
Introduction to Multilevel Models

for Longitudinal Data
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• This hour:

➢ Concepts and terminology

➢ Modeling person dependency

➢ Fixed and random intercepts

➢ Fixed and random time slopes

➢ Time-invariant predictors

➢ Slides available at: 

https://www.lesahoffman.com/Workshops/index.html 

• Next hour: time-varying predictors!

https://www.lesahoffman.com/Workshops/index.html


Sources of Longitudinal Relations
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• Between-Person* (BP) Variation:

➢ Macro – Level-2 – “INTER-individual Differences” – Time-Invariant

➢ All longitudinal studies that begin as cross-sectional studies have this

• Within-Person* (WP) Variation:

➢ Micro – Level-1 – “INTRA-individual Differences” – Time-Varying

➢ Only longitudinal studies can provide this extra type of information!

• Longitudinal studies allow examination of both types of 
relationships simultaneously (and their interactions)

➢ Any variable measured over time usually has both BP and WP variation

➢ BP = more/less than other people; WP = more/less than usual

• *I will use person, but “between” units can be anything that 
 is measured repeatedly (like animals, schools, countries…)



A Longitudinal Data Continuum
• Within-Person (WP) Change: Expect systematic effect(s) of time

➢ e.g., “(Latent) Growth Curve Models” → Time is meaningfully sampled

➢ If magnitude or direction of change differs across individuals, then 
the outcome’s variance and covariance will change over time, too!

• Within-Person (WP) Fluctuation: Few expected effects of time

➢ Outcome just varies/fluctuates over time (e.g., emotion, mood, stress)

➢ Time is just a way to get lots of data per person (e.g., EMA studies)

➢ Lends itself to questions about effects of relative changes and inconsistency
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Time

Pure WP Change

Time

Pure WP Fluctuation



Sources of “Time” in Longitudinal Data
• What aspects of “time” are relevant?

➢ WP change: e.g., time in study, age, grade, time to/from event

➢ WP fluctuation: e.g., time of day, day of week, day in study

• Does time vary within persons (WP) AND between persons (BP)?

➢ If people differ in time at the study beginning (e.g., accelerated designs), 

we will need to differentiate BP time effects from WP time effects

➢ If there is more than one kind of WP “time” (e.g., occasions within days), 

we will need to differentiate distinct sources of WP time effects

• Is time balanced or unbalanced?

➢ Balanced = shared measurement schedule (not necessarily equal interval)

▪ Although some people may miss some occasions, making their data “incomplete”

➢ Unbalanced = people have different possible time values

▪ By definition, the possible outcomes are at least partially “incomplete” across persons

▪ This may be a consequence of using a time metric that also varies between persons 
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The Two Sides of *Any* Model
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• Model for the Means:

➢ Aka Fixed Effects, Structural Part of Model

➢ What you are used to caring about for testing hypotheses

➢ How the expected outcome for a given observation varies as 
a weighted function of its values of the predictor variables

▪ Fixed slopes are estimated constants that multiply predictors

• Model for the Variance (how many “piles”):

➢ Aka Random Effects and Residuals, Stochastic Part of Model

➢ What you *were* used to making assumptions about instead

➢ How residuals are distributed and related across sampling 
dimensions (persons, occasions) → these relationships are known 
as “dependency” and this is the primary way that longitudinal 
models differ from “regular” (GLM) regression models

https://www.pilesofvariance.com/index.html


A Statistician’s World View
• Outcome type: General (normal) vs. Generalized (not normal)

• Dimensions of sampling: One (so one variance term per outcome) vs. 

Multiple (so multiple variance terms per outcome) → OUR WORLD

• General Linear Models: conditionally normal outcome distribution, 

fixed effects (identity link; only one dimension of sampling)

• Generalized Linear Models: any conditional outcome distribution, 

fixed effects through link functions, no random effects (one dimension)

• General Linear Mixed Models: conditionally normal outcome distribution, 

fixed and random effects (identity link, but multiple sampling dimensions)

• Generalized Linear Mixed Models: any conditional outcome distribution, 

fixed and random effects through link functions (multiple dimensions)

➢ Not this week—Many of the same concepts, but with more complexity in estimation

