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Associations in Longitudinal Data

• Sampling multiple persons over multiple occasions 

creates at least two distinct levels of analysis:

• Between-person variation IN means over time

➢ Are people higher on predictor 𝑥 than other people

also higher on outcome 𝑦 than other people?

➢ “Level-2” or “macro-level” relation among person means

• Within-person variation AROUND means over time

➢ When a person is higher on predictor 𝑥 than usual, 

are they also higher on outcome 𝑦 than usual?

➢ “Level-1” or “micro-level” relation among mean deviations

➢ But what about within-person change over time?
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Associations in Longitudinal Data
• Presence of within-person (WP) change over time 

requires new vocabulary and new modeling strategies

• e.g., Long-term relations of health (𝑥) with cognition (𝑦) 
in which there is WP change over time in each variable

➢ People who are healthier (than others at time 0) may have better 
cognition → L2-BP relation of intercepts (not “means”)

➢ People whose health declines less over time (than others) may 
decline less in cognition → L2-BP relation of L1-WP time slopes

➢ When a person feels relatively better (than predicted by their 
time trend), they may then also have relatively better cognition

▪ WP relation of time-specific residuals (whose extent can differ BP as well)

▪ Feel better next time instead? WP “lagged” relation (that can differ BP)
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Associations in Longitudinal Data
• “Change over time” includes ALL kinds of time trends, 

each of which can also show between-person (BP) variation

• e.g., Short-term relations of health (𝑥) with bad mood (𝑦)

➢ People who tend to be less healthy (than others) may tend to be 

grumpier (than others)→ L2-BP relation of person means

➢ When people feel worse (than usual), they may also be 

grumpier (than usual) → L1-WP relation of mean deviations

• How about a Monday effect*? It needs a WP slope, too!

➢ If some people are more adversely affected by Mondays (than 

other people), then that WP Monday slope can have BP variation!

➢ People who feel relatively worse on Mondays (than other people) 

may also be grumpier on Mondays* → BP relation of time slopes



* See Office Space movie: “Case of the Mondays” https://www.youtube.com/watch?v=2AB9zPfXqQQ 

Associations in Longitudinal Data
• “Change over time” includes ALL kinds of time trends, 

each of which can also show between-person (BP) variation

• e.g., Short-term relations of health (𝑥) with bad mood (𝑦)

➢ People who tend to be less healthy (than others) may tend to be 

grumpier (than others)→ L2-BP relation of person means

➢ When people feel worse (than usual), they may also be 

grumpier (than usual) → L1-WP relation of mean deviations

• How about a Monday effect*? It may need L1-WP slope, too!

➢ If some people are more adversely affected by Mondays (than 

others), then that L1-WP Monday slope has L2-BP variation!

➢ People who feel even worse on Mondays (than others) may be even 

grumpier on Mondays → L2-BP relation of L1-WP time slopes

https://www.youtube.com/watch?v=2AB9zPfXqQQ


Associations in Longitudinal Data
• No matter the time scale, any variable measured over time has 

the potential for three distinct sources of (co)variation:

➢ L2-BP in a measure of overall level (usually mean or intercept)

➢ L2-BP differences in L1-WP slopes for time and time-varying predictors 

           (including slopes for auto-regressive or “inertia” effects)

➢ L1-WP time-specific deviations from BP-predicted trajectory

• But common practice has two common problems:

➢ Time-varying “outcomes” are treated differently than “predictors”

➢ “Time” may not be considered as sufficiently in short-term studies

• Result? Missing BP time slope relations will create bias!

➢ Today’s demo: In WP slope main effects and lagged effects
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• No matter the time scale, any variable measured over time has 

the potential for three distinct sources of (co)variation:

➢ L2-BP in a measure of overall level (usually mean or intercept)

➢ L2-BP differences in L1-WP slopes for time and time-varying predictors 

           (including slopes for auto-regressive or “inertia” effects)

➢ L1-WP time-specific deviations from BP-predicted trajectory

• But common practice has two common problems:

➢ Time-varying “outcomes” are treated differently than “predictors”

➢ “Time” may not be considered as sufficiently in short-term studies

• Missing L2-BP relations of L1-WP time slopes create bias!

➢ Cue demo via simulation…



Presentation Overview

• Introduce simulation: data generation and manipulations

• Show recovery results across different longitudinal models 

for distinguishing L2-BP and L1-WP sources of (co)variance

➢ Try to link ideas, buzz words, diagrams, and equations to show 

what each type of model can or cannot do (well), including:

▪ Univariate models with observed predictors—using person-

mean-centered, baseline-centered, or time-detrended predictors 

▪ Multivariate models with latent predictors—requiring single-level 

or multilevel structural equation models with “latent” change factors 

▪ Auto-regressive cross-lagged panel models for lagged effects

• Consider best practice in light of real-data complications

➢ e.g., Unbalanced occasions, small samples, model complexity



Simulation Data Generation
• 2 variables (𝑥 and 𝑦) with no missing data for 100 persons (Level 

2; 𝑖) over 5 occasions (Level 1; 𝑡), indexed as 𝑇𝑖𝑚𝑒 = (0,1,2,3,4)* 

Unconditional Model for Change Variances

Level 1

Occasions:

𝒙𝒕𝒊𝒙 = 𝜷𝟎𝒊𝒙 + 𝜷𝟏𝒊𝒙 𝑻𝒊𝒎𝒆𝒕𝒊𝒙 + 𝒆𝒕𝒊𝒙

𝒚𝒕𝒊𝒚 = 𝜷𝟎𝒊𝒚 + 𝜷𝟏𝒊𝒚 𝑻𝒊𝒎𝒆𝒕𝒊𝒚 + 𝒆𝒕𝒊𝒚

𝝈𝒆𝒙
𝟐 =. 𝟒𝟎

𝝈𝒆𝒚
𝟐 =. 𝟒𝟎

Level 2

Intercepts: 

𝜷𝟎𝒊𝒙 = 𝜸𝟎𝟎𝒙 + 𝑼𝟎𝒊𝒙           𝜸𝟎𝟎𝒙 = 𝟎
   𝜷𝟎𝒊𝒚 = 𝜸𝟎𝟎𝒚 + 𝑼𝟎𝒊𝒚           𝜸𝟎𝟎𝐲 = 𝟎

𝝉𝑼𝟎𝒙

𝟐 =. 𝟔0

𝝉𝑼𝟎𝒚

𝟐 =. 𝟔𝟎

Level 2

Time Slopes: 

𝜷𝟏𝒊𝒙 = 𝜸𝟏𝟎𝒙 + 𝑼𝟏𝒊𝒙           𝜸𝟏𝟎𝒙 = ?
   𝜷𝟏𝒊𝒚 = 𝜸𝟏𝟎𝒚 + 𝑼𝟏𝒊𝒚           𝜸𝟏𝟎𝒚 = ?

