On the Strategies for Disaggregating Between-Person Relations across Individual Time Slopes from Within-Person Relations in Longitudinal Data

Dr. Lesa Hoffman

Professor, Educational Measurement and Statistics Program College of Education, University of Iowa

Presented 10/31/23 in the Seminar in Advanced Research Methods, Department of Psychology, Princeton University

Slides available at: <u>https://www.lesahoffman.com/Workshops/index.html</u>

- Sampling multiple persons over multiple occasions creates at least two distinct levels of analysis:
- Between-person variation IN means over time
 - > Are people higher on predictor x than other people also higher on outcome y than other people?
 - "Level-2" or "macro-level" relation among person means
- Within-person variation AROUND means over time
 - When a person is higher on predictor x than usual, are they also higher on outcome y than usual?
 - "Level-1" or "micro-level" relation among mean deviations

- Sampling multiple persons over multiple occasions creates at least two distinct levels of analysis:
- Between-person variation IN means over time
 - > Are people higher on predictor x than other people also higher on outcome y than other people?
 - "Level-2" or "macro-level" relation among person means
- Within-person variation AROUND means over time
 - When a person is higher on predictor x than usual, are they also higher on outcome y than usual?
 - "Level-1" or "micro-level" relation among mean deviations
 - > But what about within-person change over time?

- Presence of within-person (WP) change over time requires new vocabulary and new modeling strategies
- e.g., **Long-term relations** of health (*x*) with cognition (*y*) in which there is WP change over time in each variable
 - ➢ People who are healthier (*than others at time 0*) may have better cognition → L2-BP relation of intercepts (not "means")
 - ➢ People whose health declines less over time (*than others*) may decline less in cognition → L2-BP relation of L1-WP time slopes

- Presence of within-person (WP) change over time requires new vocabulary and new modeling strategies
- e.g., **Long-term relations** of health (*x*) with cognition (*y*) in which there is WP change over time in each variable
 - ➢ People who are healthier (*than others at time 0*) may have better cognition → L2-BP relation of intercepts (not "means")
 - ➢ People whose health declines less over time (*than others*) may decline less in cognition → L2-BP relation of L1-WP time slopes
 - When a person feels relatively better (*than predicted by their time trend*), they may then also have relatively better cognition
 - L1-WP relation of time-specific residuals (can differ L2-BP)
 - Feel better next time? L1-WP "lagged" relation (can differ L2-BP)

- "Change over time" includes ALL kinds of time trends, each of which can also show between-person (BP) variation
- e.g., **Short-term relations** of health (*x*) with bad mood (*y*)
 - ➢ People who tend to be less healthy (*than others*) may tend to be grumpier (*than others*)→ L2-BP relation of person means
 - ▷ When people feel worse (*than usual*), they may also be grumpier (*than usual*) → L1-WP relation of mean deviations

- "Change over time" includes ALL kinds of time trends, each of which can also show between-person (BP) variation
- e.g., **Short-term relations** of health (*x*) with bad mood (*y*)
 - ➢ People who tend to be less healthy (*than others*) may tend to be grumpier (*than others*) → L2-BP relation of person means
 - When people feel worse (*than usual*), they may also be grumpier (*than usual*) → L1-WP relation of mean deviations
- How about a **Monday effect***? It may need **L1-WP** slope, too!
 - If some people are more adversely affected by Mondays (*than others*), then that L1-WP Monday slope has L2-BP variation!
 - ➢ People who feel even worse on Mondays (*than others*) may be even grumpier on Mondays → L2-BP relation of L1-WP time slopes

- No matter the time scale, **any variable measured over time** has the potential for **three distinct sources of (co)variation**:
 - L2-BP in a measure of overall level (usually mean or intercept)
 - L2-BP differences in L1-WP slopes for time and time-varying predictors (including slopes for auto-regressive or "inertia" effects)
 - L1-WP time-specific deviations from BP-predicted trajectory
- But common practice has two common problems:
 - > Time-varying "outcomes" are treated differently than "predictors"
 - "Time" may not be considered as sufficiently in short-term studies

- No matter the time scale, **any variable measured over time** has the potential for **three distinct sources of (co)variation**:
 - L2-BP in a measure of overall level (usually mean or intercept)
 - L2-BP differences in L1-WP slopes for time and time-varying predictors (including slopes for auto-regressive or "inertia" effects)
 - L1-WP time-specific deviations from BP-predicted trajectory
- But common practice has two common problems:
 - > Time-varying "outcomes" are treated differently than "predictors"
 - "Time" may not be considered as sufficiently in short-term studies
- Missing L2-BP relations of L1-WP time slopes create bias!
 - > Cue demo via simulation...

