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• Topics:
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➢ From single-level to multilevel empty means models
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➢ Fixed effects of level-2 predictors

➢ Effect size for level-2 predictors
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Multilevel Models (MLMs) for Clustered* Data

• *Clustering = Nesting = Grouping = Hierarchies

➢ Key idea: Outcomes with >1 dimension of sampling simultaneously 

(“micro” units are nested in one or more types of “macro” units)

➢ Each sampling dimension is considered its own “level” → MLM

➢ MLMs can be used to predict outcomes from two-level (or more-level) 

sampling designs that result in nested and/or crossed observations

• The term “Multilevel Model” (MLM) has many synonyms:

➢ General Linear Mixed-Effects Models (Fixed + Random = Mixed)

➢ Random Coefficients Models (Random effects = latent variables)

➢ Hierarchical Linear Models (HLM, but not = hierarchical regression)  

➢ Most MLM software is “univariate” → predict 1 outcome at a time 

➢ Multivariate MLMs can be estimated as “multilevel structural equation 

models” to predict 2+ outcomes at once (+ address missing predictors)
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Examples of Nested Designs

• Examples of two-level sampling designs:

➢ Students (level 1) nested in classes/teachers (level 2)

➢ Patients (level 1) nested in doctors (level 2)

➢ Citizens (level 1) nested in countries (level 2)

• Examples of three-level sampling designs:

➢ Students (level 1) nested in classes/teachers (level 2) 

nested in schools (level 3)

➢ Patients (level 1) nested in doctors (level 2) 

nested in hospitals (level 3)

➢ Citizens (level 1) nested in survey years (level 2) 

nested in countries (level 3)
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Examples of Crossed Designs
• Examples of two-level cross-classified sampling designs:

➢ Two kinds of nesting: Students (level 1) nested in both schools 
(level-2) and neighborhoods (crossed at level 2)

➢ Repeated measures: Responses (level 1) nested in 
both subjects (level 2) and items (crossed at level 2)

➢ Reliability assessment: Ratings (level 1) nested in 
both raters (level 2) and targets (crossed at level 2)

➢ Students who change classes over time: occasions (level 1) 
nested in both students (level 2) and classes (crossed at level 2)

• Example of three-level cross-classified sampling designs:

➢ Ratings (level 1) nested in both children (level 2) and raters 
(crossed at level 2); raters are nested within sites (level 3)

➢ Responses (level 1) nested in both students (level 2) and items 
(crossed at level 2); students are nested within schools (level 3) 
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Labels for Organizing Models
• Outcome type: General (normal) vs. Generalized (not normal)

• Dimensions of sampling: One (so one variance term per outcome) vs. 

Multiple (so multiple variance terms per outcome) → OUR WORLD

• General Linear Models: conditionally normal outcome distribution, 

fixed effects (identity link; only one dimension of sampling)

• Generalized Linear Models: any conditional outcome distribution, 

fixed effects through link functions, no random effects (only one dimension)

• General Linear Mixed Models: conditionally normal outcome distribution, 

fixed and random effects (identity link, but multiple dimensions of sampling)

• Generalized Linear Mixed Models: any conditional outcome distribution, 

fixed and random effects through link functions (multiple dimensions)

➢ Same concepts as for generalized or mixed separately, but with more complexity in estimation

• “Linear” → fixed effects predict the link-transformed conditional mean of 

outcome in a linear combination: (effect*predictor) + (effect*predictor)…
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Note: Ordinary  

 Least Squares 

 is only for GLM



Levels of Analysis in Two-Level Nested Data
• Between-Cluster (BC) Variation:

➢ Level-2 = “INTER-cluster differences” = cluster characteristics

• Within-Cluster (WC) Variation:

➢ Level-1 = “INTRA-cluster differences” = person characteristics

• Any variable measured per person could have 
both L2 between and L1 within variation!

➢ BC = some clusters are higher/lower on average than other clusters 

➢ WC = some people are higher/lower than the rest of their cluster

➢ Btw, univariate MLMs must address this differently for level-1 predictors 
vs. level-1 outcomes, but multivariate MLMs treat both the same way 

▪ Stay tuned for APA Free Training 2 for level-1 person predictors!

• So how do MLMs “handle” multiple levels of sampling?
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The Two Sides of *Any* Model
• Model for the Means:

➢ Fixed Effects, the “structural” part (= latent variables means)

➢ What you are used to caring about for testing hypotheses

➢ How the expected outcome for a given observation varies 
as a function of their values for the predictor variables

• Model for the Variance:

➢ Random Effects and Residuals, the “stochastic” or “error” part

▪ Btw, random effect variances = latent variable variances

➢ What you are used to making assumptions about instead

➢ How residuals are distributed and related across observations 
(persons, clusters, items, etc.) → these relationships are called 
“dependency” and this is the primary way that multilevel 
models differ from general linear models (GLMs; “regression”)

Intro to Clustered MLM 7    



Two Sides of a General Linear Model (GLM)

