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Overview
• Organizing principles
 From one to many kinds of variance

• From cross-sectional to longitudinal (growth) models
 Multilevel/hierarchical linear/latent growth curve models

• Models for exploring “heterogeneous populations”
 Latent class/profile/transition/mixture models

• Models for confirming/testing heterogeneous groups
 Heterogeneous variance longitudinal models
 Confirmatory longitudinal mixture models
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The Two Sides of Any Model
• Model for the Means:
 Aka Fixed Effects, Structural Part of Model
 What you are used to caring about for testing hypotheses
 How the expected outcome for a given observation varies as a 

function of values for known predictor variables

• Model for the Variance:
 Aka Random Effects and Residuals, Stochastic Part of Model
 What you are used to making assumptions about instead
 How residuals are distributed and related across observations 

(groups, persons, time, etc.)  these relationships are called 
“dependency” and this is the primary way that longitudinal 
models differ from general linear models (e.g., regression)
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An Empty Between-Person Model 
(i.e., Single-Level)

KU Gerontology Colloquium 4

20

40

60

80

100

120

140

Mean = 89.55
Std. Dev. = 15.114
N = 1,334

yi =  β0 +  ei

Filling in values:
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Adding Within-Person Information… 
(i.e., to become a Multilevel Model)
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Empty +Within-Person Model for yti

Start off with mean of yti as 
“best guess” for any value:

= Grand Mean

= Fixed Intercept

Can make better guess by 
taking advantage of 
repeated observations:

= Person Mean 

 Random Intercept
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Empty +Within-Person Model
yti variance  2 sources:

Between-Person (BP) Variance:
 Differences from GRAND mean

 INTER-Individual Differences

Within-Person (WP) Variance:
 Differences from OWN mean

 INTRA-Individual Differences

 This part is only observable 
through longitudinal data.

Now we have 2 piles of 
variance in yti to predict.
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Hypothetical Longitudinal Data
(black line = sample mean)
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“Error” in a BP Model for the Variance:
Single-Level Model
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eti represents all yti variance

e1i
e2i e3i

e4i
e5i



“Error” in a +WP Model for the Variance:
Multilevel Model
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U0i

U0i = random intercept that represents BP mean variance in yti
eti = residual that represents WP variance in yti

e1i
e2i e3i

e4i e5i

In other words: U0i represents a source of 
constant dependency (covariance) due to 

mean differences in yti across persons



Empty +Within-Person Model
yti variance  2 sources:

Level 2 Random Intercept 
Variance (of U0i, as ૌ܃):

 Between-Person Variance

 Differences from GRAND mean

 INTER-Individual Differences

Level 1 Residual Variance
(of eti, as ો܍):

 Within-Person Variance

 Differences from OWN mean

 INTRA-Individual Differences
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BP and +WP Conditional Models
• Multiple Regression, Between-Person ANOVA: 1 PILE
 yi = (β0 + β1Xi + β2Zi…) + ei

 ei  ONE residual, assumed uncorrelated with equal variance 
across observations (here, just persons)  “BP (all) variation”

• Repeated Measures, Within-Person ANOVA: 2 PILES
 yti = (β0 + β1Xi + β2Zi…) + U0i + eti

 U0i  A random intercept for differences in person means, 
assumed uncorrelated with equal variance across persons 
 “BP (mean) variation”= ૌ܃ is now “leftover” after predictors

 eti  A residual that represents remaining time-to-time variation, 
usually assumed uncorrelated with equal variance across 
observations (now, persons and time)  “WP variation”
= ો܍ is also now “leftover” after predictors

KU Gerontology Colloquium 12



Repeated Measures (RM) ANOVA
• Models with a random intercept to predict a constant 

correlation of outcomes from the same person are also called: 
 Hierarchical linear models, multilevel models, general linear mixed 

models, growth curve models, random coefficient models…

• The key to how these latter models can extend beyond 
traditional RM ANOVA lies in maximum likelihood estimation
(ML in MLM) instead of least squares (LS in ANOVA)
 Options for other types of outcomes: Normal vs. not-normal

 Options for uncooperative participants: Missing or unbalanced data

 Options for extension: What if a random intercept is not enough to 
describe all sources of between-person differences?
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Addressing Uncooperative Participants

• ML allows incomplete and unbalanced responses…
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ID Sex Time Y

100 0 1 5

100 0 2 6

100 0 3 8

100 0 4 12

101 1 1 4

101 1 2 7

101 1 3 .

