
Describing Within-Person  

Change over Time 

Lecture 2 1 

• Topics: 

 Multilevel modeling notation and terminology 

 Fixed and random effects of linear time 

 Predicted variances and covariances from random slopes 

 How random effects model dependency 

 Describing nonlinear change: polynomial models 

 Describing nonlinear change: other alternatives 



Modeling Change vs. Fluctuation 

Model for the Means: 

• WP Change   describe pattern of average change (over “time”) 

• WP Fluctuation  *may* not need anything (if no systematic change) 

 

Model for the Variance: 

• WP Change   describe individual differences in change (random effects)
              this allows variances and covariances to differ over time 

• WP Fluctuation  describe pattern of variances and covariances over time 

Lecture 2 2     

Time 
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Time 

Pure WP Fluctuation Our focus for today 

using random 

effects models 

Uses alternative 

covariance structure 

models instead 



The Big Picture of Longitudinal Data:  

Models for the Means 
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• What kind of change occurs on average over “time”? 

There are two baseline models to consider: 

 “Empty”  only a fixed intercept (predicts no change) 

 “Saturated”  all occasion mean differences from time 0 

                        (ANOVA model that uses # fixed effects= n) 

           *** may not be possible in unbalanced data 

Empty Model: 
Predicts NO 
change over time  

1 Fixed Effect 

Saturated Means: 

Reproduces mean 

at each occasion 

# Fixed Effects  

=  # Occasions 

Name… that… Trajectory! 

In-between options: 

polynomial slopes, 

piecewise slopes, 

nonlinear slopes… 



The Big Picture of Longitudinal Data:  

Models for the Variance 
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Unstructured (UN) Compound Symmetry (CS) 

Name ...that … Structure! 

Most useful 

model: likely 

somewhere 

in between! 

Univariate 

RM ANOVA 

Multivariate  

RM ANOVA 

What is the pattern of variance and covariance over time?  
 

CS and UN are just two of the many, many options available  

within MLM, including random effects models (for change)  

and alternative covariance structure models (for fluctuation). 
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Empty +Within-Person Model 

yti variance  2 sources: 
 

Level 2 Random Intercept 

Variance (of U0i, as 𝛕𝐔
𝟐

𝟎
): 

 Between-Person Variance 

 Differences from GRAND mean 

 INTER-Individual Differences 

 

Level 1 Residual Variance  

(of eti, as 𝛔𝐞
𝟐): 

 Within-Person Variance 

 Differences from OWN mean 

 INTRA-Individual Differences 
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Empty Means, Random Intercept Model 

GLM Empty Model: 

• yi = β0 + ei 
 

MLM Empty Model: 

• Level 1:   

    yti = β0i + eti 

• Level 2:   

    β0i = γ00 + U0i 

 

3 Parameters:  
Model for the Means (1):  

• Fixed Intercept γ00  

Model for the Variance (2): 

• Level-1 Variance of eti  𝛔𝐞
𝟐 

• Level-2 Variance of U0i  𝛕𝐔
𝟐

𝟎
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Fixed Intercept  

= mean of means 

(=mean because 

no predictors yet)  

Random Intercept  

= individual-specific 

deviation from 

predicted intercept 

Residual = time-specific deviation  

from individual’s predicted outcome  

Composite equation:   

yti =  (γ00 + U0i ) + eti 



Augmenting the empty means,  

random intercept model with time 

• 2 questions about the possible effects of time: 

 

1. Is there an effect of time on average? 

 Is the line describing the sample means not flat? 

 Significant FIXED effect of time 

 

2. Does the average effect of time vary across 

individuals? 

 Does each individual need his or her own line? 

 Significant RANDOM effect of time 
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Fixed and Random Effects of Time 
(Note:  The intercept is random in every figure) 
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A. No Fixed, No Random B. Yes Fixed, No Random 

C. No Fixed, Yes Random D. Yes Fixed, Yes Random 



B. Fixed Linear Time, Random Intercept Model  
(4 parameters: effect of time is FIXED only) 

 

Multilevel Model 

Level 1: yti = β0i + β1i(Timeti) +  eti 

      

  

Level 2:  β0i = γ00 + U0i  β1i = γ10  
 

 

Composite Model 

yti = (γ00 + U0i) + (γ10)(Timeti) + eti 
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Fixed Intercept  

= predicted mean 

outcome at time 0 

Fixed Linear Time Slope 

= predicted mean rate 

of change per unit time 

Random Intercept = individual-specific deviation 

from fixed intercept  estimated variance of 𝛕𝐔
𝟐

𝟎
 

Residual = time-specific deviation from individual’s 

predicted outcome  estimated variance of 𝛔𝐞
𝟐 

β0i β1i 

Because the effect of 

time is fixed, everyone is 

predicted to change at 

exactly the same rate. 



