Lecture 7:Two-Level Models
for Clustered Data

Modeling Dependency in Clustered Data

Grand-Mean-Centering vs. Group-Mean Centering
in Multilevel Models for Clustered Data

Effect Size via Pseudo-R2

Clustered Data Example in SAS, SPSS, and STATA
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MLM for “Clustered” Data

Nesting/Clustering/Grouping as a Source of Correlation

Up to this point, we’ve only talked about a special case of nesting
due to repeated measures - time within person

Now we examine two-level models for more general examples of
nesting/clustering/grouping:

— Child within school, student within team

— Sibling within family, partner within couple

— Employee within business, patient within doctor

Residuals of people within groups are likely to be correlated due to
group differences (e.g., purposeful grouping or shared experiences)

— Dependency will make SEs of fixed effects too small (p-values too good)

Lecture 7
2 of 33




Two Options to Deal with Grouping

Clustering/Nesting/Grouping as Fixed Effects

* Include (#groups-1) dummy codes for group membership in the model
for the means - so group is not another “level”

» Inference about specific differences between groups via fixed effects
for group, but then you cannot include between-groups predictors

» Snijders & Bosker ch.4, p. 44 recommend if #groups < 10ish

Clustering/Nesting/Grouping as a Random Effect

» Estimate a variance for group differences in model for variances,
such that group becomes another “level” of the model

+ Makes an inference about population of groups via random effects
variances, for which you can include between-groups predictors

» Better option if #groups > 10ish
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Multilevel Models for Clustered Data:
2-Level Empty Model

Longitudinal MLM

L1 Y = Boi + €y
Clustered MLM

L1 yp = + €D
/

L2: B = Yoo + Uy

f

Fixed Intercept ~ Cluster

Mean

(Grand Mean)
Deviation

Fixed Effects:

Yoo 2 grand mean intercept
Random Effects:

UOj —> mean deviation for cluster j

- intercept variance of 1,2

Error:

e -> deviation for person i

ij
- residual variance of 0,2
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IntraClass Correlation for
2-Level Empty Model

2

ICC = Intercept Variance _ T,
Intercept Variance + Residual Variance T +02
0
Between Variance
ICC =

~ Between Variance + Within Variance

Average correlation among level 1 observations within a level 2 unit
(within-GROUP correlation over people)

Intercept variance now represents:
“Why don’t all groups have the same mean of Y?”

Residual variance now represents:
“Why don'’t all people in the same group have the same Y?”
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Effects of Clustering on Effective N

+ Design Effect expresses how much effective sample size
needs to be adjusted due to nesting/clustering/grouping

» Design Effect = ratio of the variance obtained with the
given sampling design to the variance obtained for a
simple random sample from the same population, given
that the total sample size is the same

* Design Effect =1 + ((Nyerjever — 1) ¥ ICC)
* Ngrective = #T0tal observations / design effect

» As ICC goes UP and cluster size goes UP,
effective sample size goes DOWN

» See Snijders & Bosker ch. 3, p. 22-24 for more info
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Design Effects in 2-Level Nesting

DeSign Effect =1+ ((nlower level — 1) * ICC)
Nerroctive = # T0tal observations / design effect

» 5 patients from each of 100 doctors, ICC = .30?
— Patients Design Effect =1 + (4 * .30) = 2.20
— N_tective = 500/ 2.20 = 227 (not 500)

« 20 students from each of 50 schools, ICC = .057
— Students Design Effect =1+ (19 * .05) =1.95
— N_gective = 1000/ 1.95 = 513 (not 1000)
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Does a non-significant ICC mean
you can ignore the grouping?

* The effective sample size depends on BOTH the ICC and the
number of people per group: As ICC goes UP and group size goes
UP, the effective sample size goes DOWN
— So there is NO VALUE OF ICC that is uniformly “safe” to ignore, not
even 0, because...
...Unconditional and conditional (after predictors) ICCs may differ

— Reducing the residual variance often results in an increase in the
random intercept variance, which then increases the conditional ICC

* So just do a multilevel analysis...