Presentation Overview

- Introduce **simulation**: data generation and manipulations
- Show recovery results across different longitudinal models for distinguishing L2-BP and L1-WP sources of (co)variance
 - > Try to link ideas, buzz words, diagrams, and equations to show what each type of model can or cannot do (well), including:
 - Univariate models with observed predictors—using personmean-centered, baseline-centered, or time-detrended predictors
 - **Multivariate models with latent predictors**—requiring single-level or multilevel structural equation models with "latent" change factors
 - Auto-regressive cross-lagged panel models for lagged effects
- Consider **best practice** in light of real-data complications

> e.g., Unbalanced occasions, small samples, model complexity

Simulation Data Generation

• 2 variables (x and y) with no missing data for 100 persons (Level 2; i) over 5 occasions (Level 1; t), indexed as $Time = (0,1,2,3,4)^*$

Simulation Data Generation

• 2 variables (x and y) with no missing data for 100 persons (Level 2; i) over 5 occasions (Level 1; t), indexed as $Time = (0,1,2,3,4)^*$

	Unconditional Model for Change		
Level 1 Occasions:	$x_{tix} = \beta_{0ix} + \beta_{1ix}(Time_{tix}) + e_{tix}$ $y_{tiy} = \beta_{0iy} + \beta_{1iy}(Time_{tiy}) + e_{tiy}$		
Level 2 Intercepts:	$\beta_{0ix} = \gamma_{00x} + U_{0ix}$ $\beta_{0iy} = \gamma_{00y} + U_{0iy}$	$\begin{array}{l} \gamma_{00x} = 0\\ \gamma_{00y} = 0 \end{array}$	
Level 2 Time Slopes:	$\beta_{1ix} = \gamma_{10x} + U_{1ix}$ $\beta_{1iy} = \gamma_{10y} + U_{1iy}$	$\gamma_{10x} = ?$ $\gamma_{10y} = ?$	

Simulation Data Generation

2 variables (x and y) with no missing data for 100 persons (Level 2; i) over 5 occasions (Level 1; t), indexed as Time = (0,1,2,3,4)*

	Unconditional Model for	or Change	Variances
Level 1 Occasions:	$x_{tix} = \beta_{0ix} + \beta_{1ix} (Time)$ $y_{tiy} = \beta_{0iy} + \beta_{1iy} (Time)$	$(e_{tix}) + e_{tix}$ $(e_{tiy}) + e_{tiy}$	$\sigma_{e_x}^2 = .40$ $\sigma_{e_y}^2 = .40$
Level 2 Intercepts:	$\beta_{0ix} = \gamma_{00x} + U_{0ix}$ $\beta_{0iy} = \gamma_{00y} + U_{0iy}$	$\begin{array}{l} \gamma_{00x} = 0 \\ \gamma_{00y} = 0 \end{array}$	$ au_{U_{0x}}^2 = .60 \ au_{U_{0y}}^2 = .60$
Level 2 Time Slopes:	$\beta_{1ix} = \gamma_{10x} + U_{1ix}$ $\beta_{1iy} = \gamma_{10y} + U_{1iy}$	$\gamma_{10x} = ?$ $\gamma_{10y} = ?$	$ au_{U_{1x}}^2 = .06 \ au_{U_{1y}}^2 = .06$

- Total variance set to 1 at time = 0, so that:
 - > Conditional ICC = .60 \rightarrow Intercept variance for U_{0ix} and U_{0iy}
 - > Slope Reliability = .60 \rightarrow Time slope variance for U_{1ix} and U_{1iy}

Simulation Manipulations

- Fixed time effects (γ_{10} absent or present) collapsed here
 - > Didn't matter because $Time_{ti}$ was always a predictor of y_{ti}
- Key manipulation: match across 3 types of relationships

Simulation Manipulations

- Fixed time effects (γ_{10} absent or present) collapsed here
 - > Didn't matter because $Time_{ti}$ was always a predictor of y_{ti}
- Key manipulation: match across 3 types of relationships
- L2-BP random effects $(U_{0ix}, U_{0iy}, U_{1ix}, U_{1iy})$ drawn from a multivariate normal distribution with 4 conditions:
 - > Intercept correlations: $r(U_{0ix}, U_{0iy}) = 0 \text{ or } .3$
 - > Time slope correlations: $r(U_{1ix}, U_{1iy}) = 0 \text{ or } .3$
 - > All other Intercept–Time slope pairs of correlations = 0
- L1-WP residuals drawn from a separate multivariate normal distribution with 2 conditions: $r(e_{tix}, e_{tiy}) = 0$ or . 3