Explained Variance from Fixed Linear Time 

• Most common measure of effect size in MLM is Pseudo-R2 

 Is supposed to be variance accounted for by predictors 

 Multiple piles of variance mean multiple possible values of pseudo R2
  

(can be calculated per variance component or per model level) 

 A fixed linear effect of time will reduce level-1 residual variance σe
2 in R 

 By how much is the residual variance σe
2 reduced?  

 

 

 If time varies between persons, then level-2 random intercept variance 

τU
2

0
 in G may also be reduced: 

 

 

 But you are likely to see a (net) INCREASE in τU
2

0
 instead…. Here’s why: 
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2 fewer more
e

fewer

residual variance  - residual variance
Pseudo R  = 

residual variance

2 fewer more
U0

fewer

random intercept variance  - random intercept variance
Pseudo R  = 

random intercept variance



Increases in Random Intercept Variance 

• Level-2 random intercept variance τU
2

0
 will often increase  

as a consequence of reducing level-1 residual variance σe
2  

• Observed level-2 τU
2

0
 is NOT just between-person variance 

 Also has a small part of within-person variance (level-1 σe
2), or: 

Observed 𝛕𝐔
𝟐

𝟎
 = True 𝛕𝐔

𝟐
𝟎
 + (𝛔𝐞

𝟐/n) 

 As n occasions increases, bias of level-1 σe
2 is minimized 

 Likelihood-based estimates of “true” τU
2

0
 use (σe

2/n) as correction factor: 

True 𝛕𝐔
𝟐

𝟎
 = Observed 𝛕𝐔

𝟐
𝟎
 − (𝛔𝐞

𝟐/n) 

• For example: observed level-2 τU
2

0
=4.65, level-1 σe

2=7.06, n=4 

 True τU
2

0
= 4.65 −(7.60/4) = 2.88 in empty means model 

 Add fixed linear time slope  reduce σe
2 from 7.06 to 2.17 (R2 = .69) 

 But now True τU
2

0
= 4.65 −(2.17/4) = 4.10 in fixed linear time model 
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Variance Accounted for… For Real 

• Pseudo-R2 is named that way for a reason… piles of variance 
can shift around, such that it can actually be negative 

 Sometimes a sign of model mis-specification 

 Hard to explain to readers when it happens! 

 

• A simpler alternative: Total R2 

 Generate model-predicted y’s from fixed effects only (NOT including 
random effects) and correlate with observed y’s  

 Then square correlation  total R2 

 Total R2  = total reduction in overall variance of y across levels 

 Can be “unfair” in models with large unexplained sources of variance 

 

• Always specify EXACTLY which kind of pseudo-R2 you used—
give the formula and the reference! 
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C or D: Random Linear Time Model (6 parms) 

Multilevel Model 

Level 1: yti = β0i + β1i(Timeti) +  eti 

      

  

Level 2:  β0i = γ00 + U0i  β1i = γ10 + U1i 
 

 

 

Composite Model 

yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti 
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Fixed Intercept  

= predicted mean 

outcome at time 0 

Fixed Linear Time Slope 

= predicted mean rate 

of change per unit time 

Random Intercept = 

individual-specific deviation 

from fixed intercept at time 0 

 estimated variance of 𝛕𝐔
𝟐

𝟎
 

Random Linear Time Slope= 

individual-specific deviation 

from fixed linear time slope 

 estimated variance of 𝛕𝐔
𝟐

𝟏
 

Residual = time-specific deviation from individual’s 

predicted outcome  estimated variance of 𝛔𝐞
𝟐 

β0i β1i 

Also has an 

estimated 

covariance 

of random 

intercepts 

and slopes  

of 𝛕𝐔𝟎𝟏
 



Random Linear Time Model 
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yti   = (γ00 + U0i)  +  (γ10+ U1i)(Timeti) +  eti 

U0i = -4 

γ00 =10 

γ10 = 6 

u1i = +2 

eti = -1 

Fixed 

Intercept 
Random 

Intercept 

Deviation 

Fixed 

Slope 

Random 

Slope 

Deviation 

error for 

person i 

at time t 

6 Parameters: 

2 Fixed Effects: 

γ00 Intercept, γ10 Slope 

2 Random Effects 

Variances: 

U0i Intercept Variance 

= 𝛕𝐔
𝟐

𝟎
   

U1i Slope Variance 

= 𝛕𝐔
𝟐

𝟏
        

Int-Slope Covariance 

= 𝛕𝐔𝟎𝟏
  

1 eti Residual Variance 

= 𝛔𝐞
𝟐 



Quantification of Random Effects Variances 

• We can test if a random effect variance is significant, but the 

variance estimates are not likely to have inherent meaning 

 e.g., “I have a significant fixed linear time effect of γ10 = 1.72, so people 

increase by 1.72/time on average. I also have a significant random linear 

time slope variance of 𝛕𝐔
𝟐

𝟏
= 0.91, so people need their own slopes 

(people change differently). But how much is a variance of 0.91, really?” 

