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Lecture 7:Two-Level Models 
for Clustered Data

• Modeling Dependency in Clustered Data

• Grand-Mean-Centering vs. Group-Mean Centering 
in Multilevel Models for Clustered Data

• Effect Size via Pseudo-R2

• Clustered Data Example in SAS, SPSS, and STATA
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MLM for “Clustered” Data

Nesting/Clustering/Grouping as a Source of Correlation
• Up to this point, we’ve only talked about a special case of nesting 

due to repeated measures  time within person

• Now we examine two-level models for more general examples of 
nesting/clustering/grouping:
– Child within school, student within team

– Sibling within family, partner within couple

– Employee within business, patient within doctor

• Residuals of people within groups are likely to be correlated due to 
group differences (e.g., purposeful grouping or shared experiences)
– Dependency will make SEs of fixed effects too small (p-values too good)
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Two Options to Deal with Grouping

Clustering/Nesting/Grouping as Fixed Effects
• Include (#groups-1) dummy codes for group membership in the model 

for the means  so group is not another “level”

• Inference about specific differences between groups via fixed effects 
for group, but then you cannot include between-groups predictors

• Snijders & Bosker ch.4, p. 44 recommend if #groups < 10ish

Clustering/Nesting/Grouping as a Random Effect
• Estimate a variance for group differences in model for variances, 

such that group becomes another “level” of the model

• Makes an inference about population of groups via random effects 
variances, for which you can include between-groups predictors

• Better option if #groups > 10ish
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Multilevel Models for Clustered Data: 
2-Level Empty Model

Longitudinal MLM

L1: yti =   β0i +   eti

Clustered MLM

L1: yij =   β0j +   eij

L2: β0j =   γ00 +  U0j

Fixed Intercept 
(Grand Mean)

Cluster
Mean 

Deviation

Fixed Effects:

γ00 grand mean intercept

Random Effects:

U0j mean deviation for cluster j

 intercept variance of τU0
2

Error:

eij  deviation for person i 

 residual variance of σe
2
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IntraClass Correlation for
2-Level Empty Model

• Average correlation among level 1 observations within a level 2 unit 
(within-GROUP correlation over people)

• Intercept variance now represents: 
“Why don’t all groups have the same mean of Y?”

• Residual variance now represents: 
“Why don’t all people in the same group have the same Y?”


Intercept Variance

ICC
Intercept Variance + Residual Variance

Between Variance
ICC

Between Variance + Within Variance


0

0

2
U

2 2
U e

τ
=
τ + σ
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Effects of Clustering on Effective N
• Design Effect expresses how much effective sample size 

needs to be adjusted due to nesting/clustering/grouping
• Design Effect = ratio of the variance obtained with the 

given sampling design to the variance obtained for a 
simple random sample from the same population, given 
that the total sample size is the same

• Design Effect = 1 + ((nlower level – 1) * ICC) 
• Neffective = #Total observations / design effect

• As ICC goes UP and cluster size goes UP, 
effective sample size goes DOWN

• See Snijders & Bosker ch. 3, p. 22-24 for more info
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Design Effects in 2-Level Nesting

Design Effect = 1 + ((nlower level – 1) * ICC) 
Neffective = #Total observations / design effect

• 5 patients from each of 100 doctors, ICC = .30?
– Patients Design Effect = 1 + (4 * .30) = 2.20

– Neffective = 500 / 2.20 = 227 (not 500)

• 20 students from each of 50 schools, ICC = .05?
– Students Design Effect = 1 + (19 * .05) = 1.95

– Neffective = 1000 / 1.95 = 513 (not 1000)
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Does a non-significant ICC mean 
you can ignore the grouping?