𝝉𝑼𝟏𝒙

𝟐 =. 𝟎𝟔

𝝉𝑼𝟏𝒚

𝟐 =. 𝟎𝟔

• Total variance set = 1 at 𝑡𝑖𝑚𝑒 = 0, so that:

➢ Conditional ICC = .60 → Intercept variance for 𝑼𝟎𝒊𝒙 and 𝑼𝟎𝒊𝒚 

➢ Slope Reliability = .60 → Time slope variance for 𝑼𝟏𝒊𝒙 and 𝑼𝟏𝒊𝒚
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Simulation Manipulations

• Fixed time effects (𝛾10 absent or present) collapsed here

➢ Didn’t matter because 𝑇𝑖𝑚𝑒𝑡𝑖 was always a predictor of 𝑦𝑡𝑖

• Key manipulation: match across 3 types of relationships

• Level-2 random effects (𝑼𝟎𝒊𝒙, 𝑼𝟎𝒊𝒚, 𝑼𝟏𝒊𝒙, 𝑼𝟏𝒊𝒚) drawn from 

a multivariate normal distribution with 4 conditions:

➢ Intercept correlations:  𝒓(𝑼𝟎𝒊𝒙, 𝑼𝟎𝒊𝒚) = 𝟎 𝐨𝐫 . 𝟑

➢ Time slope correlations: 𝒓(𝑼𝟏𝒊𝒙, 𝑼𝟏𝒊𝒚) = 𝟎 𝐨𝐫 . 𝟑

➢ All other Intercept–Time slope pairs of correlations = 0

• Level-1 residuals drawn from a separate multivariate normal 

distribution with 2 conditions: 𝒓(𝒆𝒕𝒊𝒙, 𝒆𝒕𝒊𝒚) = 𝟎 𝐨𝐫 . 𝟑
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➢ Didn’t matter because 𝑇𝑖𝑚𝑒𝑡𝑖 was always a predictor of 𝑦𝑡𝑖

• Key manipulation: match across 3 types of relationships

• L2-BP random effects (𝑼𝟎𝒊𝒙, 𝑼𝟎𝒊𝒚, 𝑼𝟏𝒊𝒙, 𝑼𝟏𝒊𝒚) drawn from 
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➢ All other Intercept–Time slope pairs of correlations = 0

• L1-WP residuals drawn from a separate multivariate normal 

distribution with 2 conditions: 𝒓(𝒆𝒕𝒊𝒙, 𝒆𝒕𝒊𝒚) = 𝟎 𝐨𝐫 . 𝟑



2 Longitudinal Modeling Families

• Univariate models: predict 𝑦𝑡𝑖 from observed 𝒙𝒕𝒊 predictors

➢ aka, Multilevel models (MLMs) using person-mean-centered, 

baseline-centered, or detrended-residual predictors

➢ Estimated in any software with mixed effects (e.g., MIXED 

in SAS, SPSS, or STATA; LME4 or NLME in R environment)

• Multivariate models: predict both 𝑦𝑡𝑖 and 𝑥𝑡𝑖 as outcomes

➢ But 𝑥𝑡𝑖 can’t predict 𝑦𝑡𝑖 in univariate mixed-effects software, so…

➢ Can be specified as a single-level structural equation model (SEM)

▪ e.g., “Multivariate latent growth curve models” (with or without 

“structured residuals”); “auto-regressive cross-lag panel models”

➢ Can also be specified as a “multilevel SEM” (= multivariate MLM)

▪ I will use ML estimation; Mplus “latent predictor centering” and lagged 

effects within “dynamic multilevel SEM” require Bayes MCMC instead
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Unconditional Time Model for 𝑦𝒕𝒊: 3 Ways

Unconditional Time Univariate Multilevel Model (long data)

L1: 𝒚𝒕𝒊 = 𝜷𝟎𝒊 + 𝜷𝟏𝒊 𝑻𝒊𝒎𝒆𝒕𝒊 + 𝒆𝒕𝒊 L2 Intercept:      𝜷𝟎𝒊 = 𝜸𝟎𝟎 + 𝑼𝟎𝒊

L2 Time Slope:   𝜷𝟏𝒊 = 𝜸𝟏𝟎 + 𝑼𝟏𝒊

As Single-Level SEM* (wide data)

* MLM = SEM because random effects = latent variables!

As Multilevel SEM* (long data)
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Naïve Addition of Time-Varying 𝑥𝒕𝒊

• Model is bad news if the L1 predictor has L2 variance 

(i.e., people differ in their mean of 𝑥𝑡𝑖 over time)

➢ Could also be true for the L1 𝑡𝑖𝑚𝑒𝑡𝑖 predictor! (but not here) 

• Forces level-1 (WP) and level-2 (BP) 𝑥𝑡𝑖 effects to be equal, 

which is unlikely to be true, especially in longitudinal data!

