Explanatory Latent Trait Models: A Tale of Two Studies

Lesa Hoffman

Professor, Educational Measurement and Statistics Psychological and Quantitative Foundations University of Iowa College of Education

Presented to CASMA Colloquium Series, 5/6/2022

Prelude: The Hofflin Lego-Based View of Quantitative Methods

Big Picture Idea:

If you understand the elemental building blocks of statistical models, then you can build **anything**! Today I want to illustrate how thinking this way has shaped my research for the better.

The 4 Lego Building Blocks

- 1. Linear models (for answering questions of prediction)
- 2. Estimation (for iterative ways of finding the answers)
- 3. Link functions (for predicting any type of outcome)
- 4. (a) Random effects /
 (b) Latent traits / factors / variables

(a) for modeling multivariate "correlation/dependency"(b) for modeling relations of "unobserved constructs"

How the Blocks Fit Together

- 1. Linear models answer research questions, and are the first building block of every more complex analysis
 - Is there an effect? Is this effect the same for everyone?
 Is the effect still there after considering something else?

To add more blocks, you need iterative **estimation** 2. Maximum likelihood or Bayesian (e.g., MCMC)

What other blocks you will need is determined by:

3. How your outcome is measured \rightarrow link functions

4. Your dimensions of sampling \rightarrow random/latent effects

From One to Many Outcomes...

- Most designs have more than one outcome per person...
 - > e.g., multiple outcomes, occasions, items, trials ... per person
 - > Multiple dimensions of **sampling** \rightarrow multiple kinds of **variability**

4. Random Effects / Latent Variables

- Random effects are for "handling dependency" that arises because multiple dimensions of sampling → multiple variances
 - Occasions within children (need 1+ random effect)
 - > Children within classrooms within schools (need 2+ random effects)
 - > aka, multilevel, mixed-effects, or hierarchical linear models
- Latent <traits/factors/variables> are for representing "error-free true construct variance" within observed variables
 - Normal outcomes + latent variables = factor analysis (CFA; SEM)
 - Categorical outcomes + latent variables = item response theory (IRT)
- Random effects / latent variables are **mechanisms** by which:
 - > Make best use of all the data; avoid list-wise deletion of incomplete data
 - > Quantify and predict distinct sources of variation... *cue story-time*...

The Curse of Non-Exchangeable Items

Jim Bovaird, University of Nebraska-Lincoln

Larry Locker, Georgia Southern University

- Psycholinguistic research (items are words and non-words)
 - Common persons, common items designs
 - Contentious fights with reviewers about adequacy of experimental control when using real words as stimuli
 - Long history of debate as to how data should be analyzed:
 F1 ANOVA, F2 ANOVA, or both?

Larry's Kinds of ANOVAs

Original Data per Person

	B1	B2		
A1	Item 001 Item 002 Item 100	Item 101 Item 102 Item 200		
A2	Item 201 Item 202 Item 300	Item 301 Item 302 Item 400		

Person Summary Data

	B1	B2
A1	Mean (A1, B1)	Mean (A1, B2)
A2	Mean (A2, B1)	Mean (A2, B2)

"F1" Within-Persons ANOVA on N persons: $RT_{cp} = \gamma_0 + \gamma_1 A_c + \gamma_2 B_c + \gamma_3 A_c B_c + U_{0p} + e_{cp}$

"F2" Between-Items ANOVA on / items: $RT_i = \gamma_0 + \gamma_1 A_i + \gamma_2 B_i + \gamma_3 A_i B_i + e_i$

Item Summary Data

	B1
A1, B1	Item 001 = Mean(Person 1, Person 2, Person N) Item 002 = Mean(Person 1, Person 2, Person N) Item 100
A1, B2	Item 101 = Mean(Person 1, Person 2, Person N) Item 102 = Mean(Person 1, Person 2, Person N) Item 200
A2, B1	Item 201 = Mean(Person 1, Person 2, Person N) Item 202 = Mean(Person 1, Person 2, Person N) Item 300
A2, B2	Item 301 = Mean(Person 1, Person 2, Person N) Item 302 = Mean(Person 1, Person 2, Person N) Item 400