𝑦𝑝 = 𝛽0 + 𝛽1(𝑥1𝑝) + 𝛽2(𝑥2𝑝) + ⋯ + 𝑒𝑝

• Model for the Means (→ Predicted Values):

➢ Each person’s expected (predicted) outcome is a weighted linear 
function of his/her values on 𝑥1𝑝 and 𝑥2𝑝 (and any other predictors); 
each variable is measured once per person (given by the 𝑝 subscript)

➢ Estimated 𝜷 constants are called fixed effects (intercept or slopes)

• Model for the Variance (→ “Piles” of Variance):

➢ 𝒆𝒑 ∼ 𝑵 𝟎, 𝝈𝒆
𝟐
→ ONE (between-person) source of unexplained variation

➢ In GLMs, 𝑒𝑝 has a mean of 0 with some estimated constant variance 𝜎𝑒
2, 

is normally distributed, is unrelated to 𝑥1𝑝 and 𝑥2𝑝, and is independent 
across all observations (which is just one outcome per person here)

➢ There is only ONE source of residual variance in the above GLM 
because it was designed for only ONE dimension of sampling!
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Our focus

𝑝 = person



An “Empty Means” General Linear Model

→ Single-Level Model for the Variance
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Adding Multiple Persons per Cluster

→ Two-Level Model for the Variance

Intro to Clustered MLM 10    

Full Sample Distribution

20

40

60

80

100

120

140

0 20 40 60 80 100 120

Mean = 89.55
Std. Dev. = 15.114
N = 1,334

3 Clusters (𝑐), 5 Persons (𝑝)

𝒚𝒑 per 

person

𝒚𝒑𝒄 per person 

and cluster



Empty Means, Two-Level Model for the Variance

Start off with the outcome’s 

mean as a “best guess” for 

any outcome’s value:

 = Grand Mean

 → Fixed Intercept

Can make better guess 

by taking advantage of 

cluster-common information:

 = Cluster Mean 

 → Random Intercept
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From a one-level to a two-

level model for the variance:



Empty Means, Two-Level Model for the Variance

𝒚𝒑𝒄 = 𝜷𝟎 + 𝑼𝟎𝒄 + 𝒆𝒑𝒄

Level-2 Random Intercept 𝑼𝟎𝒄 

(with variance labeled 𝝉𝑼
𝟐

𝟎
):

• Between-cluster (BC) variance

• INTER-cluster differences to be 

explained by cluster predictors

Level-1 Residual 𝒆𝒑𝒄 per person

(with variance labeled 𝝈𝒆
𝟐):

• Within-cluster (WC) variance

• INTRA-cluster differences to be 

explained by person predictors
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𝜷𝟎 → mean of cluster means

𝒚𝒑𝒄 variance → 2 sources:

𝑼𝟎𝒄

𝑼𝟎𝒄

𝑼𝟎𝒄

𝒆𝒑𝒄

𝒆𝒑𝒄

𝒆𝒑𝒄



Two-Level Model Using Multilevel Notation:

Empty Means, Random Intercept Model

GLM Empty Model:

       𝒚𝒑 = 𝜷𝟎 + 𝒆𝒑

MLM Empty Model:

• Level 1:  

    𝒚𝒑𝒄 = 𝜷𝟎𝒄 + 𝒆𝒑𝒄

• Level 2: 

    𝜷𝟎𝒄 = 𝜸𝟎𝟎 + 𝑼𝟎𝒄
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3 total parameters: 

Model for the Means (1): 

• Fixed Intercept 𝜸𝟎𝟎 

Model for the Variance (2):

• Level-1 WC Variance of 𝒆𝒕𝒊 → 𝝈𝒆
𝟐

• Level-2 BC Variance of 𝑼𝟎𝒊 → 𝝉𝑼
𝟐

𝟎

Fixed Intercept 

= mean of cluster 

means (because 

no predictors yet) 

L2 Random Intercept 

= cluster-specific 

deviation from 

predicted intercept

L1 Residual = person-specific deviation 

from cluster-predicted outcome 

Composite equation:  

𝒚𝒑𝒄 = 𝜸𝟎𝟎 + 𝑼𝟎𝒄 + 𝒆𝒑𝒄



Intraclass Correlation (ICC)

ICC =
BC

BC + WC
=

L2 Intercept Var

L2 Intercept Var + L1 Residual Var

 =
𝝉𝑼

𝟐
𝟎

𝝉𝑼
𝟐

𝟎
+ 𝝈𝒆

𝟐

• ICC = Proportion of total variance that is between clusters

• ICC = Average correlation of persons from same cluster

• ICC is a standardized way of expressing how much dependency 

(correlation) there is due to cluster mean differences 

→ ICC is an effect size for constant cluster dependency

➢ Dependency of other kinds can still be created by differences across 

clusters in the slopes of person predictors (stay tuned for part 2!)

• Btw, no variance has been “explained” yet (just 2 kinds of “error”)
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𝝉𝑼
𝟐

𝟎
 → Why don’t all clusters have the same mean?