2 Longitudinal Modeling Families

- Univariate models: predict y_{ti} from observed x_{ti} predictors
 - » aka, Multilevel models (MLMs) using person-mean-centered, baseline-centered, or detrended-residual predictors
 - Estimated in any software with mixed effects (e.g., MIXED in SAS, SPSS, or STATA; LME4 or NLME in R environment)

2 Longitudinal Modeling Families

- Univariate models: predict y_{ti} from observed x_{ti} predictors
 - aka, Multilevel models (MLMs) using person-mean-centered, baseline-centered, or detrended-residual predictors
 - Estimated in any software with mixed effects (e.g., MIXED in SAS, SPSS, or STATA; LME4 or NLME in R environment)
- <u>Multivariate models</u>: predict both y_{ti} and x_{ti} as **outcomes**

2 Longitudinal Modeling Families

- Univariate models: predict y_{ti} from observed x_{ti} predictors
 - » aka, Multilevel models (MLMs) using person-mean-centered, baseline-centered, or detrended-residual predictors
 - Estimated in any software with mixed effects (e.g., MIXED in SAS, SPSS, or STATA; LME4 or NLME in R environment)
- <u>Multivariate models</u>: predict both y_{ti} and x_{ti} as **outcomes**
 - > But x_{ti} can't predict y_{ti} in univariate mixed-effects software, so...
 - > Can be specified as a single-level structural equation model (SEM)
 - e.g., "Multivariate latent growth curve models" (with or without "structured residuals"); "auto-regressive cross-lagged panel models"
 - Can also be specified as a "multilevel SEM" (= multivariate MLM)
 - I will use ML estimation; M*plus* "latent predictor centering" and lagged effects within "*dynamic* multilevel SEM" require Bayes MCMC instead

Unconditional Time Univariate Multilevel Model (long data)

L1: $y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + e_{ti}$ L2 Intercept: $\beta_{0i} = \gamma_{00} + U_{0i}$ L2 Time Slope: $\beta_{1i} = \gamma_{10} + U_{1i}$

Unconditional Time Univariate Multilevel Model (long data)

L1: $y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + e_{ti}$ L2 Intercept: $\beta_{0i} = \gamma_{00} + U_{0i}$ L2 Time Slope: $\beta_{1i} = \gamma_{10} + U_{1i}$

3 ways: MLM = SEM because random effects = latent variables!

Unconditional Time Univariate Multilevel Model (long data)

L1: $y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + e_{ti}$

L2 Intercept: $\beta_{0i} = \gamma_{00} + U_{0i}$ L2 Time Slope: $\beta_{1i} = \gamma_{10} + U_{1i}$

3 ways: MLM = SEM because random effects = latent variables!

Unconditional Time Univariate Multilevel Model (long data)

L2 Intercept: $\beta_{0i} = \gamma_{00} + U_{0i}$ L2 Time Slope: $\beta_{1i} = \gamma_{10} + U_{1i}$

3 ways: MLM = SEM because random effects = latent variables!

Univariate MLM: TV x_{ti} has a Smushed* Effect (**aka* conflated, convergence, composite effect)

L1: $y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + e_{ti}$	L2 Intercept:	$\beta_{0i} = \gamma_{00} + U_{0i}$
$+ \beta_{2i}(x_{ti})$	L2 Time Slope:	$\beta_{1i} = \gamma_{10} + U_{1i}$
	L2 <i>x_{ti}</i> Slope:	$\beta_{2i} = \gamma_{20}$

Univariate MLM: TV x_{ti} has a Smushed* Effect (**aka* conflated, convergence, composite effect)

L1: $y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + e_{ti}$	L2 Intercept: $\beta_{0i} = \gamma_{00} + U_{0i}$	
$+ \beta_{2i}(x_{ti})$	L2 Time Slope: $\beta_{1i} = \gamma_{10} + U_{1i}$	
	L2 x_{ti} Slope: $\beta_{2i} = \gamma_{20}$	

• Model is **bad news** if the L1 predictor has L2 variance (i.e., people differ in their mean of x_{ti} over time)

> Could also be true for the L1 $time_{ti}$ predictor! (but not here)

• Forces level-1 (WP) and level-2 (BP) x_{ti} effects to be equal, which is unlikely to be true, *especially* in longitudinal data!