— Even if “that’s not your question”... you still have to care that your data
are clustered and model that dependency appropriately because of:
» Effect of clustering on level-1 fixed effect SE’s
+ Potential for contextual effects of level-1 predictors
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Adding Predictors to a 2-Level Model
for Persons in Groups

Level-1 predictors (where time-varying predictors used to be) now
refer to Person-Level Variables

— Account for within-group (between-person) level-1 residual variance

Level-2 predictors (where time-invariant predictors used to be) now
refer to Group-Level Variables

— Account for between-group level-2 random effects variances

Same concerns about separation of between-group and within-group
effects of level-1 predictors apply: NO SMUSHING ALLOWED
— Grand-mean-centering or group-mean-centering of level-1 predictors
(where group-mean-centering is like person-mean-centering from before)

— Grand-mean-centering can be convenient for interpreting main effects,
but gets more complicated when interpreting interaction terms...
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Lecture 7:Two-Level Models
for Clustered Data

Modeling Dependency in Clustered Data

Grand-Mean-Centering vs. Group-Mean Centering
in Multilevel Models for Clustered Data

Effect Size via Pseudo-R?

Clustered Data Example in SAS, SPSS, and STATA
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3 Pieces of Information about
Effects of Level-1 Predictors

* Is the L2 Between-Group (BG) effect of X significant?
— Are groups higher on x; on average (GMx;) higher on y; on average?
— Only GROUP-mean-centering gives you this directly in the model

* Is the L1 Within-Group (WG, Between-Person) effect of X significant?

— If you have higher x; values than the rest of your group,
do you also have higher y; values than predicted for the rest of your group?

— Either GROUP- or GRAND-MC with level-2 GM; gives you this directly

* Are the BG and WG Effects of X of the same magnitude?

— The L2 contextual effect: is there an additional bonus/decrement for each person’s
predicted y; from being in a group that is high on x; on average (GMx;) above and
beyond (controlling for) the x; value for each person?

— Only GRAND-mean-centering with level-2 GMx; gives you this directly
** Can use ESTIMATE (in SAS) or TEST (in SPSS) or LINCOM (in STATA) or NEW
(in Mplus) to get any implied effects not directly provided by the model parameters

Lecture 7
11 of 33

Group-MC vs. Grand-MC
for Level-1 Person Predictors

Level 2 Original | Group-MC Level 1 | Grand-MC Level 1
GMx; GMXx;- 5 X;; WGXx; = x; — GMX; L1x;=x; -5

3 -2 2 -1 -3

3 -2 4 1 -1

7 2 6 -1 1

7 2 8 1 3
Same Gij Under Group-MC, WGxij Under Grand-MC, L1xij
would go into DOES NOT contain L2, DOES contain L2, BG
the L2 model BG variation, so GMx;is  variation, so GMx; IS
either way... uncorrelated with WGx; correlated with L1x;

*** This means that the effects of GMx; and WGXx;; in Group-MC will be
the same regardless of whether the other effect is included, but that the
effects of GMx; and L1x; in Grand-MC will be different when they are
together than their effects would be when included by themselves...
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Clustered Data Model with

Group-MC for Level-1 X:
WG and BG Effects are Represented Directly

X; is Group-MC into WGx;, WITH GMx; at Level 2:

. — ~ WGx;; contains only L1
L1y = By + B1(WGX;) + € | yariation (= x; — GMx))

GMx; contains only L2

L2: BOj = Yoo + V01(Gij) + UOj variation (= mean of x;)

B“ B Y10 \ Because WGx; and GMx;
/! ij j
are uncorrelated, each
Y10 = WG effect Yo1 = BG effect gets the total effect for
of having higher || of being from a its level (WG=L1, BG=L2)
X than others in group that has
your group “high X” people
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Clustered Data Model with
Grand-MC x; at Level 1 Only:
WG and BG Effects are Smushed Together

X; is Grand-MC into L1x;, WITHOUT GMx; at L2:

)

4/ -
. = C+R.. \ + a.. L1x; contains BOTH
L1: Yi BOJ B 1J(L1 XU) € L1 and L2 variation