• “Linear” means fixed effects predict the link-transformed conditional mean 

of DV in a linear combination of (effect*predictor) + (effect*predictor)…
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Note: OLS is 

only for GLM



Multilevel Model (MLM) Word Salad
• MLM is the same as other terms you have heard of:

➢ Linear Mixed-Effects Model (fixed + random effects, 
of which intercepts and slopes are specific kinds of effects)

➢ Random Coefficients Model (because coefficients also = effects)

➢ Hierarchical Linear Model (not same as hierarchical regression)

• Special cases of MLM:

➢ Random Effects ANOVA or Repeated Measures ANOVA

➢ (Latent) Growth Curve Model (where “Latent” implies SEM software)

▪ Btw, most MLMs can be equivalently estimated as single-level SEMS

➢ Within-Person Fluctuation Model (e.g., for EMA or daily diary data)

▪ See also “dynamic” SEM or multilevel SEM (even without measurement models!) 

➢ Clustered/Nested Observations Model (e.g., for kids in schools)

▪ If followed over time in same group, is “clustered longitudinal model”

➢ Cross-Classified Models (e.g., teacher “value-added” models)

➢ Psychometric Models (e.g., factor analysis, item response theory, SEM) 
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The Two Sides of a General Linear Model

𝑦𝑖 = 𝛽0 + 𝛽1(𝑥1𝑖) + 𝛽2(𝑥2𝑖) + ⋯ + 𝑒𝑖

• Model for the Means (→ Predicted Values):

➢ Each person’s expected (predicted) outcome is a weighted linear 
function of his/her values on 𝑥1𝑖 and 𝑥2𝑖 (and any other predictors); 
each variable is measured once per person

➢ Estimated constants are called fixed effects (here, 𝛽0, 𝛽1, and 𝛽2)

➢ Number of fixed effects will show up in formulas as 𝒌 (so 𝒌 = 𝟑 here)

• Model for the Variance (→ “Piles” of Variance):

➢ 𝑒𝑖 ∼ N 0, 𝜎𝑒
2
→ ONE (BP) source of residual (unexplained) error

➢ In GLMs, 𝑒𝑖 has a mean of 0 with some estimated constant variance 𝜎𝑒
2, 

is normally distributed, is unrelated to 𝑥1𝑖 and 𝑥2𝑖 , and is independent 
across all observations (which is just one outcome per person here)

➢ There is only ONE source of residual variance in the above GLM 
because it was designed for only ONE (BP) dimension of sampling!
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Our focus now



An “Empty Means” General Linear Model

→ Single-Level (BP) Model for the Variance
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Adding Repeated Occasions → Two- 

Level (+WP) Model for the Variance
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Full Sample Distribution
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Empty Means (+WP) Two-Level Model

Start off with Mean of yti as 

“best guess” for any value:

 = Grand Mean

 = Fixed Intercept

Can make better guess by 

taking advantage of 

repeated observations:

 = Person Mean 

 → Random Intercept
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Empty Means (+WP) Two-Level Model

Variance of yti → 2 sources:

Between-Person (BP) Variance:

→ Differences from GRAND mean

→ INTER-Individual Differences

Within-Person (WP) Variance:

→ Differences from OWN mean

→ INTRA-Individual Differences

→ This part is only observable 

through longitudinal data.

Now we have 2 piles of 

variance in yti to predict.
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Hypothetical Longitudinal Data
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Only One Kind of “Error” in a 

Single-Level Model for the Variance
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eti represents all yti variance

e1i

e2i e3i
e4i

e5i



Two Distinct Kinds of “Error” in a 

Two-Level Model for the Variance
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U0i

U0i
 = random intercept that represents BP mean variance in yti

 eti = residual that represents WP variance in yti

e1i

e2i e3i
e4i

e5i

In other words: U0i represents a source of 

constant dependency (covariance) due to 

mean differences in yti across persons



Empty Means, Two-Level Model
yti variance → 2 sources:

Level-2 Random Intercept 

Variance (of U0i, as 𝛕𝐔
𝟐

𝟎
):

→ Between-Person variance in means

→ INTER-Individual differences from

GRAND mean to be explained 

by time-invariant predictors

Level-1 Residual Variance 

(of eti, as 𝛔𝐞
𝟐):