• The effective sample size depends on BOTH the ICC and the 
number of people per group: As ICC goes UP and group size goes 
UP, the effective sample size goes DOWN
– So there is NO VALUE OF ICC that is uniformly “safe” to ignore, not 

even 0, because…

• …Unconditional and conditional (after predictors) ICCs may differ
– Reducing the residual variance often results in an increase in the 

random intercept variance, which then increases the conditional ICC

• So just do a multilevel analysis…
– Even if “that’s not your question”… you still have to care that your data 

are clustered and model that dependency appropriately because of:
• Effect of clustering on level-1 fixed effect SE’s

• Potential for contextual effects of level-1 predictors 
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Adding Predictors to a 2-Level Model 
for Persons in Groups

• Level-1 predictors (where time-varying predictors used to be) now 
refer to Person-Level Variables
– Account for within-group (between-person) level-1 residual variance

• Level-2 predictors (where time-invariant predictors used to be) now 
refer to Group-Level Variables
– Account for between-group level-2 random effects variances

• Same concerns about separation of between-group and within-group 
effects of level-1 predictors apply: NO SMUSHING ALLOWED
– Grand-mean-centering or group-mean-centering of level-1 predictors 

(where group-mean-centering is like person-mean-centering from before)

– Grand-mean-centering can be convenient for interpreting main effects, 
but gets more complicated when interpreting interaction terms…
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Lecture 7:Two-Level Models 
for Clustered Data

• Modeling Dependency in Clustered Data

• Grand-Mean-Centering vs. Group-Mean Centering 
in Multilevel Models for Clustered Data

• Effect Size via Pseudo-R2

• Clustered Data Example in SAS, SPSS, and STATA
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3 Pieces of Information about 
Effects of Level-1 Predictors

• Is the L2 Between-Group (BG) effect of X significant?
– Are groups higher on xij on average (GMxj) higher on yij on average?

– Only GROUP-mean-centering gives you this directly in the model

• Is the L1 Within-Group (WG, Between-Person) effect of X significant?
– If you have higher xij values than the rest of your group, 

do you also have higher yij values than predicted for the rest of your group?

– Either GROUP- or GRAND-MC with level-2 GMxj gives you this directly

• Are the BG and WG Effects of X of the same magnitude?
– The L2 contextual effect: is there an additional bonus/decrement for each person’s 

predicted yij from being in a group that is high on xij on average (GMxj) above and 
beyond (controlling for) the xij value for each person?

– Only GRAND-mean-centering with level-2 GMxj gives you this directly

**  Can use ESTIMATE (in SAS) or TEST (in SPSS) or LINCOM (in STATA) or NEW
(in Mplus) to get any implied effects not directly provided by the model parameters
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Group-MC vs. Grand-MC 
for Level-1 Person Predictors

31827

1-1627

-114-23

-3-12-23

L1xij = xij – 5WGxij = xij – GMxjxijGMxj - 5GMxj

Grand-MC Level 1Group-MC Level 1OriginalLevel 2

Under Group-MC, WGxij
DOES NOT contain L2, 
BG variation, so GMxj is 
uncorrelated with WGxij

Under Grand-MC, L1xij
DOES contain L2, BG 
variation, so GMxj IS 
correlated with L1xij

Same GMxj
would go into 
the L2 model 
either way…

*** This means that the effects of GMxj and WGxij in Group-MC will be 
the same regardless of whether the other effect is included, but that the 
effects of GMxj and L1xij in Grand-MC will be different when they are 
together than their effects would be when included by themselves…
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Clustered Data Model with
Group-MC for Level-1 X:

WG and BG Effects are Represented Directly

xij is Group-MC into WGxij, WITH GMxj at Level 2:

L1:  yij =  β0j + β1j(WGxij) + eij

L2: β0j =  γ00 + γ01(GMxj) + U0j

β1j =  γ10

γ10 = WG effect
of having higher 
X than others in 
your group

γ01 = BG effect
of being from a 
group that has 
“high X” people

Because WGxij and GMxj
are uncorrelated, each 
gets the total effect for 
its level (WG=L1, BG=L2)

WGxij contains only L1 
variation (= xij – GMxj)

GMxj contains only L2 
variation (= mean of xij)
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Clustered Data Model with
Grand-MC xij at Level 1 Only:

WG and BG Effects are Smushed Together

xij is Grand-MC into L1xij, WITHOUT GMxj at L2:

L1:  yij =  β0j + β1j(L1xij) + eij

L2: β0j =  γ00 + U0j

β1j =  γ10

γ10 = smushed* WG and BG effect

*aka, convergence, conflated, 
composite, or aggregate effect 

So because L1xij actually 
contains information about 
2 different variables (WGxij
and GMxj), its 1 effect has to 
do the work of 2 predictors

L1xij contains BOTH 
L1 and L2 variation
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Convergence (Smushed) Effect 
of a Level-1 Predictor

• Convergence effect will often be closer to the within-group effect
(due to larger level-1 sample size and thus smaller SE), thus the 
problem with smushing is that the between-group effect is wrong

• It is the rule, rather than the exception, that between and within 
effects differ (Snijders & Bosker, p. 52-56, and personal experience!)