Univariate MLM: TV x_{ti} has a Smushed* Effect (**aka* conflated, convergence, composite effect)

L1: $y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + e_{ti}$	L2 Intercept:	$\beta_{0i} = \gamma_{00} + U_{0i}$
$+ \beta_{2i}(x_{ti})$	L2 Time Slope:	$\beta_{1i} = \gamma_{10} + U_{1i}$
	L2 <i>x_{ti}</i> Slope:	$\beta_{2i} = \gamma_{20}$

• Model is **bad news** if the L1 predictor has L2 variance (i.e., people differ in their mean of x_{ti} over time)

Could also be true for the L1 *time_{ti}* predictor! (but not here)

- Forces level-1 (WP) and level-2 (BP) x_{ti} effects to be equal, which is unlikely to be true, *especially* in longitudinal data!
- A predictor for x_{ti} is needed at any level it has variability

As Multilevel SEM (long data)

Unsmushing the Effects of L1 x_{ti}

MLMs: L2 BP and L1 WP Effects of x_{ti} as observed predictors

L1: $y_{ti} = \beta_{0i} + \beta_1$	_i (Time _{ti}) + e _{ti}	L2 Time L2 x_{ti} Slo	Slope: ope:	$\beta_{1i} = \frac{\gamma_{10}}{\beta_{2i}} + \frac{U_{1i}}{\gamma_{20}}$
Person-Mean (PM) Centering:	$+\beta_{2i}(x_{ti}-\overline{x}_i)$	L2 Int:	$\beta_{0i} = \gamma_0$	$\mathbf{v}_0 + \mathbf{\gamma}_{01}(\overline{x}_i) + \mathbf{U}_{0i}$
Baseline (BL) Centering:	$+\beta_{2i}(x_{ti}-x0_i)$	L2 Int:	$\beta_{0i} = \gamma_0$	$0_0 + \mathbf{\gamma}_{01}(\mathbf{x}0_i) + \mathbf{U}_{0i}$

Unsmushing the Effects of L1 x_{ti}

MLMs: L2 BP and L1 WP Effects of x_{ti} as observed predictors

L1: $y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + \frac{e_{ti}}{e_{ti}}$		L2 Time Slope: $\beta_{1i} = \gamma_{10} + U_{1i}$ L2 x_{ti} Slope: $\beta_{2i} = \gamma_{20}$		
Person-Mean (PM) Centering:	$+\beta_{2i}(x_{ti}-\overline{x}_i)$	L2 Int:	$\beta_{0i} = \gamma_0$	$\gamma_{00} + \gamma_{01}(\overline{x}_i) + U_{0i}$
Baseline (BL) Centering:	$+\beta_{2i}(x_{ti}-x0_i)$	L2 Int:	$\beta_{0i} = \gamma_0$	$y_{00} + \gamma_{01}(x0_i) + U_{0i}$

- Either should yield: $\gamma_{20} \rightarrow L1$ -WP effect; $\gamma_{01} \rightarrow L2$ -BP effect
- L2 PM x
 _i uses all occasions so L1 residuals should cancel...
 ...But timing is off: L2 average x_{ti} predicts L2 y_{ti} time 0 intercept
- L2 BL x0_i matches timing to create L2 relation at *time 0*...
 - > ...But still has L1 residual: Is actual $x0_i$, not predicted x_{ti} at time 0

Unsmushing the Effects of L1 x_{ti}

Simulation Results: Univ MLMs

 How well did centering with the person mean (x
_i) or baseline (x0_i) recover the 3 relations of x_{ti} with y_{ti}?

As Univariate MLM

- **L1:** $y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + \beta_{2i}(x_{ti}^*) + e_{ti}$
- **L2 Intercept:** $\beta_{0i} = \gamma_{00} + \gamma_{01}(x_i^*) + U_{0i}$
- L2 Time: $\beta_{1i} = \gamma_{10} + \gamma_{11}(x_i^*) + U_{1i}$

L2
$$x_{ti}$$
 Slope: $\beta_{2i} = \gamma_{20}$

Simulation Results: Univ MLMs

 How well did centering with the person mean (x
_i) or baseline (x0_i) recover the 3 relations of x_{ti} with y_{ti}?