Choosing Amongst ANOVA Models

- F1 Within-Persons ANOVA on person summary data:
 - > Within-condition *item* variability is gone, so items assumed fixed
- F2 Between-Items ANOVA on item summary data:
 - > Within-item *person* variability is gone, so persons assumed fixed
- Historical proposed ANOVA-based resolutions:
 - F' → quasi-F test with random effects for both persons and items (Clark, 1973), but requires complete data (uses least squares)
 - > Min F' → lower-bound of F' derived from F1 and F2 results, which does not require complete data, but is too conservative
 - F1 x F2 criterion → effects are only "real" if they are significant in both F1 and F2 models (*aka*, death knell for psycholinguists)
 - > But neither model is complete (two wrongs don't make a right)...

Multilevel Models: A New Way of Life?

Original Data per Person

	B1	B2
A1	Item 001 Item 002 	Item 101 Item 102
A2	Item 201 Item 202 Item 300	Item 301 Item 302 Item 400

Pros:

- Use all original data, not summaries
- Responses can be missing at random
- Can include continuous predictors

Cons:

• Is still wrong (is ~F1 ANOVA)

Level 1:
$$y_{ip} = \beta_{0p} + \beta_{1p}A_{ip} + \beta_{2p}B_{ip} + \beta_{3p}A_{ip}B_{ip} + e_{ip}$$

Level 2: $\beta_{0p} = \gamma_{00} + U_{0p}$ Level 2: $\beta_{1p} = \gamma_{10}$ $\beta_{2p} = \gamma_{20}$ Level $\beta_{3p} = \gamma_{30}$

Level 1 = Within-Person Variation (Across Items)

Level 2 = Between-Person Variation

Multilevel Models: A New Way of Life?

A Better Way of (Multilevel) Life

• Multilevel Model with Crossed Random Effects: $RT_{tpi} = \gamma_{000} + \gamma_{001}A_i + \gamma_{002}B_i + \gamma_{003}A_iB_i$ $+ U_{0p0} + U_{00i} + e_{tpi}$ t trial p person i item

- Explicitly test **persons** and **items** as random effects:
 - > Person predictors capture between-person mean variation: τ_{0P0}^2
 - > Item predictors capture between-item mean variation: τ_{00I}^2
 - > Trial predictors capture trial-specific residual variation: σ_e^2

Larry's Story: Example Data

- Crossed design: 38 persons by 39 items (words or nonwords)
- Lexical decision task: Response Time to decide if word or nonword
- 2 word-specific predictors of interest:
 - > A: Low/High Phonological Neighborhood Frequency
 - » B: Small/Large Semantic Neighborhood Size

Locker, Hoffman, & Bovaird (2007, Behavior Research Methods)

Not Just in Larry's Example Data...

 Generality of results examined via simulation study of Type I error rates for person or item predictor effects

Testing person effects in common persons design?

- > Need to include **person** variance in model (so not **F2 ANOVA**)
- Need random effect for **persons** (in **MLM** or in **F1 ANOVA**), so that **person** predictors can explain that **person** variance

• Testing item effects in common items design?

- Need to include item variance in model (so not F1 ANOVA)
- Need random effect for items (in MLM or in F2 ANOVA), so that item predictors can explain that item variance

Nested vs. Crossed Multilevel Designs

- When should items be a separate level-2 random effect?
 - Items are clearly nested within persons if the model fixed effects
 explain all item differences (so no item variation remains)
 - e.g., via item-specific indicators (CFA, IRT; stay tuned)
 - e.g., by item design features given only one item per condition
 - > Items are clearly nested within persons if they are **endogenous**
 - e.g., autobiographical memories, eye movements, speech utterances
 - > More ambiguous if items are **randomly generated** per person
 - If items are truly unique per person, then there are no common items... but items are usually constructed systematically
 - Modeling items as **nested (no variance) assumes exchangeability**
- When does this matter?
 When turning experiments into instruments...