L2: . = + U,
p 0j Yoo 0j So because L1x; actually

B“ = Y10 contains information about
2 different variables (WGx;

and GMx;), its 1 effect has to

do the work of 2 predictors

Y10 = smushed* WG and BG effect

*aka, convergence, conflated,
composite, or aggregate effect
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Convergence (Smushed) Effect
of a Level-1 Predictor

¥YBG n Twe

E? E2
Convergence Effect: vy, = SEps  SEwg

Adapted from
Raudenbush & Bryk
1 1 (2002, p. 138)

+
2 2
SEgz;  SEywg

» Convergence effect will often be closer to the within-group effect
(due to larger level-1 sample size and thus smaller SE), thus the
problem with smushing is that the between-group effect is wrong

» ltis the rule, rather than the exception, that between and within
effects differ (Snijders & Bosker, p. 52-56, and personal experience!)

* However — you don’t have to assume convergence in order to use
grand-mean-centering for a level-1 predictor... here’s how to fix it >
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Clustered Data Model with
Grand-Mean-Centered Level-1 X:

Tests Difference of WG and BG effects (it's been fixed!)

X; is Grand-MC into L1x;, WITH GMx; at Level 2:

1)?

— .
. — L1x; contains BOTH L1
L1: yy; = By + Byi(L1X;) + €y and L2 variation

GMx; contains only L2

J——
L2: BOj = Yoo + V01(Gij) + UOj variation (=mean of L1)

B“ X10 \ Because L2 variance is
: still in L1x;;, GMx; takes
Y10 becomes WG Yo1 iS contextual the unique part of the
effect 2> pure L1 (incremental) L2 L2 effect that L1x;’s L2
effect_(n.ow that effect - tests varance didn't cover
GMyx; is included) difference of BG
and WG effects
Lecture 7
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Equivalence of Group- & Grand-MC
(Fixed effects; Main effects only)

Group-Mean-Centering (uses WGx;):

L1: Vi = By +Byj(L1x;— GMx) + e
L2: Boj = Yoo+ You(GMx;) + U

By = Yo
= Vi = VYoo * YoilGMX;) + ¥yo(L1x; — GMx;) + Uy, + e <In terms of WGx
X Yi =Yoo+ (Vo= nggﬁmxﬁ & ‘zfmimxa,:} + Ug_; ey <In terms of L1x
Grand-Mean-Centering (uses leﬂ)_: Term Group-MC| Grand-MC
L1: Vi = Boi +By(L1x;) + e Intercept Yoo Yoo
L2: Boi = Yoo * Yo *(GMX;) + Uy, WG Effect | v, Yio

l311' = Yio Contextual | Vo1 = VY10 | Yor*
> Vi = Yoo + Yo (GMx) + yy,(L1x;) vey— "

. Ugjj +e, Yo1 Yo1 ™ Y1o
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Grand-Mean vs. Group-Mean
Centering in Clustered Data

* Group- and Grand-MC are equal if level-1 effect is fixed
« Grand-MC may be convenient - L2 “contextual” effect

« Example: Effect of student SES on student achievement:

* Grand-Mean-Centering with school mean SES to avoid smushing:

— Level-1 WG Effect: Effect of being rich kid relative to the rest of *your* school
(after statistically controlling for school mean SES)

— Level-2 Contextual Effect: Extra (incremental) effect of going to a rich school
(after statistically controlling for kid SES)
» Group-Mean-Centering (with school mean SES by default):

— Level-1 WG Effect: Effect of being rich kid relative to the rest of *your*
school (already removed school mean SES from predictor)

— Level-2 BG Effect: Effect of going to a rich school NOT controlling for kid SES
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Parameter Interpretation across
Methods of Centering Level-1 X

* Group-mean-centering > subtract a VARIABLE
— L1 predictor WGx;; = level-1 x; — original group mean x;
+ Directly represents Within-Group (WG) effect of X
(regardless of whether GMx; is in the model at L2)

— L2 predictor Gij = original group mean x; — constant

+ Directly represents Between-Group (BG) effect of X
(regardless of whether WGx; is in the model, too)

* Grand-mean-centering > subtract a CONSTANT
— L1 predictor L1x; = original x; — constant
* WITHOUT GM; at L2, is combined BG and WG effects
* WITH GMx; at L2, becomes WG effect
— L2 predictor GMx; = original group mean x; — constant
« WITHOUT L1x; at L1, is BG effect (like above)
* WITH L1x; at L1, becomes difference of BG and WG effects
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What about “Multilevel SEM”?