• However – you don’t have to assume convergence in order to use 
grand-mean-centering for a level-1 predictor… here’s how to fix it 

BG WG
2 2
BG WG

conv

2 2
BG WG

SE SE
Convergence Effect: 

1 1

SE SE

 


 


Adapted from 
Raudenbush & Bryk 
(2002, p. 138)
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Clustered Data Model with
Grand-Mean-Centered Level-1 X:

Tests Difference of WG and BG effects (It’s been fixed!)

xij is Grand-MC into L1xij, WITH GMxj at Level 2:

L1:  yij =  β0j + β1j(L1xij) + eij

L2: β0j =  γ00 + γ01(GMxj) + U0j

β1j =  γ10

γ10 becomes WG 
effect  pure L1 
effect (now that 
GMxj is included)

γ01 is contextual
(incremental) L2 
effect  tests 
difference of BG 
and WG effects

Because L2 variance is 
still in L1xij, GMxj takes 
the unique part of the 
L2 effect that L1xij’s L2 
variance didn’t cover

L1xij contains BOTH L1 
and L2 variation

GMxj contains only L2 
variation (=mean of L1)
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Equivalence of Group- & Grand-MC
(Fixed effects; Main effects only)

Group‐Mean‐Centering (uses WGxij):
L1:   yij =  β0j + β1j(L1xij − GMxj) + eij
L2:  β0j =  γ00 + γ01(GMxj) + U0j

β1j =  γ10

 yij = γ00 + γ01(GMxj) + γ10(L1xij − GMxj) + U0j + eij

 yij = γ00 + (γ01 − γ10)(GMxj) + γ10(L1xij) + U0j + eij

Grand‐Mean‐Centering (uses L1xij):

L1:   yij =  β0i + β1j(L1xij) + eij
L2:  β0j =  γ00 + γ01*(GMxj) + U0j

β1j =  γ10
 yij = γ00 + γ01*(GMxj) + γ10(L1xij)

+ U0j + eij

Grand-MCGroup-MCTerm

γ01*γ01 − γ10Contextual

γ01*+ γ10γ01BG Effect

γ10γ10WG Effect

γ00γ00Intercept

In terms of WGx

In terms of L1x
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Grand-Mean vs. Group-Mean 
Centering in Clustered Data

• Group- and Grand-MC are equal if level-1 effect is fixed
• Grand-MC may be convenient  L2 “contextual” effect

• Example: Effect of student SES on student achievement:

• Grand-Mean-Centering with school mean SES to avoid smushing:
– Level-1 WG Effect: Effect of being rich kid relative to the rest of *your* school

(after statistically controlling for school mean SES)

– Level-2 Contextual Effect: Extra (incremental) effect of going to a rich school 
(after statistically controlling for kid SES)

• Group-Mean-Centering (with school mean SES by default):
– Level-1 WG Effect: Effect of being rich kid relative to the rest of *your* 

school (already removed school mean SES from predictor)

– Level-2 BG Effect: Effect of going to a rich school NOT controlling for kid SES
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Parameter Interpretation across 
Methods of Centering Level-1 X

• Group-mean-centering  subtract a VARIABLE
– L1 predictor WGxij = level-1 xij – original group mean xj

• Directly represents Within-Group (WG) effect of X 
(regardless of whether GMxj is in the model at L2)

– L2 predictor GMxj = original group mean xj – constant
• Directly represents Between-Group (BG) effect of X

(regardless of whether WGxij is in the model, too)

• Grand-mean-centering  subtract a CONSTANT
– L1 predictor L1xij = original xij – constant