• A predictor for 𝑥𝑡𝑖 is needed at any level it has variability

Univariate MLM: TV 𝒙𝐭𝐢 has a Smushed* Effect 

(*aka conflated, convergence, composite effect)

L1: 𝒚𝒕𝒊 = 𝜷𝟎𝒊 + 𝜷𝟏𝒊 𝑻𝒊𝒎𝒆𝒕𝒊 + 𝒆𝒕𝒊

                + 𝜷𝟐𝒊 𝒙𝒕𝒊

L2 Intercept:      𝜷𝟎𝒊 = 𝜸𝟎𝟎 + 𝑼𝟎𝒊

L2 Time Slope:   𝜷𝟏𝒊 = 𝜸𝟏𝟎 + 𝑼𝟏𝒊

L2 𝒙𝒕𝒊 Slope:       𝜷𝟐𝒊 = 𝜸𝟐𝟎



Naïve Addition of Time-Varying 𝑥𝒕𝒊

• Model is bad news if the L1 predictor has L2 variance 

(i.e., people differ in their mean of 𝑥𝑡𝑖 over time)

➢ Could also be true for the L1 𝑡𝑖𝑚𝑒𝑡𝑖 predictor! (but not here) 

• Forces level-1 (WP) and level-2 (BP) 𝑥𝑡𝑖 effects to be equal, 

which is unlikely to be true, especially in longitudinal data!

• A predictor for 𝑥𝑡𝑖 is needed at any level it has variability

Univariate MLM: TV 𝒙𝐭𝐢 has a Smushed* Effect 

(*aka conflated, convergence, composite effect)

L1: 𝒚𝒕𝒊 = 𝜷𝟎𝒊 + 𝜷𝟏𝒊 𝑻𝒊𝒎𝒆𝒕𝒊 + 𝒆𝒕𝒊
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L2 𝒙𝒕𝒊 Slope:       𝜷𝟐𝒊 = 𝜸𝟐𝟎
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Naïve Addition of Time-Varying 𝑥𝒕𝒊

As Single-Level SEM (wide data)

As Multilevel SEM (long data)
Smushed Effect: 

L1-WP and L2-BP 

effects of 𝒙𝒕𝒊 are forced 

to be equal (both 𝜸𝟐𝟎)



Unsmushing the Effects of L1 𝑥𝒕𝒊

MLMs: L2 BP and L1 WP Effects of 𝒙𝒕𝒊 as observed predictors

L1: 𝒚𝒕𝒊 = 𝜷𝟎𝒊 + 𝜷𝟏𝒊 𝑻𝒊𝒎𝒆𝒕𝒊 + 𝒆𝒕𝒊

 

L2 Time Slope:   𝜷𝟏𝒊 = 𝜸𝟏𝟎 + 𝑼𝟏𝒊

L2 𝒙𝒕𝒊 Slope:       𝜷𝟐𝒊 = 𝜸𝟐𝟎

Person-Mean        + 𝜷𝟐𝒊 𝒙𝒕𝒊 −  ഥ𝒙𝒊

(PM) Centering:

L2 Int:   𝜷𝟎𝒊 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏 ഥ𝒙𝒊 + 𝑼𝟎𝒊

Baseline                + 𝜷𝟐𝒊 𝒙𝒕𝒊 − 𝒙𝟎𝒊

(BL) Centering:

L2 Int:   𝜷𝟎𝒊 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏 𝒙𝟎𝒊 + 𝑼𝟎𝒊



Unsmushing the Effects of L1 𝑥𝒕𝒊

• Either should yield: 𝜸𝟐𝟎 → L1-WP effect; 𝜸𝟎𝟏 → L2-BP effect

• L2 PM ഥ𝒙𝒊 uses all occasions so L1 residuals should cancel…

➢ …But timing is off: L2 average 𝑥𝑡𝑖 predicts L2 𝑦𝑡𝑖  time 0 intercept 

• L2 BL 𝒙𝟎𝒊 matches timing to create L2 relation at time 0… 

➢ …But still has L1 residual: Is actual 𝑥0𝑖, not predicted 𝑥𝑡𝑖 at time 0
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L1: 𝒚𝒕𝒊 = 𝜷𝟎𝒊 + 𝜷𝟏𝒊 𝑻𝒊𝒎𝒆𝒕𝒊 + 𝒆𝒕𝒊

 

L2 Time Slope:   𝜷𝟏𝒊 = 𝜸𝟏𝟎 + 𝑼𝟏𝒊

L2 𝒙𝒕𝒊 Slope:       𝜷𝟐𝒊 = 𝜸𝟐𝟎

Person-Mean        + 𝜷𝟐𝒊 𝒙𝒕𝒊 −  ഥ𝒙𝒊

(PM) Centering:

L2 Int:   𝜷𝟎𝒊 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏 ഥ𝒙𝒊 + 𝑼𝟎𝒊
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Unsmushing the Effects of L1 𝑥𝒕𝒊

As Single-Level SEM (wide data)

As Multilevel SEM (long data)

L1 𝒙𝒊
∗ = 𝒙𝒊 − ഥ𝒙𝒊  or 𝒙𝒊 − 𝒙𝟎𝒊  

L1 𝒙𝒕𝒊
∗ =

𝒙𝒕𝒊 − ഥ𝒙𝒊  

or 

𝒙𝒕𝒊 − 𝒙𝟎𝒊

L2 𝒙𝒊
∗ Model Variants:

Person-Mean Centering uses ഥ𝒙𝒊

Baseline Centering uses 𝒙𝟎𝒊

L2 𝒙𝒊
∗ by 𝑻𝒊𝒎𝒆𝒕𝒊 slope 𝜸𝟏𝟏 added

for comparability with next models:
𝜷𝟏𝒊 = 𝜸𝟏𝟎 + 𝜸𝟏𝟏 𝒙𝒊

∗ + 𝑼𝟏𝒊



Simulation Results: Univ MLMs
• How well did centering with the person mean ҧ𝑥𝑖  or 

baseline 𝑥0𝑖  recover the 3 relations of 𝒙𝒕𝒊 with 𝒚𝒕𝒊?

L2 𝒙𝒊
∗ = ഥ𝒙𝒊 or 𝒙𝟎𝒊

L1 𝒙𝒕𝒊
∗ = 𝒙𝒕𝒊 − ഥ𝒙𝒊  

or 𝒙𝒕𝒊 − 𝒙𝟎𝒊

As Multilevel SEM

As Univariate MLM:

 L1: 𝒚𝒕𝒊 = 𝜷𝟎𝒊 + 𝜷𝟏𝒊 𝑻𝒊𝒎𝒆𝒕𝒊 + 𝜷𝟐𝒊 𝒙𝒕𝒊
∗ + 𝒆𝒕𝒊

 L2 Intercept:   𝜷𝟎𝒊 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏 𝒙𝒊
∗ + 𝑼𝟎𝒊

 L2 Time:          𝜷𝟏𝒊 = 𝜸𝟏𝟎 + 𝜸𝟏𝟏 𝒙𝒊
∗ + 𝑼𝟏𝒊

 L2 𝒙𝒕𝒊 Slope:   𝜷𝟐𝒊 = 𝜸𝟐𝟎

As Univariate MLM



Simulation Results: Univ MLMs
• How well did centering with the person mean ҧ𝑥𝑖  or 

baseline 𝑥0𝑖  recover the 3 relations of 𝒙𝒕𝒊 with 𝒚𝒕𝒊?