* Inorder to get BG and WG effects, so far we've separated the BG and
WG variance in a level-1 predictor by brute force
(e.g., by computing a GMx; variable to use with L1x; or WGx;)

* An alternative is “multilevel SEM” (which isn’t really SEM if it doesn’t have other
kinds of latent variables besides the MLM-based random effects, but whatever)

* Multivariate model - the variance in level-1 predictors is decomposed
by the model into random intercept (BG) vs. residual (WG), the
same as if it were an outcome (thus predictors = outcomes)

— Pros:
» Can have missing data on level-1 predictors (because are outcomes then)
» Can be used to test multilevel mediation (currently impossible in MIXED)
*+ May have less biased level-2 effects because there is no observed GMx;
variable assumed perfectly reliable (see Liudke et al. 2008 Psych Methods)
— Cons:
» Greater estimation demands - more likely to blow up (only available in Mplus)
+ Different (but equivalent) syntax - BG or contextual effects (be careful)
» Good luck fitting interaction terms! (= latent variable interactions)
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Interactions Involving Level-1
Predictors Belong at Both Levels...

Another example: Does the effect of employee motivation (x;) on
employee performance interact with firm type (Z;: profit, non-profit)?

* Group-Mean-Centering for employee motivation (x;):
— WGx; by Z; > Does the WG motivation effect differ by firm type?
— GMx; by Z; > Does the BG motivation effect differ by firm type?

» Moderation of total group motivation effect (not controlling for employee motivation)
+ If forgotten, then firm type moderates the motivation effect only at level 1 (pry weird)

+ Grand-Mean-Centering for employee motivation (x;):
— L1x; by Z; > Does the WG motivation effect differ by firm type?

— GMx; by Z; - Does the contextual motivation effect differ by firm type?

» Moderation of incremental group motivation effect controlling for employee motivation
(moderation of the “boost” in group performance from working with motivated people)

« If forgotten, then although the main effect of employee motivation has been un-
smushed, the interaction of L1x; by firm type would still be smushed, which assumes

that firm type moderates the WG and BG motivation effects equally (pry wrong)

Lecture 7
21 of 33

Interactions Involving Level-1
Predictors Belong at Both Levels...

Group-Mean-Centering (uses WGxij)_:

Yi = Yoo + Ug; + €+ VyolLdx; — GMx;) + ¥, (GMx;)

+ Yook Z;) + Yo3(GMxH(Z)) + v, (L1x; — GMx}(Z)) S Interms o Wo)

Yi = Voot Up +e;+ Vlaiilxgj) + Vo1~ Vm)ﬁﬁi‘.’ixj} . -
+ (Vo HZy) + ¥ (LIxHZ)) + (Vo3— V1 HGMX)Z;) b

Grand-Mean-Centering (uses L1x;): After adding an interaction with
L2 Z, at both levels, then the
_ * i »
Vi =Yoo+ Ug; + & + Vyo(L1xy) + Yo, (GMx;) + Group-MC and Grand-MC
VOZ(Zj) + Vos*(Gij)(Zj) + V11(L1xij)(zj) models are equivalent

Intercept: Vg, =Yoo BG Effect: v, =Y, +V;, Contextual: Yo, =V, ~ Vi
WG Effect: v,, =Y,, BG*Z Effect: Y,; = Yo3" + Y,; Contextual*Z: v, =y, — Vs,
Z Effect: y,, =Y,, BG*WG or Contextual*WG is the same: y,; =Y,
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Same is true for BG*WG intra-variable
interactions (e.g., WGx;*GMx; or L1x;*GMx;)

Group-Mean-Centering (uses WGx;):

Yi = Yoo + Ug; + €+ Yiplldx; — GMx;) + ¥, (GMx;)
+ Yol GMx;)? + ¥, (L1x; — GMIx}(GMx;) <In terms of WGx;