• WITHOUT GMxj at L2, is combined BG and WG effects

• WITH GMxj at L2, becomes WG effect

– L2 predictor GMxj = original group mean xj – constant
• WITHOUT L1xij at L1, is BG effect (like above)

• WITH L1xij at L1, becomes difference of BG and WG effects

Lecture 7
20 of 33

What about “Multilevel SEM”?
• In order to get BG and WG effects, so far we’ve separated the BG and 

WG variance in a level-1 predictor by brute force 
(e.g., by computing a GMxj variable to use with L1xij or WGxij)

• An alternative is “multilevel SEM” (which isn’t really SEM if it doesn’t have other 
kinds of latent variables besides the MLM-based random effects, but whatever)

• Multivariate model  the variance in level-1 predictors is decomposed 
by the model into random intercept (BG) vs. residual (WG), the 
same as if it were an outcome (thus predictors = outcomes) 
– Pros: 

• Can have missing data on level-1 predictors (because are outcomes then) 
• Can be used to test multilevel mediation (currently impossible in MIXED)
• May have less biased level-2 effects because there is no observed GMxj

variable assumed perfectly reliable (see Lüdke et al. 2008 Psych Methods)

– Cons:
• Greater estimation demands  more likely to blow up (only available in Mplus)
• Different (but equivalent) syntax  BG or contextual effects (be careful) 
• Good luck fitting interaction terms! ( latent variable interactions)
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Interactions Involving Level-1 
Predictors Belong at Both Levels…

Another example: Does the effect of employee motivation (xij) on 
employee performance interact with firm type (Zj: profit, non-profit)?

• Group-Mean-Centering for employee motivation (xij):
– WGxij by Zj  Does the WG motivation effect differ by firm type?

– GMxj by Zj  Does the BG motivation effect differ by firm type?
• Moderation of total group motivation effect (not controlling for employee motivation)

• If forgotten, then firm type moderates the motivation effect only at level 1 (pry weird)

• Grand-Mean-Centering for employee motivation (xij):
– L1xij by Zj  Does the WG motivation effect differ by firm type?

– GMxj by Zj  Does the contextual motivation effect differ by firm type?
• Moderation of incremental group motivation effect controlling for employee motivation 

(moderation of the “boost” in group performance from working with motivated people) 

• If forgotten, then although the main effect of employee motivation has been un-
smushed, the interaction of L1xij by firm type would still be smushed, which assumes 
that firm type moderates the WG and BG motivation effects equally (pry wrong)
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Interactions Involving Level-1 
Predictors Belong at Both Levels…
Group‐Mean‐Centering (uses WGxij): 

yij = γ00 + U0j + eij + γ10(L1xij − GMxj) + γ01(GMxj)

+ γ02(Zj) + γ03(GMxj)(Zj) + γ11(L1xij − GMxj)(Zj)

yij = γ00 + U0j + eij + γ10(L1xij) + (γ01− γ10)(GMxj)

+ (γ02)(Zj) + γ11(L1xij)(Zj) + (γ03− γ11)(GMxj)(Zj)

Grand‐Mean‐Centering (uses L1xij):

yij = γ00 + U0j + eij + γ10(L1xij) + γ01*(GMxj) + 

γ02(Zj) + γ03*(GMxj)(Zj) + γ11(L1xij)(Zj) 

Intercept:  γ00 = γ00 BG Effect:  γ01 = γ01* + γ10       Contextual: γ01* =γ01 − γ10
WG Effect: γ10  =γ10   BG*Z Effect: γ03 = γ03* + γ11  Contextual*Z: γ03* =γ03 − γ11
Z Effect:  γ20  =γ20     BG*WG or Contextual*WG is the same:  γ11 = γ11

After adding an interaction with 
L2 Zj at both levels, then the 
Group‐MC and Grand‐MC 
models are equivalent

In terms of WGxij

In terms of L1xij
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Same is true for BG*WG intra-variable 
interactions (e.g., WGxij*GMxj or L1xij*GMxj)
Group‐Mean‐Centering (uses WGxij): 

yij = γ00 + U0j + eij + γ10(L1xij − GMxj) + γ01(GMxj)

+ γ02(GMxj)
2 + γ11(L1xij − GMxj)(GMxj)

yij = γ00 + U0j + eij + γ10(L1xij) + (γ01− γ10)(GMxj)