• 95% Random Effects Confidence Intervals can tell you 

 Can be calculated for each effect that is random in your model 

 Provide range around the fixed effect within which 95% of your sample 

is predicted to fall, based on your random effect variance:  

 

 

 So although people improve on average, individual slopes are predicted 

to range from −0.15 to 3.59 (so some people may actually decline) 
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 

   
1

2
10 U

Random Effect 95% CI = fixed effect ± 1.96* Random Variance

Linear Time Slope 95% CI = γ  ± 1.96* τ   1.72  ± 1.96* 0.91  = 0.15 to 3.59     



Describing Within-Person  

Change over Time 
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• Topics: 

 Multilevel modeling notation and terminology 

 Fixed and random effects of linear time 

 Predicted variances and covariances from random slopes 

 How random effects model dependency 

 Describing nonlinear change: polynomial models 

 Describing nonlinear change: other alternatives 



Random Intercept Models Imply… 
• People differ from each other systematically in only ONE way—

in intercept (U0i), which implies ONE kind of BP variance, which 
translates to ONE source of person dependency (covariance or 
correlation in the outcomes from the same person) 

• If so, after controlling for BP intercept differences (by estimating the 
variance of U0i as τU

2
0
in the G matrix), the eti residuals (whose 

variance and covariance are estimated in the R matrix) should be 
uncorrelated with homogeneous variance across time, as shown: 
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Level-2  

G matrix: 

RANDOM 

TYPE=UN 

Level-1 R matrix: 

REPEATED TYPE=VC 

G and R matrices combine to create 

a total V matrix with CS pattern 



Matrices in a Random Intercept Model 
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Total predicted data matrix is called V matrix, created from  

the G [TYPE=UN] and R [TYPE=VC] matrices as follows: 

1 ICC ICC ICC

ICC 1 ICC ICC

ICC ICC 1 ICC

ICC ICC ICC 1
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VCORR then provides the intraclass 

correlation, calculated as:  

ICC = 𝛕𝐔
𝟐

𝟎
 / (𝛕𝐔

𝟐
𝟎
 + 𝛔𝐞

𝟐) 

assumes a 

constant 

correlation 

over time 

For any random effects model:  

G matrix = BP variances/covariances 

R matrix = WP variances/covariances 

Z matrix = values of predictors with 

random effects (just intercept here), 

which can vary per person 

V matrix = Total variance/covariance 



Random Linear Time Models Imply: 
• People differ from each other systematically in TWO ways—in 

intercept (U0i) and slope (U1i), which implies TWO kinds of BP 
variance, which translates to TWO sources of person dependency 
(covariance or correlation in the outcomes from the same person) 

• If so, after controlling for both BP intercept and slope differences  
(by estimating the τU

2
0
 and τU

2
1

 variances in the G matrix), the eti 

residuals (whose variance and covariance are estimated in the R 
matrix) should be uncorrelated with homogeneous variance 
across time, as shown: 
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Level-2  

G matrix: 

RANDOM 

TYPE=UN 

Level-1 R matrix: 

REPEATED TYPE=VC G and R combine to create a total 

V matrix whose per-person 

structure depends on the specific 

time occasions each person has 

(very flexible for unbalanced time) 
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Random Linear Time Model  
(6 parameters: effect of time is now RANDOM) 

• How the model predicts each element of the V matrix: 

Level 1:  yti = β0i + β1i(Timeti) + eti    

Level 2:  β0i = γ00 + U0i   

                 β1i = γ10 + U0i 

Composite Model: yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti 
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Random Linear Time Model  
(6 parameters: effect of time is now RANDOM) 

• How the model predicts each element of the V matrix: 

Level 1:  yti = β0i + β1i(Timeti) + eti    

Level 2:  β0i = γ00 + U0i   

                 β1i = γ10 + U1i 

Composite Model: yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti 
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Predicted Time-Specific Covariances (Time A with Time B): 



Random Linear Time Model  
(6 parameters: effect of time is now RANDOM) 

• Scalar “mixed” model equation per person: 
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Xi = n x k values of predictors with 

fixed effects, so can differ per person  

(k = 2: intercept, linear time) 

γ = k x 1 estimated fixed effects,  

so will be the same for all persons 

(γ00 = intercept, γ10 = linear time) 

Zi = n x u values of predictors with 

random effects, so can differ per person 

(u = 2: intercept, linear time) 

Ui = u x 2 estimated individual random 

effects, so can differ per person 

Ei = n x n time-specific residuals,  

so can differ per person 
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Random Linear Time Model  
(6 parameters: effect of time is now RANDOM) 

• Predicted total variances and covariances per person: 
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Zi = n x u values of predictors with 

random effects, so can differ per 

person (u = 2: int., time slope) 

Zi
T = u x n values of predictors with 

random effects (just Zi transposed) 

Gi = u x u estimated random 

effects variances and covariances, 

so will be the same for all persons 

(τU
2

0
 = int. var., τU

2
1

 = slope var.) 