Paradigms in Studying Cognition

Experimental Designs

- Goal is inference about processes or architecture of cognitive ability
- Create meaningfully different items through **specific** manipulations
- Many items given to **few** people
- Multiple aspects of construct represented within a single task
- ANOVA \rightarrow Ability represented by:
 - Mean performance (e.g., RT, # correct)
 - Mean differences between conditions
- MLM \rightarrow Ability represented by:
 - Random intercept
 - Random slopes for item effects

Psychometric Measures

- Goal is to measure individual differences in cognitive ability
- Create equivalent items to reflect general ability being measured
- Fewer items given to **more** people
- **Multiple measures** given to better represent the ability construct
- CTT \rightarrow Ability represented by:
 - Mean performance (e.g., # correct)
 - Mean/component of multiple measures
 - CFA/IRT \rightarrow Ability represented by:
 - > Random intercept (≈ factor, theta)
 - Multidimensional ability model

Combining Paradigms

- The fine-grained task decomposition found in experimental designs can be combined with latent trait models to more rigorously quantify and predict individual differences
 - > **Synergy** of experimental and individual differences research
 - Theoretical models of cognitive processes inform test construction; research using these instruments then informs theoretical models
- Long-term goal: construct measures of cognition that are theoretically meaningful and psychometrically viable
 - > Short-term goal: build instruments to individual **visual attention**
 - > Individual differences matter in aging and in real-world situations
 - > Lack of *psychometric* **instruments** to measure attention
 - > **Visual search** tasks are well-understood \rightarrow recipe for item creation

Why Measure Selective Attention?

- Attention is...
 - > "A system for routing information and for control of priorities" (Posner, 1980)
 - "The capacity or energy to support cognitive processing" (Plude & Hoyer, 1985)
- Lifespan changes in attentional abilities matter:
 - Significant real-world consequences of attentional deficits with age (that can't be fixed by glasses or heading aids)
 - Difficulty with specific aspects of modulating attention is a marker of some non-normative aging processes
- Measuring visual search in particular:
 - > Task difficulty is well-understood \rightarrow recipe for item creation
 - > Current lack of *psychometric* instruments to measure attention
 - Attention is rarely measured in individual differences studies, so little is known about how it relates to other abilities (nomothetic span)

Measuring Visual Search Ability: Take 1

Change detection task using the "flicker paradigm"

cycle continues until response for max of 45 sec

Rated Item Design Features:

- Visual clutter of the scene
- Relevance of the change to driving
- Brightness of the change
- Change made to legible sign
- 155 persons, 46 items retained,
 DV = response time (if < 45 sec)

Measuring Visual Search Ability: Take 1

- How to fit a censored response time into an "IRT" model?
 - > Cut up RT, fit tau-equivalent graded response model (GRM)
 - "1. immediate" = RT < 8 sec, "2. delayed" = 8-45 sec, "3. time out"</p>
- LLTM version of GRM to examine predictors of item difficulty $prob(y_{pi} > c | \theta_p) = \frac{exp(\theta_p - \beta_{ic})}{1 + exp(\theta_p - \beta_{ic})} \qquad \begin{bmatrix} i = \text{item} \\ c = \text{category (threshold)} \end{bmatrix}$
- Where each item threshold is:

 $\begin{aligned} \beta_{ic} &= \gamma_{c0} + \gamma_1 Clutter_i + \gamma_2 Relevance_i + \gamma_3 Brightness_i \\ &+ \gamma_4 Sign_i \end{aligned} \ (difference of category intercepts modeled directly) \end{aligned}$

p = person

• r = .62 of model-predicted and observed item difficulty

Predicting Driving Impairment*

- 155 current drivers age 63-87; 56% women
- Predictors:
 - Vision (distance acuity, contrast sensitivity)
 - > Visual Attention (Useful Field of View subtests, DriverScan)
- Driving Simulator Task Outcome:
 - Easy curves, divided attention, passing, stoplights, obeying speed limits, weaving, narrow radius turns, overtaking vehicles
 - Nothing predicted self-reported and state-recorded accidents
- * Like a good neighbor, State Farm was there (2002 Dissertation Grant)