0. L2 𝑥𝑖
∗ by 𝑇𝑖𝑚𝑒𝑡𝑖 slope 𝜸𝟏𝟏 = 𝟎

1. No L2 𝑥𝑡𝑖 random time (slope 𝑟 → 0)

2. L2 intercept 𝑟 → L2-BP 𝒙𝒊
∗ slope 𝜸𝟎𝟏

3. L1 residual 𝑟 → L1-WP 𝒙𝒕𝒊
∗  slope 𝜸𝟐𝟎

L2 𝒙𝒊
∗ = ഥ𝒙𝒊 or 𝒙𝟎𝒊

L1 𝒙𝒕𝒊
∗ = 𝒙𝒕𝒊 − ഥ𝒙𝒊  

or 𝒙𝒕𝒊 − 𝒙𝟎𝒊

As Multilevel SEM

As Univariate MLM:

 L1: 𝒚𝒕𝒊 = 𝜷𝟎𝒊 + 𝜷𝟏𝒊 𝑻𝒊𝒎𝒆𝒕𝒊 + 𝜷𝟐𝒊 𝒙𝒕𝒊
∗ + 𝒆𝒕𝒊

 L2 Intercept:   𝜷𝟎𝒊 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏 𝒙𝒊
∗ + 𝑼𝟎𝒊

 L2 Time:          𝜷𝟏𝒊 = 𝜸𝟏𝟎 + 𝜸𝟏𝟏 𝒙𝒊
∗ + 𝑼𝟏𝒊

 L2 𝒙𝒕𝒊 Slope:   𝜷𝟐𝒊 = 𝜸𝟐𝟎

As Univariate MLM



Univ Results: Time-Smushing Bias!

Type I 
Error

𝜶 =. 𝟐𝟏

𝜶 =. 𝟐𝟕 𝜶 =. 𝟐𝟓

Time effect 

misfit!

L2-BP 𝒙𝒊
∗ Slope Bias L1-WP 𝒙𝒕𝒊

∗  Slope Bias L2 Pseudo-𝑹𝟐 for 𝑼𝟏𝒊
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Univ Results: Time-Smushing Bias!

Type I 
Error

𝜶 =. 𝟐𝟏

𝜶 =. 𝟐𝟕 𝜶 =. 𝟐𝟓

Time effect 

misfit!

L2-BP 𝒙𝒊
∗ Slope Bias L1-WP 𝒙𝒕𝒊

∗  Slope Bias L2 Pseudo-𝑹𝟐 for 𝑼𝟏𝒊



• Ignoring L2-BP relationships between the time slopes of 

longitudinal variables can contaminate their other relations:

➢ Top: if the L1-WP 𝒙𝒕𝒊 still

contains unmodeled L2-BP

variance in time slopes, 

the L1-WP effect will be 

smushed with the missing 

L2-BP time slope effect!

➢ Different than well-known

problems of intercept-

smushed L1 WP effects 

OR bias from using 

observed mean (bottom)

Why Time-Smushing Bias Happens

Observed 

Level-1 𝒙𝒕𝒊 

Predictor

Observed 

Level-2 𝒙𝒊
∗ Predictor

L2-BP 

Intercept 

Variance

L1-WP 

Residual

Variance

L2-BP

Time Slope 

Variance

https://doi.org/10.1037/a0012869
https://doi.org/10.1037/a0012869


Why Level-2 BP Slopes are Affected 

• Ignoring L2-BP relationships between the time slopes of 

longitudinal variables can contaminate their other relations:

➢ Also in the L2-BP Intercept—because it must change over time!

Random Intercept 
Only

Random Intercept 
and Time Slopes



Fixing Level-1 Bias… Univariately
• “Detrended residuals” is a univariate strategy designed to  

 remove time-related variance from the level-1 𝑥𝑡𝑖 predictor 

• Is a two-stage approach analogous to “slopes-as-outcomes”: 

➢ Fit separate regression model to each person’s data 

➢ Save time-specific 𝒙𝒕𝒊 residuals to use as level-1 𝒙𝒕𝒊
∗

➢ Save fixed intercept at 𝒕𝒊𝒎𝒆 = 𝟎 to use as level-2 𝒙𝒊
∗

As Multilevel SEMAs Univariate MLM:

 L1: 𝒚𝒕𝒊 = 𝜷𝟎𝒊 + 𝜷𝟏𝒊 𝑻𝒊𝒎𝒆𝒕𝒊 + 𝜷𝟐𝒊 𝒙𝒕𝒊
∗ + 𝒆𝒕𝒊

 L2 Intercept:   𝜷𝟎𝒊 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏 𝒙𝒊
∗ + 𝑼𝟎𝒊

 L2 Time:          𝜷𝟏𝒊 = 𝜸𝟏𝟎 + 𝜸𝟏𝟏 𝒙𝒊
∗ + 𝑼𝟏𝒊

 L2 𝒙𝒕𝒊 Slope:   𝜷𝟐𝒊 = 𝜸𝟐𝟎

As Univariate MLM



Univ Results: A Partial Fix

𝜶 =. 𝟏𝟒

𝜶 =. 𝟏𝟒 𝜶 =. 𝟎𝟓

Time effect 

misfit!

L2-BP 𝒙𝒊
∗ Slope Bias L1-WP 𝒙𝒕𝒊

∗  Slope Bias L2 Pseudo-𝑹𝟐 for 𝑼𝟏𝒊



Why the asymmetry of 𝑥𝒕𝒊 and 𝒚𝒕𝒊?
• Why is 𝒚𝒕𝒊 treated as latent (i.e., three sources of variance 

partitioned by the model; in circles) while 𝒙𝒕𝒊 is observed 
(variance partitioned by brute-force predictors; in squares)?