Vi = VYoot Ug + €5+ Yiollxy) + (Vo1 Vi) (GMX;) <In terms of L1x;
+ (Yo~ Vu%GMXj}Z + Y11 {L1x;}{(GMx;)

Grand-Mean-Centering (uses L1x;): After adding an interaction with
_ " GM at both levels via GM?, then
Vii =Yoo + Ugj + &+ Vao(L1xy) + Yo (GMX)) + | " the Group-mC and Grand-mc
Yoz*(G ij)z + Y11(L1xij)(GMXj) models are equivalent

Intercept: v,, =Y, BG Effect: y,, =VY,," +Y,, Contextual:y,,"=V,; — VY,
WG Effect: v,, =Y,, BG?Effect: y,, =Y, +Y,; Contextual®: y,," =Y,, =V,
BG*WG or Contextual*WG is the same either way: y,, =y,
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Meaning of Random Effects in a
2-Level Model for Clustered Data

In our previous examples, random effects were associated
with time and other within-person level-1 predictors:

- e.g., Is the effect of time on health different across persons?

- e.g., Is the effect of stress on health different across persons?

Similarly, in clustered data models, random effects can be
associated with any level-1 (now person-level) predictor:

- e.g., Does the effect of child’s SES on achievement differ across schools
(i.e., does SES matter more for achievement in some schools)?

- Start with a fixed effect of X (then test if the X effect should be random)

Remember: fixed and random effects mean different things!
- Fixed: Is there an effect that is different than 0, period?
- Systematically Varying: Does the effect vary systematically by predictors?
- Random: Does the effect differ randomly over groups?
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When Group-MC vs. Grand-MC Matters:
Random Slopes of Level-1 Predictors

Both centerings yield

Group-Mean Centering:
equivalent models if
Yii = Yoo + Yor(GMX)) + ¥;o(WGx;) thqe L1 effect is fixed,
+Ug; + Uy (WGx,) + e; 2> but NOT if the L1
effect is random.
Yii = Yoo * Yoa(GMX;) + Y,4(L1x; — GMx;) : :
The variance in GMx;
+ eii is NOT subtracted

out of the random

Grand-Mean Centering: slope in Grand MC.
with random slopes
are not equivalent.

+ UOj + Ulj(leij) +€;

Lecture 7
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Adding Random Slopes of L1 X

* Random intercepts mean different things under each model:
— Group-MC > Individual differences at WGx;; =0 (every group should have)

— Grand-MC - Individual differences at L1x;=0 (not every group will have)

+ Differential shrinkage of the random intercepts results from
differential reliability of the intercept data across models:
— Group-MC - Won't affect shrinkage of slopes unless highly correlated
— Grand-MC -> Will affect shrinkage of slopes due to forced extrapolation

As a result, the random slope variance may be smaller

under grand-MC than under group-MC
— Problem worsens with greater BG variation in X (more extrapolation needed)

— Anecdotal example was presented in Raudenbush & Bryk (2002; chapter 5)
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Can also use ML AIC and BIC to decide which way to go...




Bias in Random Slope Variance

OLS Per-Group Estimates

F”——';:74"a
.
g oy
> 74]’ »
5
Level-1 X

Top right: Intercepts and slopes
are homogenized in grand-MC

Bottom: Downward biased random
slope variance in grand-MC

EB Shrunken Estimates

¥, Math Achlevement

Level-1 X

Uncondirional Resulis Conditional Results

Group-mean centering

=~ [8.68 0.05 F = [238 0191
T |0.05 0.68 -~ 019 |t).|5_
& = 36.70 &1 = 36,70
Grand-mean centering
F=[ 48 =015 F = [241 0.19]
=|-01s o042 0.19 [0.06]]
& = 36.83 a* = 36.74
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Lecture 7:Two-Level Models
for Clustered Data

* Modeling Dependency in Clustered Data

» Grand-Mean-Centering vs. Group-Mean Centering
in Multilevel Models for Clustered Data

« Effect Size via Pseudo-R2

» Clustered Data Example in SAS, SPSS, and STATA
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Variance Accounted For By
Level-2 Predictors