Hoffman, McDowd, Atchley, & Dubinsky (2005, Psychology and Aging)

Measuring Visual Search Ability Take 1: Lessons Learned

Response time is problematic as an outcome

- > Speed is contaminated with decision threshold
- > Physical limitations may prevent older adults from responding quickly
- Continuous distribution, but it's almost always very skewed
- > Limited utility in real-world assessment

Change detection task format is less than ideal

- > Other-rated item features don't generalize to new items
- > No basis for extrapolation for to create new items
- Fixed test items can't be used to measure change
- > What if search ability measured was specific to driving scenes?
- Time for Take 2 → use accuracy and standard search tasks
 → use legit explanatory IRT models

Measuring Visual Search Ability: Take 2 Project Goals:

Determine the dimensionality of visual attention ability within and between methods of assessment and its relationships with other constructs (~nomothetic span)

 Identify the factors that predict task difficulty commonly across both context-free, simple visual search tasks and context-specific, applied visual search tasks measuring selective visual attention (~construct representation)

Abilities Measured (by # tasks):

primary memory (3), working memory (3), comparison speed (3), visual search (4)

Context-Free Basic Search Tasks

Context-Specific Applied Search Tasks

Web Page Search: find link to either "Medical Center" or "Grayhawk Lab"

Grocery Shelf Search: find either can of corn or can of carrots

Measuring Visual Search Ability

and presentation time were counterbalanced.

Predictors of Accuracy:

- Item presentation time (short, medium, long)
- Target location in 6x6 grid (inner, middle, outer)
- # distractors (5 levels)
- % distractors similar to target (~20, 40, 60, 80, 100)
- Log of trial order

Sample:

- 329 adults (OA: age 62-88)
- 102 college students (YA)
- Shared medium time, and
 YA→ short, OA → long

Lego #3: Predicting Accuracy Instead of RT

Latent Variable Models of Ability

- **1PL model** predicts accuracy via fixed item effects and random person effects (i.e., *n* items are nested in persons)
- 1PL model:

> Probability
$$(y_{pi} = 1 | \boldsymbol{\theta}_{p}) = \frac{exp(\boldsymbol{\theta}_{p} - \boldsymbol{b}_{i})}{1 + exp(\boldsymbol{\theta}_{p} - \boldsymbol{b}_{i})}$$

>
$$Logit(y_{pi} = 1 | \boldsymbol{\theta}_p) = \boldsymbol{\theta}_p - \boldsymbol{b}_i$$

$$b_i$$
 is fixed effect of
difficulty per item
 θ_p is random person
ability (variance τ_p^2)

1PL is also a general<u>ized</u> multilevel model:

- > $Logit(y_{pi} = 1 | U_{p0}) = \gamma_{01}I_1 + \gamma_{02}I_2 + \dots + \gamma_{0n}I_n + U_{p0}$
- Because item difficulty/easiness is perfectly predicted by the *I* indicator variables, here items do not need a level-2 crossed random effect

 γ_{0i} is fixed effect of <u>easiness</u> per item

 U_{p0} is random person ability (variance τ_{P0}^2)

Adding Lego #1: Linear Models

- 1PL can be extended to **predict item difficulty** via the LLTM
- **LLTM** $\rightarrow k$ item features predict b_i ; random persons (θ_p):
 - > $Logit(y_{pi} = 1 | \boldsymbol{\theta}_{p}) = \boldsymbol{\theta}_{p} \boldsymbol{b}_{i}$
 - $\succ b_i = \gamma_0 + \gamma_1 X_{1i} + \gamma_2 X_{2i} + \dots + \gamma_k X_{ki}$

Item difficulty = linear model of k item features (of $X^*\gamma$ fixed effects); θ_p is random person ability (variance τ_{θ}^2)