+ (γ02− γ11)(GMxj)
2 + γ11(L1xij)(GMxj)

Grand‐Mean‐Centering (uses L1xij):

yij = γ00 + U0j + eij + γ10(L1xij) + γ01*(GMxj) + 

γ02*(GMxj)
2 + γ11(L1xij)(GMxj) 

Intercept:  γ00 = γ00 BG Effect:  γ01 = γ01* + γ10   Contextual: γ01* =γ01 − γ10
WG Effect: γ10  =γ10  BG2 Effect: γ02 = γ02* + γ11 Contextual2: γ02* =γ02 − γ11

BG*WG or Contextual*WG is the same either way:  γ11 = γ11

After adding an interaction with 
GM at both levels via GM2, then 
the Group‐MC and Grand‐MC 

models are equivalent

In terms of WGxij

In terms of L1xij
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Meaning of Random Effects in a 
2-Level Model for Clustered Data

• In our previous examples, random effects were associated 
with time and other within-person level-1 predictors:
 e.g., Is the effect of time on health different across persons?
 e.g., Is the effect of stress on health different across persons?

• Similarly, in clustered data models, random effects can be 
associated with any level-1 (now person-level) predictor:
 e.g., Does the effect of child’s SES on achievement differ across schools 

(i.e., does SES matter more for achievement in some schools)? 
 Start with a fixed effect of X (then test if the X effect should be random)

• Remember: fixed and random effects mean different things!
 Fixed: Is there an effect that is different than 0, period?
 Systematically Varying: Does the effect vary systematically by predictors? 
 Random: Does the effect differ randomly over groups?
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When Group-MC vs. Grand-MC Matters: 
Random Slopes of Level-1 Predictors

Group‐Mean Centering:
yij = γ00 + γ01(GMxj) + γ10(WGxij)        

+ U0j + U1j(WGxij) + eij

yij = γ00 + γ01(GMxj) + γ10(L1xij – GMxj) 

+ U0j + U1j(L1xij) – U1j(GMxj) + eij

Grand‐Mean Centering:
yij = γ00 + γ*01(GMxj) + γ10(L1xij)        

+ U0j + U1j(L1xij) + eij

So which do you choose?

The variance in GMxj
is NOT subtracted 
out of the random 
slope in Grand MC. 
Therefore, models 
with random slopes 
are not equivalent.

Both centerings yield 
equivalent models if 
the L1 effect is fixed, 
but NOT if the L1 
effect is random.

Lecture 7
26 of 33

Adding Random Slopes of L1 X
• Random intercepts mean different things under each model:

– Group-MC Individual differences at WGxij =0 (every group should have)

– Grand-MC  Individual differences at L1xij=0 (not every group will have)

• Differential shrinkage of the random intercepts results from 
differential reliability of the intercept data across models:
– Group-MC Won’t affect shrinkage of slopes unless highly correlated

– Grand-MC Will affect shrinkage of slopes due to forced extrapolation

• As a result, the random slope variance may be smaller
under grand-MC than under group-MC
– Problem worsens with greater BG variation in X (more extrapolation needed)

– Anecdotal example was presented in Raudenbush & Bryk (2002; chapter 5)

• Can also use ML AIC and BIC to decide which way to go…
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Bias in Random Slope Variance

Top right: Intercepts and slopes 
are homogenized in grand-MC

Bottom: Downward biased random 
slope variance in grand-MC

OLS Per‐Group Estimates EB Shrunken Estimates

Level‐1 X Level‐1 X
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Lecture 7:Two-Level Models 
for Clustered Data

• Modeling Dependency in Clustered Data

• Grand-Mean-Centering vs. Group-Mean Centering 
in Multilevel Models for Clustered Data

• Effect Size via Pseudo-R2

• Clustered Data Example in SAS, SPSS, and STATA
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Variance Accounted For By 
Level-2 Predictors

• Fixed effects of level 2 predictors by themselves:
– L2 (BG) main effects reduce L2 (BG) random intercept variance