+ Fixed effects of level 2 predictors by themselves:
— L2 (BG) main effects reduce L2 (BG) random intercept variance
— L2 (BG) interactions also reduce L2 (BG) random intercept variance

* Fixed effects of cross-level interactions (level 1* level 2):

— If the interacting level 1 predictor is random, any cross-level interaction
with it will reduce its corresponding L2 BG random slope variance

— If the interacting level 1 predictor not random, any cross-level interaction
with it will reduce the L1 WG residual variance instead

» This is because the L2 BG random slope variance would have been created
by decomposing the L1 residual variance in the first place

* The level-1 effect would then be called “systematically varying” to reflect a
compromise between “fixed” (all the same) and “random” (all different) — it's not
that each group needs their own slope, but that the slope varies systematically
across groups as a function of a known group predictor (and not otherwise)
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Variance Accounted For By
Level-1 Predictors

* Fixed effects of level 1 predictors by themselves:
— L1 (WG) main effects reduce L1 (WG) residual variance
— L1 (WG) interactions also reduce L1 (WG) residual variance

* What happens at level 2 depends on what kind of variance the
level-1 predictor has:
— If the level-1 predictor ALSO has L2 variance (e.g., Grand-MC predictors),
then that L2 variance will also likely reduce L2 random intercept variance

— If the level-1 predictor DOES NOT have L2 variance (e.g., Group-MC
predictors), then its reduction in the L1 residual variance will cause an
INCREASE in L2 random intercept variance

» Same thing happens in Grand-MC, but you don’t generally see it

 It's just an artifact of estimation, and not a cause for alarm...
here’s a review of how it happens...
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Negative Pseudo-R27?7?7?

As a consequence of reducing level-1 residual variance, the level-2
random intercept variance (1,,2) will usually INCREASE
— This is not really a problem, but here’s how it happens:

Observed level-2 1,2 is NOT just between-group variance
— Also has a small part of within variance (level 1, ¢,2) due to sampling
- observed 1,2 = true T1,,2 + (0,2/n)
(as level-1 n goes up, effect of level-1 a2 is minimized)
— ML estimate of “true” 1,2 uses this as a correction factor:
- true 1,2 = observed 1,2 - (0,2/ n)

Example: observed 1,2 = 4.65,06,2=7.06,n =4
— So true 1,,2=4.65—-(7.06/4) =2.88

— Add group-MC level-1 predictor, reduce 0.2 to 2.17
+ Pseudo-R? for 0,2 = (7.06 — 2.17)/7.06 = .69, or 69% reduction in o2
— But 1,2 was not reduced, so true 1,2 = 4.65 - (2.17 / 4) = 4.10 now
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More on Pseudo-R? Effect Size

Pseudo-R? is not calculated when adding random effects

— Does not apply: fixed effects reduce variance, but random effects only
re-partition variance (random effect = new pile of variance)

— Calculate random effects confidence intervals instead!

Pseudo-R? is only calculable across models with same piles of
variance (meaning of each variance changes if others are added)

— Another problem: Adding level-2 predictors of one random effect may cause other
random effect variances to decrease through their correlation

A simple alternative: Total R?

— Generate model-predicted y values from fixed effects only (using OUTPM
in SAS, FIXPRED in SPSS, or PREDICT XB in STATA) and correlate with
observed y values (then square that correlation - total R?)

— Total R? = total reduction in overall variance of y across levels

— Can be “unfair” in models with large unexplained sources of variance

» Such as in cross-classified models... up next
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MLM for Clustered Data: Summary

* Models now come in only two kinds: “empty” and “conditional”
— The lack of a comparable dimension to “time” simplifies things greatly!

* L2 = Between-Group (BG), L1 = Within-Group (WG; between-person)
— L1 predictors are now person variables, and can have fixed, random, or
systematically varying effects

— L2 predictors are now group variables, and can have fixed or
systematically varying effects

+ Still no smushing allowed main effects of or interactions involving
level-1 predictors:
— Group-MC at L1: Get L1=WG and L2=BG effects directly
— Grand-MC at L1: Get L1=WG and L2=contextual effects directly

» As long as some representation of the L1 effect is included in L2;
otherwise, the L1 effect (and any interactions thereof) will be smushed
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