Why Time-Smushing Bias Happens

- **Ignoring L2-BP relationships between the time slopes** of longitudinal variables can contaminate their other relations:
 - Top: if the L1-WP x_{ti} still contains unmodeled L2-BP variance in time slopes, the L1-WP effect will be smushed with the missing L2-BP time slope effect!
 - Different than well-known problems of interceptsmushed L1 WP effects
 OR bias from using observed mean (bottom)

Why Level-2 BP Slopes are Affected

- **Ignoring L2-BP relationships between the time slopes** of longitudinal variables can contaminate their other relations:
 - > Also in the **L2-BP Intercept**—because it must change over time!

Fixing Level-1 Bias... Univariately

- "**Detrended residuals**" is a univariate strategy designed to remove time-related variance from the level-1 x_{ti} predictor
- Is a two-stage approach analogous to "slopes-as-outcomes":
 - > Fit separate regression model to each person's data
 - > Save time-specific x_{ti} residuals to use as level-1 x_{ti}^*
 - > Save fixed intercept at time = 0 to use as level-2 x_i^*

As Univariate MLM

L1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + \beta_{2i}(x_{ti}^*) + e_{ti}$$

L2 Intercept: $\beta_{0i} = \gamma_{00} + \gamma_{01}(x_i^*) + U_{0i}$

L2 Time:
$$\beta_{1i} = \gamma_{10} + \gamma_{11}(x_i^*) + U_{1i}$$

L2 x_{ti} Slope: $\beta_{2i} = \gamma_{20}$

Univ Results: A Partial Fix

Why the asymmetry of x_{ti} and y_{ti} ?

- Why is y_{ti} treated as latent (i.e., three sources of variance partitioned by the model; in circles) while x_{ti} is observed (variance partitioned by brute-force predictors; in squares)?
- Primary benefit of **multivariate models** is to treat x_{ti} like y_{ti} but still be able to include **fixed effects of** x_{ti} **that predict** y_{ti}

Btw: in multilevel SEMs with latent x_{ti} predictors in Mplus, how parameters are interpreted depends on one's choices for syntax and estimation... I'll skip this complexity here (but see <u>Hoffman 2019</u> for details)

 $x1_i^*$

 $x0^{*}_{i}$

Symmetric Single-Level SEM

- This SEM uses "**Structured Residuals**": Level-1 x_{ti} effect between the x_{ti} and y_{ti} residuals (instead of between the observed variables)
 - > Why? To get **level-2 BP effects** instead of level-2 *contextual* effects

Multivariate MLM: From Single-Level SEM to Multilevel SEM

Fixed Effects of Intercept and Residual of Latent x_{ti}

Total: $x_{tix} = \beta_{0ix} + xw_{tix}$ $y_{tix} = \beta_{0iy} + yw_{tiy}$

w indicates a **L1** *within* variable

Multivariate MLM: From Single-Level SEM to Multilevel SEM

Fixed Effects of Intercept and Residual of Latent x_{ti}

Total: $x_{tix} = \beta_{0ix} + xw_{tix}$ $y_{tix} = \beta_{0iy} + yw_{tiy}$ w indicates a L1 within variable L1: $xw_{tix} = e_{tix}$ $yw_{tiy} = \beta_{1iy}(Time_{tiy}) + \beta_{2iy}(xw_{tix}) + e_{tiy}$ $\beta_{2iy} = \gamma_{20y}$ L2 Intercepts: $\beta_{0ix} = \gamma_{00x} + U_{0ix}$ $\beta_{0iy} = \gamma_{00y} + \gamma_{01y}(\beta_{0ix}) + U_{0iy}$ L2 Time Slopes: $(\beta_{1ix} \text{ doesn't exist yet})$ $\beta_{1iy} = \gamma_{10y} + \gamma_{11y}(\beta_{0ix}) + U_{1iy}$

Multivariate MLM: From Single-Level SEM to Multilevel SEM

Fixed Effects of Intercept and Residual of Latent x_{ti}

Total: $x_{tix} = \beta_{0ix} + xw_{tix}$ $y_{tix} = \beta_{0iy} + yw_{tiy}$ w indicates a L1 within variable L1: $xw_{tix} = e_{tix}$ $yw_{tiy} = \beta_{1iy}(Time_{tiy}) + \beta_{2iy}(xw_{tix}) + e_{tiy}$ $\beta_{2iy} = \gamma_{20y}$ L2 Intercepts: $\beta_{0ix} = \gamma_{00x} + U_{0ix}$ $\beta_{0iy} = \gamma_{00y} + \gamma_{01y}(\beta_{0ix}) + U_{0iy}$ L2 Time Slopes: $(\beta_{1ix} \text{ doesn't exist yet})$ $\beta_{1iy} = \gamma_{10y} + \gamma_{11y}(\beta_{0ix}) + U_{1iy}$

So how does using **latent** x_{ti} **predictors** compare with **observed** x_{ti} **predictors** (baseline or two-stage intercept)?