– L2 (BG) interactions also reduce L2 (BG) random intercept variance

• Fixed effects of cross-level interactions (level 1* level 2):
– If the interacting level 1 predictor is random, any cross-level interaction 

with it will reduce its corresponding L2 BG random slope variance

– If the interacting level 1 predictor not random, any cross-level interaction 
with it will reduce the L1 WG residual variance instead

• This is because the L2 BG random slope variance would have been created 
by decomposing the L1 residual variance in the first place

• The level-1 effect would then be called “systematically varying” to reflect a 
compromise between “fixed” (all the same) and “random” (all different) – it’s not 
that each group needs their own slope, but that the slope varies systematically 
across groups as a function of a known group predictor (and not otherwise)
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Variance Accounted For By 
Level-1 Predictors

• Fixed effects of level 1 predictors by themselves:
– L1 (WG) main effects reduce L1 (WG) residual variance 

– L1 (WG) interactions also reduce L1 (WG) residual variance

• What happens at level 2 depends on what kind of variance the 
level-1 predictor has:
– If the level-1 predictor ALSO has L2 variance (e.g., Grand-MC predictors), 

then that L2 variance will also likely reduce L2 random intercept variance

– If the level-1 predictor DOES NOT have L2 variance (e.g., Group-MC 
predictors), then its reduction in the L1 residual variance will cause an 
INCREASE in L2 random intercept variance 

• Same thing happens in Grand-MC, but you don’t generally see it

• It’s just an artifact of estimation, and not a cause for alarm…
here’s a review of how it happens…
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Negative Pseudo-R2???
• As a consequence of reducing level-1 residual variance, the level-2 

random intercept variance (τU0
2) will usually INCREASE

– This is not really a problem, but here’s how it happens:

• Observed level-2 τU0
2 is NOT just between-group variance 

– Also has a small part of within variance (level 1, σe
2) due to sampling

 observed τU0
2 ≈ true τU0

2 + (σe
2 / n)

(as level-1 n goes up, effect of level-1 σe
2 is minimized)

– ML estimate of “true” τU0
2 uses this as a correction factor: 

 true τU0
2 ≈ observed τU0

2 – (σe
2 / n)

• Example: observed τU0
2 = 4.65, σe

2 = 7.06, n = 4 
– So true τU0

2 = 4.65 – (7.06 / 4) = 2.88

– Add group-MC level-1 predictor, reduce σe
2 to 2.17 

• Pseudo-R2 for σe
2 = (7.06 – 2.17)/7.06 = .69, or 69% reduction in σe

2

– But τU0
2 was not reduced, so true τU0

2 = 4.65 – (2.17 / 4) = 4.10 now

Lecture 7
32 of 33

More on Pseudo-R2 Effect Size
• Pseudo-R2 is not calculated when adding random effects

– Does not apply: fixed effects reduce variance, but random effects only 
re-partition variance (random effect = new pile of variance)

– Calculate random effects confidence intervals instead!

• Pseudo-R2 is only calculable across models with same piles of 
variance (meaning of each variance changes if others are added)

– Another problem: Adding level-2 predictors of one random effect may cause other 
random effect variances to decrease through their correlation

• A simple alternative: Total R2

– Generate model-predicted y values from fixed effects only (using OUTPM 
in SAS, FIXPRED in SPSS, or PREDICT XB in STATA) and correlate with 
observed y values (then square that correlation  total R2)

– Total R2 = total reduction in overall variance of y across levels

– Can be “unfair” in models with large unexplained sources of variance
• Such as in cross-classified models… up next
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MLM for Clustered Data: Summary
• Models now come in only two kinds: “empty” and “conditional”

– The lack of a comparable dimension to “time” simplifies things greatly!

• L2 = Between-Group (BG), L1 = Within-Group (WG; between-person)
– L1 predictors are now person variables, and can have fixed, random, or 

systematically varying effects

– L2 predictors are now group variables, and can have fixed or 
systematically varying effects

• Still no smushing allowed main effects of or interactions involving 
level-1 predictors:
– Group-MC at L1: Get L1=WG and L2=BG effects directly

– Grand-MC at L1: Get L1=WG and L2=contextual effects directly 
• As long as some representation of the L1 effect is included in L2; 

otherwise, the L1 effect (and any interactions thereof) will be smushed