101 1 4 11

MLM via ML:
uses stacked
(long) data 
structure:

Only occasions 
with missing data 
are excluded
ID 100 uses 4 cases
ID 101 uses 3 cases

RM ANOVA via LS: uses 
multivariate (wide) data 
structure:

People missing any data are 
excluded (data from ID 101 
are not included at all)

ID Sex T1 T2 T3 T4

100 0 5 6 8 12

101 1 4 7 . 11

Time can also be unbalanced across people such that each person can 
have his or her own measurement schedule: Time “0.9” “1.4” “3.5” “4.2”…



Moving Beyond a Random Intercept
• 2 questions about the possible effects of time:

1. Is there an effect of time on average?
 If the line describing the sample means not flat?
 Significant FIXED effect of time

2. Does the average effect of time vary across 
individuals?

 Does each individual need his or her own line?
 Significant RANDOM effect of time
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Fixed and Random Effects of Time
(Note:  The intercept is random in every figure)
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A. No Fixed, No Random B. Yes Fixed, No Random

C. No Fixed, Yes Random D. Yes Fixed, Yes Random



A “Random Linear Time” Model
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yti = (γ00 + U0i) +  (γ10+ U1i)(Timeti) +  eti

U0i = -4

γ00 =10

γ10 = 6
u1i = +2

eti = -1

Fixed
Intercept

Random 
Intercept 
Deviation

Fixed
Slope

Random 
Slope 
Deviation

error for 
person i 
at time t

6 Parameters:

2 Fixed Effects:
γ00 Intercept, γ10 Slope

2 Random Effects 
Variances:
U0i Intercept Variance 
ൌ ૌ܃
U1i Slope Variance ൌ
ૌ܃
Int-Slope Covariance ൌ
ૌ܃ 

1 eti Residual Variance 
= ો܍



MLM “Handles” Dependency
• Where does each kind of person dependency go? Into a new 

random effects variance component (or “pile” of variance):

Residual
Variance

(ો܍)

Residual
Variance

(ો܍)

Residual
Variance

(ો܍)

BP Int
Variance

(ૌ܃)

BP Slope
Variance

(ૌ܃)

Level 2, Between-
Person Differences

Level 1, Within-
Person Differences

BP Int
Variance

(ૌ܃)

01U covariance
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Piles of Variance (as Random Effects)
• By adding a random slope, we carve up our total variance into 3 piles:

 BP (error) variance around intercept

 BP (error) variance around slope

 WP (error) residual variance

• But making piles does NOT make error variance go away…
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Level 2 (two sources of) 
Between-Person Variation:
gets accounted for by 
person-level predictors

Level 1 (one source of) 
Within-Person Variation:
gets accounted for by 
time-level predictors

Residual
Variance

(ો܍)

BP Slope
Variance

(ૌ܃)

BP Int
Variance

(ૌ܃)

FIXED effects make variance 
go away (explain variance).

RANDOM effects just make 
a new pile of variance.