• Primary benefit of multivariate models is to treat 𝒙𝒕𝒊 like 𝒚𝒕𝒊 
but still be able to include fixed effects of 𝒙𝒕𝒊 that predict 𝒚𝒕𝒊

Asymmetric Single-Level SEM 

with Observed 𝒙𝒕𝒊 Predictors
Btw: in multilevel SEMs with 

latent 𝑥𝑡𝑖 predictors in Mplus, 

how parameters are interpreted 

depends on one’s choices for 

syntax and estimation… I’ll skip 

this complexity here (but see 

Hoffman 2019 for details)

L2 

Intercept 

,

L2 

Time Slope 

1 1
1

1
1

0

1

2
3 4

1

L1 Residual 

1 1 1 1

L2 

https://journals.sagepub.com/doi/10.1177/2515245919842770


Symmetric Single-Level SEM

• This SEM uses “Structured Residuals”: Level-1 𝑥𝑡𝑖 effect between 
the 𝑥𝑡𝑖 and 𝑦𝑡𝑖 residuals (instead of between the observed variables)

➢ Why? To get level-2 BP effects instead of level-2 contextual effects

𝒙𝒕𝒊 is now latent: 
L2 BP and L1 WP 
model variances



Fixed Effects of Intercept and Residual of Latent 𝒙𝒕𝒊 

Total:  𝒙𝒕𝒊𝒙 = 𝜷𝟎𝒊𝒙 + 𝒙𝒘𝒕𝒊𝒙

           𝒚𝒕𝒊𝒙 = 𝜷𝟎𝒊𝒚 + 𝒚𝒘𝒕𝒊𝒚

L1: 𝒙𝒘𝒕𝒊𝒙 = 𝒆𝒕𝒊𝒙

       𝒚𝒘𝒕𝒊𝒚 = 𝜷𝟏𝒊𝒚 𝑻𝒊𝒎𝒆𝒕𝒊𝒚 + 𝜷𝟐𝒊𝒚 𝒙𝒘𝒕𝒊𝒙 + 𝒆𝒕𝒊𝒚

L2 Intercepts:      𝜷𝟎𝒊𝒙 = 𝜸𝟎𝟎𝒙 + 𝑼𝟎𝒊𝒙

                             𝜷𝟎𝒊𝒚 = 𝜸𝟎𝟎𝒚 + 𝜸𝟎𝟏𝒚 (𝜷𝟎𝒊𝒙) + 𝑼𝟎𝒊𝒚

L2 Time Slopes:   𝜷𝟏𝒊𝒚 = 𝜸𝟏𝟎𝒚 + 𝜸𝟏𝟏𝒚 (𝜷𝟎𝒊𝒙)  + 𝑼𝟏𝒊𝒚

𝒘 indicates a L1 within variable

Multivariate MLM: From Single-

Level SEM to Multilevel SEM

• So how does using latent 𝒙𝒕𝒊 predictors compare with 

observed 𝒙𝒕𝒊 predictors (baseline or two-stage intercept)?

𝜷𝟐𝒊𝒚 = 𝜸𝟐𝟎𝒚



Fixed Effects of Intercept and Residual of Latent 𝒙𝒕𝒊 
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L1: 𝒙𝒘𝒕𝒊𝒙 = 𝒆𝒕𝒊𝒙
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                             𝜷𝟎𝒊𝒚 = 𝜸𝟎𝟎𝒚 + 𝜸𝟎𝟏𝒚 (𝜷𝟎𝒊𝒙) + 𝑼𝟎𝒊𝒚

L2 Time Slopes: (𝜷𝟏𝒊𝒙 doesn’t exist yet) 

𝜷𝟏𝒊𝒚 = 𝜸𝟏𝟎𝒚 + 𝜸𝟏𝟏𝒚 (𝜷𝟎𝒊𝒙)  + 𝑼𝟏𝒊𝒚

𝒘 indicates a L1 within variable

Multivariate MLM: From Single-

Level SEM to Multilevel SEM

𝜷𝟐𝒊𝒚 = 𝜸𝟐𝟎𝒚
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Multivariate MLM: From Single-

Level SEM to Multilevel SEM

So how does using latent 𝒙𝒕𝒊 predictors compare with 

observed 𝒙𝒕𝒊 predictors (baseline or two-stage intercept)?

𝜷𝟐𝒊𝒚 = 𝜸𝟐𝟎𝒚



Latent 𝒙𝒕𝒊 → Less Bias? Not yet…

𝜶 =. 𝟏𝟏

𝜶 =. 𝟏𝟏 𝜶 =. 𝟏𝟑

Still time 

effect misfit!

L2-BP 𝒙𝒊
∗ Slope Bias L1-WP 𝒙𝒕𝒊

∗  Slope Bias L2 Pseudo-𝑹𝟐 for 𝑼𝟏𝒊



Multivariate MLM via Multilevel SEM: 