Ri = n x n time-specific residual 

variances and covariances, so will 

be same for all persons  

(here, just diagonal σe
2) 
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• V for two persons with unbalanced time observations: 

 

 

 

 

 

• The giant combined V matrix across persons is how the 
multilevel or mixed model is actually estimated 

• Known as “block diagonal” structure  predictions are 
given for each person, but 0’s are given for the elements 
that describe relationships between persons (because 
persons are supposed to be independent here!) 

Building V across persons:  
Random Linear Time Model 
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• V for two persons also with different n per person: 

 

 

 

 

 

• The “block diagonal” does not need to be the same size 
or contain the same time observations per person… 

• R matrix can also include non-0 covariance or differential 
residual variance across time (as in ACS models), although 
the models based on the idea of a “lag” won’t work for 
unbalanced or unequal-interval time 

Building V across persons:  
Random Linear Time Model 
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G, R, and V:  The Take-Home Point 

• The partitioning of variance into piles… 

 Level 2 = BP  G matrix of random effects variances/covariances 

 Level 1 = WP  R matrix of residual variances/covariances 

 G and R combine via Z to create V matrix of total variances/covariances 

 Many flexible options that allows the variances and covariances to vary 
in a time-dependent way that better matches the actual data 

 Can allow differing variance and covariance due to other predictors, too 
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Random 

effects models 

use G and R  

to predict 

something  

in-between! 



How MLM “Handles” Dependency 

• Common description of the purpose of MLM is that it 
“addresses” or “handles” correlated (dependent) data… 

• But where does this correlation come from?  
3 places (here, an example with health as an outcome): 

 

1. Mean differences across persons 

 Some people are just healthier than others (at every time point) 

 This is what a random intercept is for 

 

2. Differences in effects of predictors across persons  

 Does time (or stress) affect health more in some persons than others? 

 This is what random slopes are for 

 

3. Non-constant within-person correlation for unknown reasons 

 Occasions closer together may just be more related  

 This is what alternative covariance structure models are for 
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MLM “Handles” Dependency 

• Where does each kind of person dependency go? Into a new 

random effects variance component (or “pile” of variance): 

Residual 

Variance 

(𝛔𝐞
𝟐) 

Residual 

Variance 

 (𝛔𝐞
𝟐) 

Residual 

Variance 

 (𝛔𝐞
𝟐) 

BP Int 

Variance 

 (𝛕𝐔
𝟐

𝟎
) 

BP Slope 

Variance 

 (𝛕𝐔
𝟐

𝟏
) 

Level 2, Between-

Person Differences 

Level 1, Within-

Person Differences 

BP Int 

Variance 

 (𝛕𝐔
𝟐

𝟎
) 

01U covariance 
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Piles of Variance 

• By adding a random slope, we carve up our total variance into 3 piles: 

 BP (error) variance around intercept 

 BP (error) variance around slope 

 WP (error) residual variance 

 

• But making piles does NOT make error variance go away… 
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Level 2 (two sources of)  

Between-Person Variation: 

gets accounted for by 

person-level predictors 

Level 1 (one source of)  

Within-Person Variation: 

gets accounted for by  

time-level predictors 

Residual 

Variance 

 (𝛔𝐞
𝟐) 

BP Slope 

Variance 

 (𝛕𝐔
𝟐

𝟏
) 

BP Int 

Variance 

 (𝛕𝐔
𝟐

𝟎
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FIXED effects make variance 

go away (explain variance). 

 

RANDOM effects just make 

a new pile of variance. 

These 2 piles are just 1 pile of “error 

variance” in Univariate RM ANOVA 

𝛕
𝐔𝟎𝟏  

covariance 



Fixed vs. Random Effects of Persons 

• Person dependency: via fixed effects in the model for the 

means or via random effects in the model for the variance? 

 Individual intercept differences can be included as: 

 N-1 person dummy code fixed main effects OR 1 random variance for U0i  

 Individual time slope differences can be included as: 

 N-1*time person dummy code interactions  OR 1 random variance for U1i 

 Either approach would appropriately control for dependency (fixed 

effects are used in some programs that ‘control’ SEs for sampling) 

• Two important advantages of random effects: 

 Quantification: Direct measure of how much of the outcome variance is 

due to person differences (in intercept or in effects of predictors) 

 Prediction: Person differences (main effects and effects of time) then 

become predictable quantities – this can’t happen using fixed effects 

 Summary: Random effects give you predictable control of dependency 
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Describing Within-Person  

Change over Time 
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• Topics: 

 Multilevel modeling notation and terminology 

 Fixed and random effects of linear time 

 Predicted variances and covariances from random slopes 

 How random effects model dependency 

 Describing nonlinear change: polynomial models 

 Describing nonlinear change: other alternatives 



Summary: Modeling Means and Variances 

• We have two tasks in describing within-person change: 

 

• Choose a Model for the Means 

 What kind of change in the outcome do we have on average? 