These 2 piles are just 1 pile of “error 
variance” in Univariate RM ANOVA

ૌ
		܃

covariance



Options for Longitudinal Models
• Although models and software are separate, longitudinal 

data can be analyzed via multiple analytic frameworks:
 “Multilevel/Mixed Models”

 Dependency over time, persons, groups, etc. are modeled via random 
effects (multivariate  univariate through “levels” of stacked/long data)

 Builds on GLM, generalizes more easily to additional levels of analysis 
and crossed sampling (e.g., if people change groups over time)

 “Structural Equation Models”
 Dependency over time only is modeled via latent variables 

(single-level analysis using multivariate/wide data)
 Generalizes easier to broader analysis of latent constructs, mediation, 

and multivariate multilevel models in general (aka, “Multilevel SEM”)

 Because random effects and latent variables are the same thing, 
many longitudinal models can be specified/estimated either way
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Random Effects as Latent Variables

• BP model: eti-only model for the variance
 yti = γ00 + eti

 After controlling for the fixed intercept, 
residuals are assumed uncorrelated

Int

Y1 Y2 Y3 Y4

e1 e2 e3 e4

1 1 1 1

Int Var
ૌ܃ ൌ 

Mean of the intercept factor
= fixed intercept γ00

Loadings of intercept factor = 1 
(all occasions contribute equally)

Item intercepts = 0 (always)

Variance of intercept factor
= 0 so far

Residual variance (e) is assumed to 
be equal across occasions= = =
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Random Effects as Latent Variables

• +WP model: U0i + eti model for the variance
 yti = γ00 + U0i + eti

 After controlling for the random intercept, 
residuals are assumed uncorrelated
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Int

Y1 Y2 Y3 Y4

e1 e2 e3 e4

1 1 1 1

Int Var 
ૌ܃ =?

Mean of the intercept factor
= fixed intercept γ00

Loadings of intercept factor= 1 
(all occasions contribute equally)

Variance of intercept factor
= random intercept variance

Residual variance (e) is assumed to 
be equal across occasions

= = =



Random Effects as Latent Variables

• Fixed linear time, random intercept model:
 yti = γ00 + (γ10Timeti) + U0i + eti

 After controlling for the fixed linear slope and random 
intercept, residuals are assumed uncorrelated
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Int

Y1 Y2 Y3 Y4

e1 e2 e3 e4

1
1 1

1

Int Var 
ૌ܃ =?

Mean of the linear slope factor
= fixed linear slope γ10

Loadings of linear slope factor
= occasions (keep real time)

Variance of linear slope factor
= 0

Linear
Slope0

1 2 3

Linear
Slope Var 
ૌ܃ =0

= = =



Random Effects as Latent Variables

• Random linear time model:
 yti = γ00 + (γ10Timeti) + U0i + (U1iTimeti) + eti

 After controlling for the random linear slope and random 
intercept, residuals are assumed uncorrelated
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Int

Y1 Y2 Y3 Y4

e1 e2 e3 e4

1
1 1

1

Int Var 
ૌ܃ =?

Mean of the linear slope factor
= fixed linear slope γ10

Loadings of linear slope factor
= occasions (keep real time)

Variance of linear slope factor
= random slope variance

Linear
Slope0

1 2 3

Linear
Slope Var 
ૌ܃ =?

= = =

τU01



Intermediate Summary
• Longitudinal models use random effects/latent variables to 

quantify and predict sources of variability:
 Between persons (BP) in intercept and (aspects of) change over time

 Why do people start at different places?
 Why do people change at different rates?

 Within persons (WP) after controlling for individual change
 Why are you off your line today?

• Individuals are conceptualized as continuously varying from 
one another in each of the between-person dimensions
 If so, then one set of variances describes the entire sample

 What if that’s not the case?

 Enter the “heterogeneous population model” variants…
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Models for Finding “Hidden” Groups
• Related to traditional cluster analysis (using least squares)

 ML variants were popularized by Lazarsfeld and Henry (1968)

• Instead of continuous individual variation, models postulate 
existence of qualitatively different latent (hidden) subgroups

• More generally known as “finite mixture models,” specific 
model names depend on type of outcomes to be classified:
 Categorical, cross-sectional outcomes? “Latent class analysis”

 Continuous, cross-sectional outcomes? “Latent profile analysis”

 Change in group status over time? “Latent transition analysis” 

 Change in longitudinal outcomes over time? “Growth mixture models”

 All have similar limitations, but we’ll focus on growth mixture models
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Growth Mixture Models (GMM)

GMMs are advertised being 
able to detect differing latent 
trajectories across people, 
but as used in practice, they 
have significant limitations:

1. Completely exploratory

2. Sensitive to non-normality

3. Distort individual variability

4. Classes can only predict 
existing random effects

5. Classes are not needed to 
examine prediction
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Int

Y1 Y2 Y3 Y4

e1 e2 e3 e4

1
1 1

1

Int Var 
ૌ܃ =?