- LLTM written as a generalized multilevel model:
 - > $Logit(y_{pi} = 1 | U_{p0}) = \gamma_{00} + \gamma_{01}X_{1i} + \gamma_{02}X_{2i} + \dots + \gamma_{0k}X_{ki} + U_{p0}$
 - > Because there is **no random item effect**, the model says that items are still just nested within persons—that item difficulty or easiness is *perfectly* predicted by the X item features \rightarrow **no item differences remain**

Item easiness = a linear model of k item features (of $X^*\gamma$ fixed effects); U_{0p} is random person ability (variance τ_{P0}^2)

Proof of Concept: Random Items Matters

Item re-analysis predicting accuracy in dissertation data using SAS PROC GLIMMIX (Laplace estimation)

Effect	Items Treated as Fixed		Items Treated as Random			
	Est	SE	p <	Est	SE	p <
Intercept	0.862	0.153	.0001	1.31	1 0.635	.0474
Clutter	-0.268	0.055	.0001	-0.32	0.242	.1809
Relevance	0.220	0.099	.0266	0.03	0.426	.9305
Brightness	0.474	0.113	.0001	0.79	0.499	.1136
Legible Sign	0.662	0.082	.0001	0.73	0.337	.0283

Putting It All Together...

 Experimental tasks can become psychometric instruments via explanatory IRT (generalized multilevel) models in which items and persons have crossed random effects at level 2

 $Logit(y_{tpi} = 1) = \gamma_{000} + \gamma_{001}X_{1i} + \gamma_{002}X_{2i} + \dots + \boldsymbol{U_{0p0}} + \boldsymbol{U_{00i}}$

- > U_{0p0} is person ability with random (unpredicted) variance of τ^2_{0P0}
- > U_{00i} is item easiness is predicted from a linear model of the X item features, with random (leftover) variance of τ_{00I}^2
- > Can add person predictors to explain τ_{0P0}^2
- Can examine random effects across persons of X item features (i.e., differential susceptibility to item manipulations)
- So how did we do? Let's examine **reliability for U_{0p0}** ...

Reliability of Individual Differences

From model controlling for level-1 presentation time only: $Logit(y_{tpi} = 1) = \gamma_{000} + \gamma_{100}Time_{tpi} + U_{0p0} + U_{00i}$

Improving Efficiency (Reducing Boredom)

- Can we give fewer items but still retain measurement precision?
 - > ANOVA/CTT: Ability is mean RT or # correct? Then no.
 - > MLM/IRT: Ability is estimated along with item properties? Then yes!
- Adaptive search tasks in 5 easy steps:
 - 1. **Decompose** item difficulty into effects of known features
 - 2. **Create** new, structurally equivalent items on the fly
 - 3. Estimate person ability between each item to determine what level of difficulty the next item should have to be the most informative
 - 4. **Test** younger and older adults via adaptive cognitive tests instead
 - 5. Change the world of cognition

My Partners in Crime (and Estimation)

How does it work?

- Display items and collect responses in Visual Basic
- Custom MCMC algorithm in Fortran to predict theta after each item given precalibrated item properties and presentation time
- Administer most relevant item from item bank next
- Increase or decrease to presentation time to fill in gaps in item difficulty
- So let's see how we did...

SE for Ability by Trial: n=34 OA

Hoffman UNL Faculty Seed Grant

Adaptive Ability by Trial: n=34 OA

Hoffman UNL Faculty Seed Grant

SE for Ability by Trial: *n*=175 YA

Hoffman UNL Faculty Seed Grant

Adaptive Ability by Trial: n=175 YA

When More is Not Better...

Adaptive Search: My Legos to Ponder

1. Linear models:

- "Explained" item variance in making new items by age
- > Is using presentation time to fill in the gaps ok to do?

2. Estimation:

Converging evidence across ML and MCMC methods

3. Link functions:

Need better match of forced-choice format (chance = 50%)

4. Random / latent effects for multidimensionality:

 Individual differences in effects of item features via additional latent variables (random slopes or latent attributes)

Thank you for your attention!

Questions or comments? Lesa-Hoffman@Ulowa.edu