better

(if −2ΔLL test is significant ) or not better (not significant)

➢ If you REMOVE parameters, then your model can get worse

(if −2ΔLL test is significant ) or not worse (not significant)

• Nested or non-nested models can also be compared by 

Information Criteria that also reflect model parsimony

➢ No significance tests or critical values, just “smaller is better”

➢ AIC = Akaike IC     = −2LL +        2 *(#parameters)

➢ BIC = Bayesian IC  = −2LL + log(N)*(#parameters) 

➢ What “parameters” means depends on flavor (except in STATA):

▪ ML = ALL parameters; REML = variance model parameters only
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