Linear
Slope0

1 2 3

Linear
Slope Var 
ૌ܃ =?

= = =

τU01

Latent
Class

• Latent Class = categorical 
unobserved variable that 
predicts probabilistic 
membership in ܿ classes

Left: typical depiction of a GMM



1. GMMs are exploratory
• How many classes?   *????*
 Programs provide relative goodness of fit info, but simulation 

results suggest these are problematic in practice
 Information criteria (AIC, BIC) are inadequate for determining # classes
 Entropy based on classification is only valid if the model fits…

• What are the classes? How should they differ?  *????*
 Nature of the classes is determined entirely by the program
 Get probability of membership to each class for each person, 

but this will likely change after predicting class membership
 Should NEVER use the most likely class as an observed variable! 
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2. GMMs predict non-normality

• A lesser-known but statistically indistinguishable purpose 
of GMMs is to approximate a non-normal overall distribution
 So if you fit a GMM erroneously assuming conditional normality, 

you WILL find two or more latent classes for that reason alone
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Figure 2 from Bauer & Curran 
(2003, Psychological Methods)

The overall non-normal 
distribution in sample…

… is described by a 
mixture of two normal 
distributions instead



3. GMMs distort individual variability
• What about individual differences within classes?

Well, that depends on the program, too:
 SAS PROC TRAJ: What variability?

 Mplus: Variability is equal across classes, which is likely to be logically 
impossible… (but freeing this constraint leads to estimation problems)
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For example: The “high 
stable” and “low stable” 
groups cannot possibly 
have the same intercept 
and slope variability as 

the other groups…
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4. GMMs can only predict 
model-specified random effects

• Latent classes serve to categorize 
existing intercepts and slopes…
 For example, given the specification 

of a random linear time slope model, 
latent groups may only differ in level 
and kinds of linear change… 
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… just as people already do in the 
random linear growth model!

Latent classes just get in the way.
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5. GMMs are not needed 
to examine prediction

• After fitting a GMM, it is often of interest to then 
predict class membership from covariates…
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5. GMMs are not needed 
to examine prediction

• …but the covariates should directly predict the 
random intercept and slopes themselves instead!
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So what should we do instead?
• Before fitting a typical GMMs, specify the most 

appropriate conditional outcome distribution
 Account for floor/ceiling effects of observed measures

• Determine if groups are really necessary to answer your 
questions… for prediction of differences, probably not!

• If differences due to known predictors are of interest, 
consider location-scale longitudinal models instead 
(i.e., heterogeneous variance models; see Don Hedeker’s work)
 Allows for prediction of mean differences in intercepts and slopes, 

as well as prediction of differences in their amount of variability
 Also very useful to intra-individual variability (IIV) designs
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So what should we do instead?
• Specify a confirmatory, hypothesis-driven model that 

defines the different group trajectories a priori
• Most useful given qualitatively different kinds of change
 Fit different model of change within each group
 Constrain parameters as needed to ensure order/interpretability
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Conclusions
• Longitudinal models with random effects/latent variables 

expand on traditional RM ANOVA via ML:
 Multiple sources of between-person differences 

(from random intercepts only to random slopes for change)
 Individuals vary continuously from another in growth terms

• Typical uses of growth mixture models try to describe 
these continuous differences via latent groups instead
 But are completely exploratory, sensitive to violations of 

distributional assumptions, inflexible with respect to forms of 
change, and get in the way of predicting individual differences

 Confirmatory models may remedy these problems but are 
seldom used in longitudinal applications
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