 What kind and how many fixed effects do we need to predict 

that mean change as parsimoniously but accurately as possible? 

 

• Choose a Model for the Variance 

 What pattern do the variances and covariances of the outcome 

show over time because of individual differences in change? 

 What kind and how many random effects do we need to predict 

that pattern as parsimoniously but accurately as possible? 
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The Big Picture of Longitudinal Data: 

Model for the Means (Fixed Effects) 

• What kind of change occurs on average over “time”? 
 

 What is the most appropriate metric of time? 

 Time in study (with predictors for BP differences in time)? 

 Time since birth (age)? Time to event (time since diagnosis)? 

 Measurement occasions need not be the same across persons or 

equally spaced (code time as exactly as possible) 

 

 What kind of theoretical process generated the observed 

trajectories, and thus what kind of model do we need? 

 Linear or nonlinear? Continuous or discontinuous? Does change 

keep happening or does it eventually stop? 

 Many options: polynomial, piecewise, and nonlinear families 
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Name that trajectory… Polynomial? 

• Predict mean change with polynomial fixed effects of time:  

 Linear        constant amount of change (up or down) 

 Quadratic  change in linear rate of change (acceleration/deceleration)  

 Cubic        change in acceleration/deceleration of linear rate of change 
                     (known in physics as jerk, surge, or jolt) 

 Terms work together to describe curved trajectories 

 

• Can have polynomial fixed time slopes UP TO: n – 1* 

 3 occasions = 2nd order (time2)= Fixed Quadratic Time or less 

 4 occasions = 3rd order (time3) = Fixed Cubic Time or less 

 

• Interpretable polynomials past cubic are rarely seen in practice  

 

*n−1 rule can be broken in unbalanced data (but cautiously) 
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Interpreting Quadratic Fixed Effects 

A Quadratic time effect is a two-way interaction: time*time 
 

• Fixed quadratic time = “half the rate of acceleration/deceleration” 

• So to interpret it as how the linear time effect changes per unit time,  

you must multiply the quadratic coefficient by 2 

 

• If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3? 

 Instantaneous linear rate of Δ at time 0 = 4.0, at time 1 = 4.6… 

 

• The “twice” part comes from taking the derivatives of the function: 
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Interpreting Quadratic Fixed Effects 

A Quadratic time effect is a two-way interaction: time*time 

• Fixed quadratic time = “half the rate of acceleration/deceleration” 

• So to interpret it as how the linear time effect changes per unit time,  

you must multiply the quadratic coefficient by 2 

• If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3? 

 Instantaneous linear rate of Δ at time 0 = 4.0, at time 1 = 4.6… 

 

• The “twice” part also comes from  

what you remember about the 

role of interactions with respect  

to their constituent main effects: 

 

• Because time is interacting with itself, there is no second main effect in the 

model for the interaction to modify as usual. So the quadratic time effect 

gets applied twice to the one (main) linear effect of time. 
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Examples of Fixed Quadratic Time Effects 
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Conditionality of Polynomial Fixed Time Effects 

• We’ve seen how main effects become conditional simple 
effects once they are part of an interaction 

• The same is true for polynomial fixed effects of time: 

 Fixed Intercept Only? 

 Fixed Intercept = predicted mean of Y for any occasion (= grand mean) 

 Add Fixed Linear Time? 

 Fixed Intercept = now predicted mean of Y from linear time at time=0 
(would be different if time was centered elsewhere) 

 Fixed Linear Time = mean linear rate of change across all occasions  
(would be the same if time was centered elsewhere) 

 Add Fixed Quadratic Time? 

 Fixed Intercept = still predicted mean of Y at time=0 (but from quadratic model) 
(would be different if time was centered elsewhere) 

 Fixed Linear Time = now mean linear rate of change at time=0 
(would be different if time was centered elsewhere) 

 Fixed Quadratic Time = half the mean rate of acceleration or deceleration of 
change across all occasions (i.e., the linear slope changes the same over time) 
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Polynomial Fixed vs. Random Time Effects 

• Polynomial fixed effects combine to describe mean 
trajectory over time (can have fixed slopes up to n – 1): 

 Fixed Intercept = Predicted mean level (at time 0) 

 Fixed Linear Time = Mean linear rate of change (at time 0) 

 Fixed Quadratic Time = Half of mean acceleration/deceleration in linear 
rate of change (2*quad is how the linear time slope changes per unit 
time if quadratic is highest order fixed effect of time) 
 