Add Random Time Slope for 𝑥𝒕𝒊

Fixed Effects of Intercept, Time Slope, and Residual of Latent 𝒙𝒕𝒊 

Total:  𝒙𝒕𝒊𝒙 = 𝜷𝟎𝒊𝒙 + 𝒙𝒘𝒕𝒊𝒙

            𝒚𝒕𝒊𝒙 = 𝜷𝟎𝒊𝒚 + 𝒚𝒘𝒕𝒊𝒚

L1: 𝒙𝒘𝒕𝒊𝒙 = 𝜷𝟏𝒊𝒙 𝑻𝒊𝒎𝒆𝒕𝒊𝒙 + 𝒆𝒕𝒊𝒙

      𝒚𝒘𝒕𝒊𝒚 = 𝜷𝟏𝒊𝒚 𝑻𝒊𝒎𝒆𝒕𝒊𝒚 + 𝜷𝟐𝒊𝒚 𝒙𝒘𝒕𝒊𝒙 + 𝒆𝒕𝒊𝒚

L2 Intercepts:      𝜷𝟎𝒊𝒙 = 𝜸𝟎𝟎𝒙 + 𝑼𝟎𝒊𝒙

                             𝜷𝟎𝒊𝒚 = 𝜸𝟎𝟎𝒚 + 𝜸𝟎𝟏𝒚 (𝜷𝟎𝒊𝒙) + 𝜸𝟎𝟐𝒚 (𝜷𝟏𝒊𝒙) + 𝑼𝟎𝒊𝒚

L2 Time Slopes:  𝜷𝟏𝒊𝒙 = 𝜸𝟏𝟎𝒚 + 𝑼𝟏𝒊𝒚

                             𝜷𝟏𝒊𝒚 = 𝜸𝟏𝟎𝒚 + 𝜸𝟏𝟏𝒚 (𝜷𝟎𝒊𝒙) + 𝜸𝟏𝟐𝒚 (𝜷𝟏𝒊𝒙) + 𝑼𝟏𝒊𝒚

𝒘 indicates a L1 within variable

𝜷𝟐𝒊𝒚 = 𝜸𝟐𝟎𝒚

How well does this “multivariate latent growth curve model with 
structured residuals” recover the 3 types of relations of 𝒙𝒕𝒊 with 𝒚𝒕𝒊?



So Just Let 𝑇𝑖𝑚𝑒𝒕𝒊𝒙 Also Predict 𝑥𝒕𝒊

• L2 Intercept 𝛽0𝑖𝑥 is now specific to 𝑡𝑖𝑚𝑒 = 0 (just like 𝛽0𝑖𝑦 has been)

• How well does this “multivariate latent growth curve model with 
structured residuals” recover the 3 types of relations of 𝒙𝒕𝒊 with 𝒚𝒕𝒊?



Results: Better! (But Not Perfect)

𝜶 =. 𝟎𝟒

𝜶 =. 𝟎𝟒 𝜶 =. 𝟎𝟓

𝑹𝟐 high overall?

𝜶 =. 𝟎𝟓

𝜶 =. 𝟎𝟓

𝜶 =. 𝟎𝟕

L2-BP 𝒙𝒊
∗ Slope Bias L1-BP 𝒙𝒕𝒊

∗  Slope Bias L2 Pseudo-𝑹𝟐 for 𝑼𝟏𝒊



Slopes-as-Outcomes? Still Nope.



Slopes-as-Outcomes? Still Nope.

𝜶 =. 𝟏𝟎

𝜶 =. 𝟏𝟏 𝜶 =. 𝟎𝟓

𝜶 =. 𝟏𝟖

𝜶 =. 𝟎𝟒𝜶 =. 𝟎𝟒

𝜶 =. 𝟎𝟒 𝜶 =. 𝟎𝟓

L2-BP 𝒙𝒊
∗ Slope Bias L1-BP 𝒙𝒕𝒊

∗  Slope Bias L2 Pseudo-𝑹𝟐 for 𝑼𝟏𝒊



Smushed Effects in Related Models*

Auto-Regressive Cross-Lagged Panel 

Model (the “ARCL” or “CLPM”)

Path model with separate 
intercepts (and residual 
variances) per occasion, 
and lag-1 fixed effects:

𝒙𝒕𝒊𝒙 = 𝜸𝒕𝟎𝒙 + 𝜸𝟏𝟎𝒙 𝒙𝒕−𝟏𝒊

             + 𝜸𝟐𝟎𝒙 𝒚𝒕−𝟏𝒊 + 𝒆𝒕𝒊𝒙

𝒚𝒕𝒊𝒚 = 𝜸𝒕𝟎𝒚 + 𝜸𝟏𝟎𝒚 𝒚𝒕−𝟏𝒊

             + 𝜸𝟐𝟎𝒚 𝒙𝒕−𝟏𝒊 + 𝒆𝒕𝒊𝒚



Smushed Effects in Related Models*

• CLPM interpretation is problematic:

➢ Do the 𝜸𝟏𝟎 auto-regressive (AR) effects “control for stability”?

➢ Which type of relation is given by 𝜸𝟐𝟎 cross-lagged (CL) effects?

➢ Which type of relation is the same-occasion 𝑪 covariance?

* Same problems apply to mediation variants (X → M → Y)

Auto-Regressive Cross-Lagged Panel 

Model (the “ARCL” or “CLPM”)

Path model with separate 
intercepts (and residual 
variances) per occasion, 
and lag-1 fixed effects:

𝒙𝒕𝒊𝒙 = 𝜸𝒕𝟎𝒙 + 𝜸𝟏𝟎𝒙 𝒙𝒕−𝟏𝒊

             + 𝜸𝟐𝟎𝒙 𝒚𝒕−𝟏𝒊 + 𝒆𝒕𝒊𝒙

𝒚𝒕𝒊𝒚 = 𝜸𝒕𝟎𝒚 + 𝜸𝟏𝟎𝒚 𝒚𝒕−𝟏𝒊

             + 𝜸𝟐𝟎𝒚 𝒙𝒕−𝟏𝒊 + 𝒆𝒕𝒊𝒚

https://doi.org/10.1111/cdev.12660


Distinguish BP mean effects 
from WP residual effects:

𝒙𝒕𝒊𝒙 = 𝜸𝒕𝟎𝒙 + 𝜸𝟏𝟎𝒙 𝒙𝒕−𝟏𝒊

             + 𝜸𝟐𝟎𝒙 𝒚𝒕−𝟏𝒊 + 𝑼𝟎𝒊𝒙 + 𝒆𝒕𝒊𝒙

𝒚𝒕𝒊𝒚 = 𝜸𝒕𝟎𝒚 + 𝜸𝟏𝟎𝒚 𝒚𝒕−𝟏𝒊

             + 𝜸𝟐𝟎𝒚 𝒙𝒕−𝟏𝒊 + 𝑼𝟎𝒊𝒚 + 𝒆𝒕𝒊𝒚

Remedies for Intercept Smushing

But a random intercept alone will 
not prevent time-smushing…

Do the within-variable AR paths 
protect against time smushing?

Let’s find out!