→ Within-Person variance

→ INTRA-Individual differences from 

OWN mean to be explained 

by time-varying predictors
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Two-Level Model Using Multilevel Notation:

Empty Means, Random Intercept Model

GLM Empty Model:

• yi = β0 + ei

MLM Empty Model:

• Level 1:  

    yti = β0i + eti

• Level 2: 

    β0i = γ00 + U0i
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3 Parameters: 
Model for the Means (1): 

• Fixed Intercept γ00 

Model for the Variance (2):

• Level-1 WP Variance of eti → 𝛔𝐞
𝟐

• Level-2 BP Variance of U0i → 𝛕𝐔
𝟐

𝟎

Fixed Intercept 

= mean of person 

means (because 

no predictors yet) 

Random Intercept 

= individual-specific 

deviation from 

predicted intercept

Residual = time-specific deviation 

from individual’s predicted outcome 

Composite equation:  

yti =  (γ00 + U0i ) + eti



Intraclass Correlation (ICC)

Intraclass Correlation (ICC; also known as “ICC1”):

ICC =
BP

BP + WP
=

Intercept Var.

Intercept Var. +Residual Var.
=

𝛕𝐔
𝟐

𝟎

𝛕𝐔
𝟐

𝟎
+ 𝛔𝐞

𝟐

• ICC = Proportion of total variance that is between persons

• ICC = Correlation of occasions from same person (in RCORR)

• ICC is a standardized way of expressing how much we need to 

worry about dependency due to person mean differences 

(i.e., ICC is an effect size for constant person dependency)
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Augmenting the Empty Means, 

Random Intercept Model with Time

• 2 questions about the possible effects of “time” (e.g., time 
in study in WP change; time of day or day of week in WP fluctuation):

1. Is there an effect of time on average?

➢ Is the line connecting the sample means not flat?

➢ If so, you need FIXED effect(s) of time

2. Does the average effect of time vary across 
individuals?

➢ Does each individual need their own version of that line?

➢ If so, you need RANDOM effect(s) of time

• Let’s look at examples using linear time effects to start…
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Fixed and Random Effects of Time
(Note:  The intercept is random in every figure)
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A. No Fixed, No Random B. Yes Fixed, No Random

C. No Fixed, Yes Random D. Yes Fixed, Yes Random



B. Fixed Linear Time, Random Intercept Model 
(4 parameters: effect of time is FIXED only)

Multilevel Model

Level 1: yti = β0i + β1i(Timeti) + eti

     

 

Level 2:  β0i = γ00 + U0i  β1i = γ10 

Composite Model

yti = (γ00 + U0i) + (γ10)(Timeti) + eti
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Fixed Intercept 

= predicted mean 

outcome at time 0

Fixed Linear Time Slope 

= predicted mean rate 

of change per unit time

Random Intercept = individual-specific deviation 

from fixed intercept → estimated variance of 𝛕𝐔
𝟐

𝟎

Residual = time-specific deviation from individual’s 

predicted outcome → estimated variance of 𝛔𝐞
𝟐

β0i β1i

Because the effect of 

time is fixed, everyone 

is predicted to change 

at the same rate



C or D: Random Linear Time Model (6 parms)

Multilevel Model

Level 1: yti = β0i + β1i(Timeti) + eti

     

 

Level 2:  β0i = γ00 + U0i  β1i = γ10 + U1i

Composite Model

yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti
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Fixed Intercept 

= predicted mean 

outcome at time 0

Fixed Linear Time Slope 

= predicted mean rate 

of change per unit time

Random Intercept = 

individual-specific deviation 

from fixed intercept at time 0 

→ estimated variance of 𝛕𝐔
𝟐

𝟎

Random Linear Time Slope= 

individual-specific deviation 

from fixed linear time slope 

→ estimated variance of 𝛕𝐔
𝟐

𝟏

Residual = time-specific deviation from individual’s 

predicted outcome → estimated variance of 𝛔𝐞
𝟐

β0i β1i

Also has an 

estimated 

covariance 

of random 

intercepts 

and slopes  

of 𝛕𝐔𝟎𝟏



Random Linear Time Model
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6 Parameters:

2 Fixed Effects:

γ00 Intercept, γ10 Slope

U0i Random Intercept 

Variance = 𝛕𝐔
𝟐

𝟎
  

U1i Random Slope 

Variance = 𝛕𝐔
𝟐

𝟏
       

Random Int-Slope 

Covariance = 𝛕𝐔𝟎𝟏

eti Residual 

Variance = 𝛔𝐞
𝟐



Random Linear Time Models Imply:
• People differ from each other systematically in TWO ways—in 

intercept (U0i) and time slope (U1i), which implies TWO kinds of BP 
variance, which translates to TWO sources of person dependency 
(covariance or correlation in the outcomes from the same person)

• If so, after controlling for both BP intercept and slope differences 
(by estimating the τU

2
0
 and τU

2
1

 variances in the G matrix), the eti 

residuals (whose variance and covariance are estimated in the R 
matrix) should be uncorrelated with homogeneous variance 
across time, as shown (or else a different R matrix is needed):
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Summary: “Handling” Person Dependency
• The process of fitting “unconditional models for time” 

(fixed and random effects) can be depicted as follows:

Residual

Variance

(𝛔𝐞
𝟐)

Residual

Variance

 (𝛔𝐞
𝟐)

Residual

Variance

 (𝛔𝐞
𝟐)

BP Int

Variance

 (𝛕𝐔
𝟐

𝟎
)

BP Slope

Variance

 (𝛕𝐔
𝟐

𝟏
)

Level 2, Between-

Person Differences

Level 1, Within-

Person Differences

BP Int

Variance

 (𝛕𝐔
𝟐

𝟎
)

01U covariance
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Fixed effect(s) 

of WP time



Families of Nonlinear Change
• Polynomial functions (e.g., time2, time3)

➢ Best suited for time slopes that should change directions 
(in which time is treated as continuous)

• Piecewise (linear spline) functions

➢ Best suited for distinct phases of time (known “knot” points)

➢ Otherwise, location of “latent” knots can be model parameters

• Linear effect of log(time) → exponential-ish

➢ Good for time slopes that should level off (hit upper or lower asymptote)

➢ Adding quadratic log(time) adjusts how fast the time slope levels off

• Latent basis → single slope with estimated nonlinearity

➢ In SEM software, for random time slope factor: fix first loading to 0, last loading to 1, 
and estimate the other loadings to capture proportion of change by each occasion

• Truly nonlinear models (e.g., logistic, exponential)

➢ Harder to estimate, particularly for random effects variances
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Summary: Unconditional Models for Time

Role of “Time” in the Model for the Means:

• WP Change  → describe pattern of average change (e.g., growth curves)

• WP Fluctuation → describe average time-specific trends that may not have 
been expected (e.g., reactivity, day of the week, circadian/schedule effects)

Role of “Time” in the Model for the Variance:

• WP Change  → describe individual differences in change (random effects)
            → this allows variances and covariances to differ over time

• WP Fluctuation → mostly describe pattern(s) of covariance over time
                             (may need random effects of time for differing variances)
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Time

Pure WP Change

Time

Pure WP Fluctuation

“Growth Curve 

Modeling”

“EMA”



Summary: Unconditional Models for Time
• Each source of correlation or dependency goes into a new variance 

component (or “pile” of variance) until each source meets the usual 

assumptions of GLM: normality, independence, constant variance

• Example two-level longitudinal model:

Residual

Variance

 (𝛔𝐞
𝟐)

BP Slope

Variance

 (𝛕𝐔
𝟐

𝟏
)

BP Int

Variance

 (𝛕𝐔
𝟐

𝟎
)

𝛕
𝐔𝟎𝟏 

covariance

Level 2 (two sources of) 

Between-Person Variation:

gets accounted for by 

person-level predictors

Level 1 (one source of) 

Within-Person Variation:

gets accounted for by 

time-level predictors

FIXED effects make variance 

go away (explain variance).

RANDOM effects just make 

a new pile of variance.

We can add predictors to reduce each pile of variance!
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Multiple BP 

time slope 

variances are 

possible…



Modeling Time-Invariant Predictors
• Which independent variables can be time-invariant predictors?