• Polynomial random effects (individual deviations from the 
fixed effect) describe individual differences in those change 
parameters (can have random slopes up to n – 2): 

 Random Intercept = BP variance in level (at time 0) 

 Random Linear Time = BP variance in linear time slope (at time 0) 

 Random Quadratic Time = BP variance in half the rate of 
acceleration/deceleration of linear time slope  
(across all time if quadratic is highest-order random effect of time) 
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Random Quadratic Time Model 

Level 1:  yti   =   β0i +  β1iTimeti  + β2iTimeti
2 +  eti 

 

Level 2 Equations (one per β): 

 β0i  =  γ00  +      U0i  
 

 

  

 β1i  =  γ10  +      U1i 

 

 

 

 β2i  =  γ20  +      U2i  
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Fixed Effect Subscripts: 

1st = which Level 1 term 

2nd = which Level 2 term 

Number of Possible Slopes 

by Number of Occasions (n): 

# Fixed slopes = n – 1 

# Random slopes = n – 2 

Need n = 4 occasions to fit 

random quadratic time model 

Intercept 

for person i 

Linear Slope 

for person i 

Quad Slope 

for person i 

Fixed (mean) 

Intercept 

Fixed (mean) 

Linear Slope  

 

Fixed (mean) 

Quad Slope  

 

Random 

(Deviation) 

Intercept 

Random 

(Deviation) 

Linear Slope 

Random 

(Deviation) 

Quad Slope 



Conditionality of Polynomial Random Effects 

• We saw previously that lower-order fixed effects of time are 
conditional on higher-order polynomial fixed effects of time 

• The same is true for polynomial random effects of time: 

 Random Intercept Only? 

 Random Intercept = BP variance for any occasion in predicted mean Y  
(= variance in grand mean because individual lines are parallel) 

 Add Random Linear Time? 

 Random Intercept = now BP variance at time=0 in predicted mean Y 
(would be different if time was centered elsewhere) 

 Random Linear Time = BP variance across all occasions in linear rate of change  
(would be the same if time was centered elsewhere) 

 Add Random Quadratic Time? 

 Random Intercept = still BP variance at time=0 in predicted mean Y  

 Random Linear Time = now BP variance at time=0 in linear rate of change  
(would be different if time was centered elsewhere) 

 Random Quadratic Time = BP variance across all occasions in half of accel/decel 
of change (would be the same if time was centered elsewhere) 
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Random Effects Allowed by #Occasions 
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Rules for Polynomial Models  
(and in general for fixed and random effects) 

• On the same side of the model (means or variances side), lower-order 
effects stay in EVEN IF NONSIGNIFICANT (for correct interpretation) 

 e.g., Significant fixed quadratic? Keep the fixed linear 

 e.g., Significant random quadratic? Keep the random linear 
 

• Also remember—you can have a significant random effect EVEN IF the 
corresponding fixed effect is not significant (keep it anyway): 

 e.g., Fixed linear not significant, but random linear is significant? 
 No linear change on average, but significant individual differences in change 

 

• Language: A random effect supersedes a fixed effect: 

 If Fixed = intercept, linear, quad; Random = intercept, linear, quad? 

 Call it a “Random quadratic model” (implies everything beneath those terms) 

 If Fixed = intercept, linear, quad; Random = intercept, linear? 

 Call it a “Fixed quadratic, random linear model" (distinguishes no random quad) 

 

• Intercept-slope correlation depends largely on centering of time… 
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Example Sequence for Testing Fixed  

and Random Polynomial Effects of Time  

Build up fixed and random effects simultaneously: 

1. Empty Means, Random Intercept  to calculate ICC 

2. Fixed Linear, Random Intercept  check fixed linear p-value 

3. Random Linear  check −2ΔLL(df≈2) for random linear variance 

4. Fixed Quadratic, Random Linear  check fixed quadratic p-value 

5. Random Quadratic  check −2ΔLL(df≈3) for random quadratic variance 

6. ……. 
 

*** In general: Can use REML for all models, so long as you: 

 Test significance of new fixed effects by their p-values 

 Test significance of new random effects in separate step by −2ΔLL 

 Also see if AIC and BIC are smaller when adding random effects 
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Likelihood-Based Model Comparisons for Deciding 

Between Alternative Models for the Variance (again) 

• Relative model fit is indexed by a “deviance” statistic  −2LL  

 Log of likelihood (LL = total data height) of observing the data given model 
parameters; −2*LL so that the differences between model LL values follow ~χ2 

 −2LL is a measure of BADNESS of fit, so smaller values = better models 

 Two flavors (labeled as −2 log likelihood in SAS, SPSS, but given as LL instead in 
STATA and Mplus): Maximum Likelihood (ML) or Restricted (Residual) ML (REML) 

 

• Nested models are compared using their deviance values:  
−2ΔLL Test (i.e., Likelihood Ratio Test, Deviance Difference Test) 

1. Calculate −2ΔLL:   (−2LLfewer)  –  (−2LLmore) 

2. Calculate  Δdf:  (# Parmsmore)  – (# Parmsfewer) 

3. Compare −2ΔLL to χ2 distribution with df = Δdf 
CHIDIST in excel will give exact p-values for the difference test; so will STATA 
 

•  Add parameters? Model fit can be BETTER (signif) or NOT BETTER  

•  Remove parameters? Model fit can be WORSE (signif) or NOT WORSE 
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1. & 2. must be 

positive values! 