Latent $x_{ti} \rightarrow$ Less Bias? Not yet...

Multivariate MLM via Multilevel SEM: Add Random Time Slope for *x*_{ti}

Fixed Effects of Intercept, Time Slope, and Residual of Latent x_{ti}

Total: $x_{tix} = \beta_{0ix} + xw_{tix}$ $y_{tix} = \beta_{0iy} + yw_{tiy}$ windicates a L1 within variable L1: $xw_{tix} = \beta_{1ix}(Time_{tix}) + e_{tix}$ $yw_{tiy} = \beta_{1iy}(Time_{tiy}) + \beta_{2iy}(xw_{tix}) + e_{tiy}$ $\beta_{2iy} = \gamma_{20y}$ L2 Intercepts: $\beta_{0ix} = \gamma_{00x} + U_{0ix}$ $\beta_{0iy} = \gamma_{00y} + \gamma_{01y} (\beta_{0ix}) + \gamma_{02y} (\beta_{1ix}) + U_{0iy}$ L2 Time Slopes: $\beta_{1ix} = \gamma_{10y} + U_{1iy}$ $\beta_{1iy} = \gamma_{10y} + \gamma_{11y} (\beta_{0ix}) + \gamma_{12y} (\beta_{1ix}) + U_{1iy}$

How well does this "multivariate latent growth curve model with structured residuals" recover the **3 types of relations of** x_{ti} with y_{ti} ?

So Just Let *Time*_{*tix*} **Also Predict** *x*_{*ti*}

- L2 Intercept β_{0ix} is now specific to time = 0 (just like β_{0iy} has been)
- How well does this "multivariate latent growth curve model with structured residuals" recover the **3 types of relations of** x_{ti} with y_{ti}?

Results: Better! (But Not Perfect)

Slopes-as-Outcomes?

Slopes-as-Outcomes? Still Nope.

Smushed Effects in Related Models*

Path model with separate intercepts (and residual variances) per occasion, and lag-1 fixed effects:

$$x_{tix} = \gamma_{t0x} + \gamma_{10x}(x_{t-1i}) + \gamma_{20x}(y_{t-1i}) + e_{tix}$$

$$y_{tiy} = \gamma_{t0y} + \gamma_{10y}(y_{t-1i}) + \gamma_{20y}(x_{t-1i}) + e_{tiy}$$

Smushed Effects in Related Models*

- CLPM interpretation is problematic:
 - > Do the γ_{10} auto-regressive (AR) effects "control for stability"?
 - > Which type of relation is given by γ_{20} cross-lagged (CL) effects?
 - > Which type of relation is the **same-occasion** *C* **covariance**?
- * Same problems apply to mediation variants $(X \rightarrow M \rightarrow Y)$

Remedies for Intercept Smushing

Distinguish BP mean effects from WP residual effects:

$$x_{tix} = \frac{\gamma_{t0x} + \gamma_{10x}(x_{t-1i})}{+ \gamma_{20x}(y_{t-1i}) + U_{0ix}} + e_{tix}$$

$$y_{tiy} = \gamma_{t0y} + \gamma_{10y}(y_{t-1i}) + \gamma_{20y}(x_{t-1i}) + U_{0iy} + e_{tiy}$$

But a random intercept alone will **not prevent time-smushing**...

Do the **within-variable AR paths** protect against time smushing?

Let's find out!