➢ Aka, “person-level” or “level-2” or predictors (𝒙𝒊) in two-level models

➢ Includes substantive predictors, controls, and predictors of missingness

➢ Includes anything that either does not change across time, or that might 
change across time but that you’ve only measured once (you may need 
to argue why this is conceptually ok or limit conclusions accordingly)

➢ Also includes BP variance in time or time-varying predictors (stay tuned)

• All predictors should be centered so that 0 values are meaningful: 

➢ This is needed to create a meaningful fixed/random intercept, and/or 
meaningful fixed main effects of predictors also included in interactions 

▪ e.g., if fixed effects of X, Z, and X*Z, the main effect of X is specifically for Z=0

➢ Quantitative predictors can be centered at any constant, such as 
the sample mean (common, and useful if it has an unfamiliar scale) 
or any meaningful reference (better for translating across studies)

➢ Categorical predictors can have their dummy-code contrasts created 
for you as “factor” variables (e.g., SAS CLASS, SPSS BY, STATA i.), but not in 
Mplus; I do not like ± 1 coding for group differences (because then 0 = ???)

▪ I find indicator or sequential dummy-coding variants most useful
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The Role of Time-Invariant Predictors 

in the Model for the Means

• In Within-Person Change Models → Adjust growth curve
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Main effect of 𝑥𝑖, no 

interaction with time

 Time →

Interaction with time, 

main effect of 𝑥𝑖?

 Time →

Main effect of 𝑥𝑖, and 

interaction with time

 Time →



The Role of Time-Invariant Predictors 

in the Model for the Means

• In Within-Person Fluctuation Models → Adjust mean level
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No main effect of 𝑥𝑖

 Time →

Main effect of 𝑥𝑖

 Time →



The Role of Time-Invariant Predictors 

in the Model for the Variance
• Beyond fixed effects in the model for the means, time-

invariant predictors can be used to allow heterogeneity of 
variance at their level or below in “location–scale models”

• e.g., Sex as a predictor of heterogeneity of variance: 

➢ At level 2: Amount of individual differences in intercepts/slopes 
differs between boys and girls (i.e., one group is more variable)

➢ At level 1: Amount of within-person residual variation differs 
between boys and girls

▪ In within-person fluctuation model: differential fluctuation over time

▪ In within-person change model: differential fluctuation/variation 
remaining after controlling for fixed and random effects of time

• These models are harder to estimate and may require custom 
algorithms (e.g., SAS NLMIXED, in Mplus v 8+ using “logV”)

➢ Also described with examples in Hoffman & Walters (2022)
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https://www.youtube.com/watch?v=wCEHuv9t1xw
https://www.annualreviews.org/doi/abs/10.1146/annurev-psych-020821-103525


Why Level-2 Predictors Cannot* Have 

Random Effects in Two-Level Models
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Random Slopes for Time

Time 

(or Any Level-1 Predictor)

Random Slopes for Group?

Group 

(or any Level-2 Predictor)

You cannot make a line out of a dot, so level-2 

effects cannot vary randomly over persons.

* Level-2 predictors can be included as predictors of heterogeneity of variance, 

  which technically is a random slope of sorts (but interpretation is different)



Example: Individual Trajectories 

101 older adults, 6 occasions within 2 weeks
Number Match Size 3 RT by Session
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Example Mean RT by Session: 

Baseline Models for the Means
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Saturated Means (ANOVA) Model 

= 6 parameters (1 mean per session)

Empty Means Model = 1 fixed intercept
(means predicted to be equal over sessions)



Example Variance in RT by Session: 

Baseline Models for the Variance
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Unstructured Variance–Covariance Model 

= 21 parameters (all variances and covariances)

Random Intercept Only Model 

= 2 parameters (𝛕𝐔
𝟐

𝟎
 and 𝛔𝐞

𝟐)

(variances predicted to be equal over sessions)



Random Quadratic Time Unconditional Model

Level 1:     RTti = β0i + β1iTimeti + β2iTimeti
2 + eti

Level 2 Equations (one per β):

 β0i = γ00 +      U0i 

 

 β1i = γ10 +      U1i

 β2i = γ20 +      U2i 
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Fixed Effect Subscripts:

1st = which level-1 term

2nd = which level-2 term

# of Possible Time-Related 

Slopes by # of Occasions (n):

# Fixed time slopes = n – 1

# Random time slopes = n – 2

Need n = 4 occasions to fit 

random quadratic time model

Intercept 

for person i

Linear Time 

Slope for 

person i

Quadratic 

Time Slope 

for person i

Fixed (mean) 

Intercept

Fixed (mean)

Linear Slope 

Fixed (mean)

Quad Slope 

Random 

(Deviation) 

Intercept

Random 

(Deviation) 

Linear Slope

Random 

(Deviation) 

Quad Slope

Time = session − 1

REML estimation using 

stacked data (univ MLM)

Ui covariances also estimated
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Adding Reasoning (0=22) as a Time-Invariant Predictor:

Is RT Improvement Predicted by Fluid Intelligence?