Summarizing so far… 

• Modeling within-person change involves specifying 

effects of time for both sides of the model 

 Fixed effects in model for the means:  

 What kind of change am I observing on average? 

 What kind of trajectory will reproduce those means? 

 Random effects (and residuals) in model for the variance: 

 What kind of individual differences in change am I observing? 

 How many random effects do I need to reproduce the observed  

pattern of variances and covariances over time? 

 

• One option: Polynomial models (linear, quadratic, cubic) 

 Terms work together to describe non-linear trajectories 

 Careful with the covariances among random effects, though 

• Other options: Piecewise slopes and “truly” nonlinear change… 
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Describing Within-Person  

Change over Time 
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• Topics: 

 Multilevel modeling notation and terminology 

 Fixed and random effects of linear time 

 Predicted variances and covariances from random slopes 

 How random effects model dependency 

 Describing nonlinear change: polynomial models 

 Describing nonlinear change: other alternatives 



Other Random Effects Models of Change 

• Piecewise models: Discrete slopes for discrete phases of time 

 Separate terms describe sections of overall trajectories 

 Useful for examining change in intercepts and slopes before/after 

discrete events (changes in policy, interventions) 

 Must know where the break point is ahead of time! 
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Piecewise Model: 

 

4 slopes  

(one per phase) 

 

3 “jumps” 

(shift in intercept 

between phases) 
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Example of Daily Cortisol Fluctuation: 

Morning Rise and Afternoon Decline 
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Daily Cortisol Averages for Time of Day
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Average Trajectories 

This piecewise model 

is structured using  

“Time Since Waking” 

SAS Code to create two piecewise slopes from 

continuous time of day in stacked data: 

IF occasion=1 THEN DO;  

     P1=0;        P2=0; END;  

IF occasion=2 THEN DO;  

     P1= time2-time1; P2=0; END; 

IF occasion=3 THEN DO;  

     P1= time2-time1; P2=time3-time2; END;  

IF occasion=4 THEN DO;  

     P1= time2-time1; P2=time4-time2; END; 

 

Note that a quadratic slope may be necessary 

for the afternoon decline slope! 
 

Wake  +30min    lunch               bed 
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What kind of piecewise model could predict  

our example data mean change across sessions? 

“Early” 

Practice 

Effect 

“Later” 

Practice 

Effect 

Saturated Means (ANOVA) Model  

= 6 parameters (1 mean per session) 

Number Match 3 Mean Response Times by Session 
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Piecewise Models:  Two Direct Slopes 

• “Early Practice Slope” and  
“Later Practice Slope” 

• Use to specify slopes through 
each discrete phase directly 
(can request test of difference) 

• Session (1-6) gets recoded 
into 2 new time predictor 
variables, as shown below: 

  Session 1 2 3 4 5 6 

  Early Practice  Slope12  =  0 1 1 1 1 1 

  Later Practice  Slope26  =  0 0 1 2 3 4 

1       2       3       4       5       6 

Slope12 = linear 

change from 1-2 

Slope26 = linear 

change from 2-6 
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2 Direct Slopes Model: Random Effects  

• Parameters directly represent each part of trajectory: 

 

• Fixed effects for mean change over time (3 fixed effects): 

 Fixed Intercept = expected Y when both slopes = 0 (Session 1) 

 Fixed Slope12 = expected linear rate of change from 1 to 2 

 Fixed Slope26 = expected linear rate of change from 2 to 6 

 

• Leads to possible random effects (up to 3 var+3 cov): 

 Random Intercept = BP variance in expected level  

                                  when both slopes = 0 (at Session 1) 

 Random Slope12 = BP variance in linear slope from 1 to 2 

 Random Slope26 = BP variance in linear slope from 2 to 6 
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Random Two-Slope Piecewise Model 

Level 1:  yti  =  β0i + β1iSlope1ti + β2iSlope2ti + eti 
 

Level 2 Equations (one per β): 

 β0i  =  γ00  +      U0i  
 

 

  

 β1i  =  γ10  +      U1i 

 

 

 

 β2i  =  γ20  +      U2i   
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Fixed Effect Subscripts: 