Simulation: Add CLPM Fixed Effects

Full X → Y Model: L2-BP Intercept Effects, L2-BP Time Slope Effects, L1-WP AR Effects, and L1-WP CL Effects

Total:
$$x_{tix} = \beta_{0ix} + xw_{tix}$$

 $y_{tix} = \beta_{0iy} + yw_{tiy}$ w indicates a L1 within variableL1: $xw_{tix} = \begin{array}{c} \gamma_{10x}(x_{t-1i}) + \gamma_{20x}(y_{t-1i}) \\ yw_{tiy} = \begin{array}{c} \gamma_{10y}(y_{t-1i}) + \gamma_{20y}(x_{t-1i}) \\ \gamma_{10y}(y_{t-1i}) + \gamma_{20y}(x_{t-1i}) \end{array} + \begin{array}{c} \beta_{3ix}(Time_{tix}) \\ \beta_{3iy}(Time_{tiy}) \end{array} + \begin{array}{c} e_{tix} \\ e_{tiy} \end{array}$ L2 Intercepts: $\beta_{0ix} = \gamma_{00x} + U_{0ix} \\ \beta_{0iy} = \gamma_{00y} + \gamma_{01y}(\beta_{0ix}) + U_{0iy} \end{array}$ Intercept \rightarrow
InterceptL2 Time Slopes: $\beta_{3ix} = \gamma_{30y} + U_{3iy} \\ \beta_{3iy} = \gamma_{30y} + \gamma_{32y}(\beta_{1ix}) + U_{3iy} \end{array}$ Time slope \rightarrow
Time slope

All L1-WP AR and CL Slopes had population values = 0

*Btw, this is also a "latent curve model with structured residuals"

Simulation: Compare Model Variants

Simulation Results: CLPM Fixed Effects

- If a random time slope for x_{ti} was omitted:
 - > L1 AR slopes for x_{ti} were very positively biased ($\alpha = .98$)
- If the BP-L2 time slope relation for $x_{ti} \rightarrow y_{ti}$ was omitted:
 - > L1 CL slopes for $x_{ti} \rightarrow y_{ti}$ were biased in that direction, even more so when including L1 AR slopes for x_{ti} !
 - > L1 CL slopes for $y_{ti} \rightarrow x_{ti}$ had complex patterns of bias
- It seems like WP questions of "which came first" cannot be answered reliably until the BP model is complete
 - Same idea as "detrending" individual time series for time trends before looking at time-specific relations across variables
 - > So first check for *random* change in time-varying "predictors"!

- **BP time-slope smushing** is a potential problem in longitudinal studies over **ANY TIME SCALE**!
 - "Time" is a more obvious predictor of long-term development
 - "Time" is a less obvious predictor of short-term WP fluctuation

- **BP time-slope smushing** is a potential problem in longitudinal studies over **ANY TIME SCALE**!
 - "Time" is a more obvious predictor of long-term development
 - "Time" is a less obvious predictor of short-term WP fluctuation
- e.g., L1 days within L2 persons
 - > L1 Time = **day of study** for reactivity to measurement?
 - > L1 Time = **day of week** for work or family routines?

- **BP time-slope smushing** is a potential problem in longitudinal studies over **ANY TIME SCALE**!
 - "Time" is a more obvious predictor of long-term development
 - "Time" is a less obvious predictor of short-term WP fluctuation
- e.g., L1 days within L2 persons
 - > L1 Time = **day of study** for reactivity to measurement?
 - > L1 Time = **day of week** for work or family routines?
- e.g., L1 occasions during the day (in L2 days in L3 persons)
 - > L1 Time = **time since waking** for circadian rhythms?
 - > L1 Time = **time at work** for functional rhythms?
 - > Still need to consider L2 time (day of study, day of week...)

- Treat time-varying "predictors" and "outcomes" the same by starting with univariate models for each to explore *time*:
 - > Consider design-informed **fixed effects** of time at ALL relevant levels
 - > Consider corresponding **random effects** of time at ALL upper levels
 - Consider remaining residual relations (e.g., of adjacent occasions)
- Any predictor with a random time slope needs to be treated as another outcome in a multivariate model
 - > i.e., as latent predictor \rightarrow model-based partitioning of variances

- Treat time-varying "predictors" and "outcomes" the same by starting with univariate models for each to explore *time*:
 - > Consider design-informed **fixed effects** of time at ALL relevant levels
 - > Consider corresponding **random effects** of time at ALL upper levels
 - Consider remaining residual relations (e.g., of adjacent occasions)
- Any predictor with a random time slope needs to be treated as another outcome in a multivariate model
 - > i.e., as latent predictor \rightarrow model-based partitioning of variances
- Predictors with fixed effects of time only (no random time)?
 - > Time is controlled for—if you include those effects in outcome model
 - > Do have choice of using **observed or latent predictor variables...**

• Using <u>latent</u> instead of <u>observed</u> predictors means:

- > Smaller level-2 samples and smaller ICCs \rightarrow noisier results
- > SEM: No REML estimation and no denominator DF options \rightarrow too small L2 variances and associated fixed effect SEs
- > Interactions of latent variables \rightarrow greater estimation complexity
- > Non-normal level-1 variables \rightarrow greater estimation complexity

• Using <u>latent</u> instead of <u>observed</u> predictors means:

- > Smaller level-2 samples and smaller ICCs \rightarrow noisier results
- > SEM: No REML estimation and no denominator DF options \rightarrow too small L2 variances and associated fixed effect SEs
- > Interactions of latent variables \rightarrow greater estimation complexity
- > Non-normal level-1 variables \rightarrow greater estimation complexity

• Can Bayes fix it? The jury is still out...

- > If your priors know the right answer, sure!
- If your variance priors are "too diffuse", bad news!
- > Point estimates for variances: apples and oranges?
- > Useful as alternative to ML given 1 estimation complexity

- But using <u>observed</u> instead of <u>latent</u> predictors means:
 - Ignoring BP differences in unreliability (i.e., caused by differing numbers of occasions or differential WP variance)
 - ➤ Result is "Lüdke's bias" → too-small level-2 effects (for intercept)
- Can two-stage approaches get around this? Not likely*
 - Slopes-as-outcomes" cannot be recommended for anything other than time-detrending residuals (but why do just that?)
 - Saved intercepts and time slopes did not provide accurate results here
 - * Corrections for unreliability may have more promise...
- Choosing a software option for latent predictors in multivariate MLMs: Single-level or multilevel SEM...

Single-Level vs. Multilevel SEM for Fitting Multivariate MLMs

- Single-level SEM is designed for balanced occasions:
 - > All persons share **common measurement schedule** (or close enough)
 - > Absolute fit tests are possible given saturated model covariance matrix
 - > Availability of random WP non-time slopes varies by software
 - > Structured residuals can create level-2 BP effects only in some cases

Single-Level vs. Multilevel SEM for Fitting Multivariate MLMs

• Single-level SEM is designed for balanced occasions:

- > All persons share **common measurement schedule** (or close enough)
- > Absolute fit tests are possible given saturated model covariance matrix
- > Availability of random WP non-time slopes varies by software
- Structured residuals can create level-2 BP effects only in some cases

Multilevel SEM is more flexible for unbalanced occasions:

- > Much more realistic, especially for studying short-term fluctuations
- > But no absolute fit tests are provided without a saturated model!
- Btw, "dynamic" multilevel SEM (in Mplus terms) just adds options for fitting lagged effects of latent predictors (across rows) with missing data
- > Pay attention to centering methods, especially given random slopes!
 - See <u>Hoffman (2019)</u>: EXACT SAME SYNTAX gives different versions of the level-2 parameters when estimated using ML vs Bayes in Mplus 8.0+!
 - This can lead to inadvertent smushing of all kinds using ML... be careful!

Thank you! Suggested Readings:

- Berry, D., & Willoughby, M. (2017). On the practical interpretability of cross-lagged panel models: Rethinking a developmental workhorse. *Child Development, 88*(4), 1186-1206.
- Curran, P. J., & Bauer, D.J. (2011). The disaggregation of within-person and between-person effects in longitudinal models of change. *Annual Review of Psychology 62*(1), 583-619.
- Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., & McGinley, J. S. (2014). The separation of betweenperson and within-person components of individual change over time: A latent curve model with structured residuals. *Journal of Consulting and Clinical Psychology*, 82(5), 879-894.
- De Haan-Rietdijk, S., Kuppens, P., & Hamaker, E. L. (2016). What's in a day? A guide to decomposing the variance in intensive longitudinal data. *Frontiers in Psychology: Quantitative Psychology and Measurement*, 7, Article 891: https://doi.org/10.3389/fpsyg.2016.00891
- Hoffman, L. (2015). *Longitudinal analysis: Modeling within-person fluctuation and change*. New York, NY: Routledge Academic.
- Hoffman, L. (2019). On the interpretation of parameters in multivariate multilevel models across different combinations of model specification and estimation. *Advances in Methods and Practices in Psychological Science*, *2*(3), 288-311.
- Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. (2008). The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies. *Psychological Methods*, 13(3), 203-229.
- McNeish, D., & Hamaker, E. L. (2020). A primer on two-level dynamic structural equation models for Intensive Longitudinal Data in Mplus. *Psychological Methods*, 25(5), 610-635.