Level 1:  RTti = β0i +  β1iTimeti + β2iTimeti
2 + eti

Level 2 Equations (one per β):

 β0i = γ00   +    γ01Reasi  +   U0i 

 

 β1i = γ10   +    γ11Reasi   +    U1i

 β2i = γ20    +    γ21Reasi   +    U2i 
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Intercept 

for person i

Linear Slope 

for person i

Quad Slope 

for person i

Fixed Intercept 

when Time=0 

and Reas=22

Fixed Linear 

Time Slope 

when Time=0 

and Reas=22 

Fixed Quad 

Time Slope 

when Reas=22 

Random (Deviation) 

Intercept after 

controlling for Reas

Random (Deviation) 

Linear Time Slope after 

controlling for Reas

Random (Deviation) 

Quad Time Slope after 

controlling for Reas

Δ in Intercept per 

unit Δ in Reas

Δ in Linear Time 

Slope per unit Δ in 

Reas (=Reas*time)

Δ in Quad Time 

Slope per unit Δ in 

Reas (=Reas*time2)
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Reasoning (0=22) as a Time-Invariant Predictor:

Is RT Improvement Predicted by Fluid Intelligence?

Level 1:  RTti =  β0i + β1iTimeti + β2iTimeti
2 + eti

Level 2 Equations (one per β):

 β0i = γ00 + γ01Reasi  + U0i 

 β1i = γ10 + γ11Reasi  + U1i

 β2i = γ20 + γ21Reasi  + U2i 

• Composite equation: 

• yti = (γ00 + γ01Reasi + U0i)+

        (γ10 + γ11Reasi  + U1i)Timeti + 

        (γ20 + γ21Reasi  + U2i)Timeti
2 + eti
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Each fixed slope of reasoning 

will predict the random Ui 

variance in its level-2 equation if 

present, or eti residual variance 

otherwise. That’s why random 

slopes should be tested before 

adding cross-level interactions!

γ11 and γ21 are known as 

“cross-level” interactions 

(level-1 predictor by 

level-2 predictor)
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Reasoning (0=22) as a Time-Invariant Predictor:

Is RT Improvement Predicted by Fluid Intelligence?
RTti = (1966 + −27*Reasi +U0i)+

          (−120 + −3.6*Reasi +U1i)Timeti + 

          (13 +1.2*Reasi +U2i)Timeti
2 + eti
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1500

1600

1700

1800

1900

2000

2100

2200

1 2 3 4 5 6

R
T

 (
m

se
c)

Session

Reasoning by Quadratic Change over Sessions

Reasoning 17 Reasoning 22 Reasoning 27

BP Pseudo-R2 Values:

 Intercept U0i = .049

 Linear Time U1i =−.006

 Quadratic Time U2i = .024

 WP Residual eti = 0

People with better reasoning: 

• started out faster/lower 

(intercept at session 1), 

• improved more initially 

(linear slope at session 1),

• and had a greater rate of 

deceleration with practice

(quadratic slope*2!)



Example: Syntax by Univariate 

MLM Program (Stacked Data)
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SAS:
PROC MIXED DATA=work.Example2 COVTEST METHOD=REML;

     CLASS ID;

     MODEL RT = time timesq reas time*reas timesq*reas / SOLUTION DDFM=Satterthwaite;

     RANDOM INTERCEPT time timesq / GCORR TYPE=UN SUBJECT=ID;

RUN; 

R (lmer from lme4 package)—using lmertest package, which does provide correct denominator DF:

model2 = lmer(data=Example2, REML=TRUE,                                    

                      formula=RT~1+time+timesq+reas+reas
                     +time:reas+timesq:reas+(1+time+timesq|ID)) 

summary(model2, ddf="Satterthwaite")

STATA:
mixed RT time timesq reas time#reas timesq#reas, || ID: time timesq, ///

      variance reml covariance(un) dfmethod(satterthwaite) dftable(pvalue)

SPSS:

MIXED RT BY ID WITH time timesq reas 

      /METHOD = REML 

      /PRINT = SOLUTION TESTCOV 

      /FIXED = time timesq reas time*reas timesq*reas

      /RANDOM = INTERCEPT time timesq | COVTYPE(UN) SUBJECT(ID). 