“Random Intercept”

 ARCL (or CLPM)

https://psycnet.apa.org/doi/10.1037/a0038889


Simulation: Add CLPM Fixed Effects

All L1-WP AR and CL Slopes had population values = 0

*Btw, this is also a “latent curve model with structured residuals”

Full X → Y Model: L2-BP Intercept Effects, L2-BP Time 

Slope Effects, L1-WP AR Effects, and L1-WP CL Effects

Total:  𝒙𝒕𝒊𝒙 = 𝜷𝟎𝒊𝒙 + 𝒙𝒘𝒕𝒊𝒙

           𝒚𝒕𝒊𝒙 = 𝜷𝟎𝒊𝒚 + 𝒚𝒘𝒕𝒊𝒚

L1: 𝒙𝒘𝒕𝒊𝒙 = 𝜸𝟏𝟎𝒙 𝒙𝒕−𝟏𝒊 + 𝜸𝟐𝟎𝒙 𝒚𝒕−𝟏𝒊 + 𝜷𝟑𝒊𝒙 𝑻𝒊𝒎𝒆𝒕𝒊𝒙 + 𝒆𝒕𝒊𝒙

      𝒚𝒘𝒕𝒊𝒚 = 𝜸𝟏𝟎𝒚 𝒚𝒕−𝟏𝒊 + 𝜸𝟐𝟎𝒚 𝒙𝒕−𝟏𝒊 + 𝜷𝟑𝒊𝒚 𝑻𝒊𝒎𝒆𝒕𝒊𝒚 + 𝒆𝒕𝒊𝒚

L2 Intercepts:      𝜷𝟎𝒊𝒙 = 𝜸𝟎𝟎𝒙 + 𝑼𝟎𝒊𝒙

                             𝜷𝟎𝒊𝒚 = 𝜸𝟎𝟎𝒚 + 𝜸𝟎𝟏𝒚(𝜷𝟎𝒊𝒙) + 𝑼𝟎𝒊𝒚

L2 Time Slopes:  𝜷𝟑𝒊𝒙 = 𝜸𝟑𝟎𝒚 + 𝑼𝟑𝒊𝒚

                            𝜷𝟑𝒊𝒚 = 𝜸𝟑𝟎𝒚 + 𝜸𝟑𝟐𝒚 (𝜷𝟏𝒊𝒙) + 𝑼𝟑𝒊𝒚

𝒘 indicates a L1 within variable

Intercept → 

Intercept

Time slope → 

Time slope

https://doi.apa.org/doi/10.1037/a0035297


Simulation: Compare Model Variants

Full X → Y Model: 

L2-BP Intercept Effects, 

L2-BP Time Slope Effects, 

L1-WP AR Effects, and 

L1-WP CL Effects*

Drop Time Slope effect

Drop Time Slope, too

Drop Time Slope effect;

drop L1 AR Slope

Drop Time Slope, too;

drop L1 AR Slope

* Always included



Simulation Results: CLPM Fixed Effects

• If a random time slope for 𝑥𝑡𝑖 was omitted:

➢ L1 AR slopes for 𝑥𝑡𝑖 were very positively biased (𝛼 = .98)

• If the BP-L2 time slope relation for 𝑥𝑡𝑖 → 𝑦𝑡𝑖 was omitted:

➢ L1 CL slopes for 𝑥𝑡𝑖 → 𝑦𝑡𝑖 were biased in that direction, 

even more so when including L1 AR slopes for 𝑥𝑡𝑖!

➢ L1 CL slopes for 𝑦𝑡𝑖 → 𝑥𝑡𝑖 had complex patterns of bias

• It seems like WP questions of “which came first” cannot 

be answered reliably until the BP model is complete

➢ Same idea as “detrending” individual time series for time trends 

before looking at time-specific relations across variables

➢ So first check for random change in time-varying “predictors”!



• BP time-slope smushing is a potential problem

in longitudinal studies over ANY TIME SCALE!

➢ “Time” is a more obvious predictor of long-term development

➢ “Time” is a less obvious predictor of short-term WP fluctuation

• e.g., L1 days within L2 persons

➢ L1 Time = day of study for reactivity to measurement?

➢ L1 Time = day of week for work or family routines?

• e.g., L1 occasions during the day (in L2 days in L3 persons)

➢ L1 Time = time since waking for circadian rhythms?

➢ L1 Time = time at work for functional rhythms?

➢ Still need to consider L2 time (day of study, day of week…)

Recommendations for Practice
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• BP time-slope smushing is a potential problem

in longitudinal studies over ANY TIME SCALE!

➢ “Time” is a more obvious predictor of long-term development

➢ “Time” is a less obvious predictor of short-term WP fluctuation

• e.g., L1 days within L2 persons

➢ L1 Time = day of study for reactivity to measurement?

➢ L1 Time = day of week for work or family routines?

• e.g., L1 occasions during the day (in L2 days in L3 persons)

➢ L1 Time = time since waking for circadian rhythms?

➢ L1 Time = time at work for functional rhythms?

➢ Still need to consider L2 time (day of study, day of week…)



Recommendations for Practice

• BP time-slope smushing is a potential problem

in longitudinal studies over ANY TIME SCALE!

➢ “Time” is a more obvious predictor of long-term development

➢ “Time” is a less obvious predictor of short-term WP fluctuation

• e.g., L1 days within L2 persons

➢ L1 Time = day of study for reactivity to measurement?

➢ L1 Time = day of week for work or family routines?

• e.g., L1 occasions during the day (in L2 days in L3 persons)

➢ L1 Time = time since waking for circadian rhythms?

➢ L1 Time = time at work for functional rhythms?

➢ Still need to consider L2 time (day of study, day of week…)



Recommendations for Practice
• Treat time-varying “predictors” and “outcomes” the same 

by starting with univariate models for each to explore time:

➢ Consider design-informed fixed effects of time at ALL relevant levels

➢ Consider corresponding random effects of time at ALL upper levels

➢ Consider remaining residual relations (e.g., of adjacent occasions)

• Any predictor with a random time slope needs to be 

treated as another outcome in a multivariate model

➢ i.e., as latent predictor → model-based partitioning of variances

• Predictors with fixed effects of time only? 