1st = which Level 1 term 

2nd = which Level 2 term 

Number of Possible Slopes 

by Number of Occasions (n): 

# Fixed slopes = n – 1 

# Random slopes = n – 2 

Need n = 4 occasions to fit 

random two-slope model 

Intercept 

for person i 

Slope1  

for person i 

Slope2  

for person i 

Fixed (mean) 

Intercept 

Fixed (mean) 

Slope1  

 

Fixed (mean) 

Slope2  

 

Random 

(Deviation) 

Intercept 

Random 

(Deviation) 

Slope1 

Random 

(Deviation) 

Slope2 



Piecewise Models: Slope + Deviation Slope 

• “Linear Time Slope” and 

“Deviation Slope”  

• Use to test if multiple slopes 

are needed directly in model 

• Initial slope predictor is coded 

differently, second slope 

predictor is same: 

  Session 1 2 3 4 5 6 

  Time            Slope16  =  0 1 2 3 4 5 

  Deviation    Slope26  =  0 0 1 2 3 4 

1       2       3       4       5       6 

Slope16 = linear 

trend for 1-2 only 

after controlling 

Slope26 

Slope26 = now difference 

in linear trend from 2-6  

(test of needing 2 pieces) 

after controlling for time 
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Slope + Deviation Slope: Random Effects  

• Parameters directly differences across parts of trajectory: 

 

• Fixed effects for mean change over time (3 fixed effects): 

 Fixed Intercept = expected Y when both slopes = 0 (Session 1) 

 Fixed Slope16 = expected linear rate of change from 1 to 2  
                           (after controlling for slope26) 

 Fixed Slope26 = expected extra linear rate of change from 2 to 6  
                           (after controlling for slope16, which is just time) 

 

• Leads to possible random effects (up to 3 var+3 cov): 

 Random Intercept = BP variance in expected level  
                                  when both slopes = 0 (at Session 1) 

 Random Slope16 = BP variance in linear slope from 1 to 2 

 Random Slope26 = BP variance in extra linear slope from 2 to 6 
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Other Random Effects for Change 
• Truly nonlinear models: Non-additive terms to describe change 

 Models can include asymptotes (so change can “shut off” as needed) 

 Include power and exponential functions (see chapter 6 for references) 
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Nonlinear Models 

• Not all forms of change fit polynomial models 

 What goes up must come back down (and vice-versa) 

 Sometimes change needs to “shut off” (need asymptotes) 

 

• Many kinds of truly nonlinear models can be used for 
longitudinal data 

 Linear in variables vs. linear in parameters (exp  nonlinear) 

 Logistic, power, exponential… see end of chapter 6 for ideas 

 

• Require extra steps to evaluate estimation quality 

 Start values are needed, especially for random variances 

 Check that “gradient” values are as close to 0 as possible 
(partial first derivative of that parameter in LL function) 

Lecture 2 57     



How to Mimic an Exponential Model 
If you need to use REML, a predictor of natural-log-transformed 

time may be a good substitute for a truly nonlinear model 
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A linear effect 

of log time 

(black lines) 

predicts an 

exponential 

curve across 

original time. 

 

Quadratic 

effects of log 

time (red or 

blue lines) can 

speed up or 

slow down 

the curve.  

Bottom: There is a linear relationship between log-time and the outcome. 



Which change family should I choose? 
• Within a given family, nested models can usually be 

compared to judge the need for each parameter 

 e.g., linear vs. quadratic? One slope vs. two slopes? 

 Usual nested model comparison rules apply (p-values for fixed 
effects, −2ΔLL tests for random effects) 

 When using REML, you can test absolute fit of each side 
separately if you have balanced data to see if you are “there yet” 

 

• Between families, however, alternative models of change 
may not be nested, so deciding among them can be tricky 

 e.g., quadratic vs. two-slope vs. log time vs. exponential? 

 Use ML AIC and BIC to see what is “preferred” across the families 

 In balanced data, you can also compare each alternative to a 
saturated means, UN model using ML as test of absolute fit 

 Also consider plausibility of alternative models in terms of both 
data predictions and theoretical predictions in deciding 
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New Material:  Absolute Fit in REML 

• Answer key model (possible only for balanced data): 

 Means Model = Saturated Means 

 Variance Model = Unstructured R, or RI+UN(n−1) equivalent 

 

• Tests of absolute fit of any simpler means model against 

saturated means can only be done via −2ΔLL when using ML, 

but what if you need to use REML given small level-2 N? 

 Use a multivariate Wald test instead: add enough contrasts for occasion-

specific mean differences to create saturated means, then test that 

group of contrasts (see CLDP 944 example 6 for how to do so) 

 

• Tests of absolute fit of any nested variance model against UN 

can be done using REML −2ΔLL if same means side (so keep 

the same fixed effects for time in each comparison model) 
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