Example: Mplus M-SEM Syntax
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%WITHIN%

  RT;                  ! Level-1 residual variance

  Lin | RT ON time;    ! Create beta1i placeholder

  Qua | RT ON timesq;  ! Create beta2i placeholder

%BETWEEN%

  [RT Lin Qua]; ! Intercepts

   RT Lin Qua;                    ! Level-2 random effect variances

   RT Lin Qua WITH RT Lin Qua;    ! Level-2 random effect covariances

   RT Lin Qua ON reas;            ! Fixed effects of reasoning

Just showing MODEL part, which would be preceded by DATA, 
VARIABLE, and ANALYSIS as usual (estimated using long data)

• Note: R’s lavaan package does have M-SEM capability, 

but it is much more limited than M-SEM in Mplus:

➢ Listwise deletion for any rows (occasions) with missing values

➢ No random slopes!



Sources of Explained Variance by 

Person-Level-2 Time-Invariant Predictors

• Fixed effects of level-2 predictors by themselves:

➢ Level-2 (BP) main effects reduce level-2 random intercept variance

➢ Level-2 (BP) interactions also reduce level-2 random intercept variance

• Fixed effects of cross-level interactions (level-1* level-2):

➢ If a level-1 predictor is random, any cross-level interaction with it 
will reduce its corresponding level-2 BP random slope variance

▪ e.g., if time is random, then pred1*time, pred2*time, and pred1*pred2*time 
can each reduce the level-2 random linear time slope variance

➢ If the level-1 predictor not random, any cross-level interaction 
with it will reduce the level-1 WP residual variance instead

▪ e.g., if time2 does not have a level-2 random slope, then pred1*time2, 
pred2*time2, and pred1*pred2*time2 will reduce the level-1 residual variance 
→ Different quadratic slopes by pred1 and pred2 create better level-1 trajectories, 
thus reducing level-1 residual variance around the trajectories

▪ But always test the random slope first before fitting cross-level interactions!
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Variance Explained… Continued
• Pseudo-R2 is named that way for a reason… piles of variance 

can shift around, such that it can actually become negative

➢ Sometimes is a sign of model mis-specification (but not always)

➢ See Rights & Sterba (2019, 2020) for alternative marginal versions of R2

▪ Ensure positive R2 values, but they don’t quantify R2 for slope variances (boo)

• A simple alternative: Total R2 (Singer & Willett, 2003)

➢ Generate model-predicted ො𝑦𝑡𝑖 from fixed effects only (NOT including 
random effects, so no cheating) and correlate it with observed 𝑦𝑡𝑖 

➢ Then square that correlation → total R2
 (same as in GLM regression)

➢ Total R2  = total reduction in overall outcome variance across levels

➢ Can be “unfair” in models with large unexplained sources of variance 
(i.e., for sampling dimensions you didn’t have predictors for)

• MORAL OF THE STORY: Specify EXACTLY which kind(s) of R2 
you used—give the formula and a reference!!
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Wrapping Up
• Multilevel models are used to quantify and predict the sources 

of variance within different dimensions (“levels”) of sampling

➢ Longitudinal data → Level-1 occasions in Level-2 persons

➢ Clustered data → Level-1 persons in Level-2 clusters

• MLMs differ from GLMs (regression, ANOVA) by including 
both fixed effects AND random effects 

➢ Fixed effects = everyone gets the same term in predicting the outcome

➢ Random effects = everyone gets their own (intercept and time slope)

• Person characteristics (time-invariant level-2 predictors) can 
explain random intercept and slope variances across persons

➢ Why do people start out or change differently?

➢ Time-varying level-1 predictors are next!
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