➢ Time is controlled for—if you include those effects in outcome model

➢ Do have choice of using observed or latent predictor variables…



Recommendations for Practice
• Treat time-varying “predictors” and “outcomes” the same 

by starting with univariate models for each to explore time:

➢ Consider design-informed fixed effects of time at ALL relevant levels

➢ Consider corresponding random effects of time at ALL upper levels

➢ Consider remaining residual relations (e.g., of adjacent occasions)

• Any predictor with a random time slope needs to be 

treated as another outcome in a multivariate model

➢ i.e., as latent predictor → model-based partitioning of variances

• Predictors with fixed effects of time only (no random time)? 

➢ Time is controlled for—if you include those effects in outcome model

➢ Do have choice of using observed or latent predictor variables…



Recommendations for Practice

• Using latent instead of observed predictors means:

➢ Smaller level-2 samples and smaller ICCs → noisier results

➢ SEM: No REML estimation and no denominator DF options 

         → too small L2 variances and associated fixed effect SEs

➢ Interactions of latent variables → greater estimation complexity

➢ Non-normal level-1 variables→ greater estimation complexity

• Can Bayes fix it? The jury is still out…

➢ If your priors know the right answer, sure!

➢ If your variance priors are “too diffuse”, bad news!

➢ Point estimates for variances: apples and oranges?

➢ Useful as alternative to ML given ↑ estimation complexity 



Recommendations for Practice

• Using latent instead of observed predictors means:

➢ Smaller level-2 samples and smaller ICCs → noisier results

➢ SEM: No REML estimation and no denominator DF options 

         → too small L2 variances and associated fixed effect SEs

➢ Interactions of latent variables → greater estimation complexity

➢ Non-normal level-1 variables→ greater estimation complexity

• Can Bayes fix it? The jury is still out…

➢ If your priors know the right answer, sure!

➢ If your variance priors are “too diffuse”, bad news!

➢ Point estimates for variances: apples and oranges?

➢ Useful as alternative to ML given ↑ estimation complexity 



Recommendations for Practice

• But using observed instead of latent predictors means:

➢ Ignoring BP differences in unreliability (i.e., caused by 

differing numbers of occasions or differential WP variance)

➢ Result is “Lüdke’s bias” → too-small level-2 effects (for intercept)

• Can two-stage approaches get around this? Not likely*

➢ “Slopes-as-outcomes” cannot be recommended for anything 

other than time-detrending residuals (but why do just that?)

▪ Saved intercepts and time slopes did not provide accurate results here

▪ * Corrections for unreliability may have more promise…

• Choosing a software option for latent predictors in 

multivariate MLMs: Single-level or multilevel SEM…

https://doi.org/10.1037/a0012869


Single-Level vs. Multilevel SEM 

for Fitting Multivariate MLMs
• Single-level SEM is designed for balanced occasions:

➢ All persons share common measurement schedule (or close enough)

➢ Absolute fit tests are possible given saturated model covariance matrix

➢ Availability of random WP non-time slopes varies by software

➢ Structured residuals can create level-2 BP effects only in some cases

• Multilevel SEM is better for unbalanced occasions:

➢ Much more realistic, especially for studying short-term fluctuations

➢ But no absolute fit tests are possible without saturated model!

➢ Btw, “dynamic” multilevel SEM (in Mplus terms) just adds options for 
fitting lagged effects of latent predictors (across rows) with missing data

➢ Pay attention to centering methods, especially given random slopes!

▪ See Hoffman (2019): EXACT SAME SYNTAX gives different level-2 
parameters when estimated using ML vs Bayes in Mplus 8.0+! 

▪ This can lead to inadvertent smushing of all kinds using ML…



Single-Level vs. Multilevel SEM 

for Fitting Multivariate MLMs
• Single-level SEM is designed for balanced occasions:

➢ All persons share common measurement schedule (or close enough)

➢ Absolute fit tests are possible given saturated model covariance matrix

➢ Availability of random WP non-time slopes varies by software

➢ Structured residuals can create level-2 BP effects only in some cases

• Multilevel SEM is more flexible for unbalanced occasions:

➢ Much more realistic, especially for studying short-term fluctuations

➢ But no absolute fit tests are provided without a saturated model!

➢ Btw, “dynamic” multilevel SEM (in Mplus terms) just adds options for 
fitting lagged effects of latent predictors (across rows) with missing data

➢ Pay attention to centering methods, especially given random slopes!

▪ See Hoffman (2019): EXACT SAME SYNTAX gives different versions of the 
level-2 parameters when estimated using ML vs Bayes in Mplus 8.0+! 

▪ This can lead to inadvertent smushing of all kinds using ML… be careful!

https://journals.sagepub.com/doi/10.1177/2515245919842770


Thank you! Suggested Readings:
• Berry, D., & Willoughby, M. (2017). On the practical interpretability of cross‐lagged panel models: Rethinking 

a developmental workhorse. Child Development, 88(4), 1186-1206.

• Curran, P. J., & Bauer, D.J. (2011). The disaggregation of within-person and between-person effects in 

longitudinal models of change. Annual Review of Psychology 62(1), 583-619.

• Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., & McGinley, J. S. (2014). The separation of between-

person and within-person components of individual change over time: A latent curve model with structured 

residuals. Journal of Consulting and Clinical Psychology, 82(5), 879-894.

• De Haan-Rietdijk, S., Kuppens, P., & Hamaker, E. L. (2016). What's in a day? A guide to decomposing the 

variance in intensive longitudinal data. Frontiers in Psychology: Quantitative Psychology and Measurement,

7, Article 891: https://doi.org/10.3389/fpsyg.2016.00891 

• Hoffman, L. (2015). Longitudinal analysis: Modeling within-person fluctuation and change. New York, NY: 

Routledge Academic.

• Hoffman, L. (2019). On the interpretation of parameters in multivariate multilevel models across different 

combinations of model specification and estimation. Advances in Methods and Practices in Psychological 

Science, 2(3), 288-311.

• Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. (2008). The multilevel 

latent covariate model: A new, more reliable approach to group-level effects in contextual 

studies. Psychological Methods, 13(3), 203-229.

• McNeish, D., & Hamaker, E. L. (2020). A primer on two-level dynamic structural equation models for 

Intensive Longitudinal Data in Mplus. Psychological Methods, 25(5), 610-635.
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