 𝝈𝒆
𝟐 → Why don’t all people from the same cluster 

             have the same outcome?



Even though between-cluster variance is the 

numerator, ICC = within-cluster correlation!
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ICC = BTW / BTW + within

→ Large ICC 

→ Large correlation 

    within clusters

ICC = btw / btw + WITHIN

→ Small ICC 

→ Small correlation 

    within clusters

𝐈𝐂𝐂 =
𝝉𝑼

𝟐
𝟎

𝝉𝑼
𝟐

𝟎
+ 𝝈𝒆

𝟐



Effects of Clustering on Effective 𝑁
• Design Effect expresses how much sample size needs to 

be adjusted due to clustering → “effective sample size”

• Design Effect = ratio of the variance using a given sampling 

design to the variance using a simple random sample from the 

same population, given the same total sample size either way

• Design Effect = 1 + 𝐿1𝑛 − 1 ∗ ICC

• Effective sample size → Effective 𝑁 =
# Total Observations

Design Effect
 

• As ICC and cluster size go UP, effective 𝑁 goes DOWN

➢ See Snijders & Bosker (2012) for more info and for a modified 

formula that takes unequal group sizes into account

𝐿1𝑛 = # level-1 units
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https://www.stats.ox.ac.uk/~snijders/mlbook.htm


Demonstrating Two-Level Design Effects

• Design Effect = 1 + 𝐿1𝑛 − 1 ∗ ICC

• Effective sample size → Effective 𝑁 =
# Total Observations

Design Effect

• 𝑛 = 5 patients from each of 100 doctors, ICC = .30?

➢ Patients Design Effect = 1 + ([5−1] * .30) = 2.20

➢ 𝐄𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝑵 = 500 / 2.20 = 227   (not 500)

• 𝑛 = 20 students from each of 50 schools, ICC = .05?

➢ Students Design Effect = 1 + ([20−1] * .05) = 1.95

➢ 𝐄𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝑵 = 1000 / 1.95 = 513  (not 1000)
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Does a non-significant ICC mean you can 

ignore clustering and just do a regression?

• As ICC and cluster size go UP, effective 𝑁 goes DOWN

➢ So there is NO VALUE OF ICC that is “safe” to ignore, not even ~0!

➢ An ICC=0 in an empty means (unconditional) model can become ICC>0 

after adding person predictors because reducing the residual variance 

will then increase the random intercept variance (→ conditional ICC > 0)

▪ Design effects can increase after including good person predictors!

• So just plan to do a multilevel analysis anyway…

➢ Even if “that’s not your question”… because people are in clusters, we

still need to address cluster dependency (= correlation) because of:

▪ Effect on person predictor fixed slope SEs → biased SEs

▪ Potential for contextual effects of person predictors (stay tuned!)

– A “clustered-sampling correction” to the SEs will not fix this problem! 
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2 Options for Cluster Differences
Represent Cluster Differences via Fixed Effects

• Include (#clusters−1) binary predictors for cluster membership 

in the model for the means → so cluster is NOT a model “level” 

➢ Main effects control for cluster mean differences only; interactions with 

person predictors are also needed to control for cluster slope differences

• Useful if #clusters < 10ish or you care about specific clusters, but 

then you cannot include cluster predictors → saturated mean diffs

Represent Cluster Differences via Random Effects

• Include a random intercept variance across clusters in the 

model for the variance → then cluster IS a model “level”

➢ A random intercept controls for cluster mean differences only; a random 

slope variance is needed for cluster differences in person predictor slopes

• Better if #clusters > 10ish or you want to predict cluster differences

• So let’s see an example!
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Empty Means, Random Intercept Model: 

(1b) Syntax by Univariate MLM Program

Intro to Clustered MLM 20    

SAS:
PROC MIXED DATA=work.Example COVTEST NOCLPRINT IC METHOD=REML;

     CLASS schoolID;

     MODEL langpost = / SOLUTION DDFM=Satterthwaite;

     RANDOM INTERCEPT / VCORR TYPE=UN SUBJECT=schoolID; * VCORR gives ICC;

RUN; 

R lmer from lme4 package—using lmerTest package to get Satterthwaite denominator DF, and using 

performance package to get ICC from lmer: 

name = lmer(data=Example, REML=TRUE,  formula=langpost~1+(1+|schoolID)) 

summary(name, ddf="Satterthwaite")
icc(name); ranova(name) # ICC and LRT for random intercept

STATA:
mixed langpost , || schoolID: , ///

      reml dfmethod(satterthwaite) dftable(pvalue) nolog

estat icc // Get ICC 

SPSS:

MIXED langpost BY schoolID

      /METHOD   = REML 

      /CRITERIA = DFMETHOD(SATTERTHWAITE)

      /PRINT    = SOLUTION TESTCOV 

      /FIXED    =

      /RANDOM = INTERCEPT | COVTYPE(UN) SUBJECT(schoolID). 



Example: Level-1 Students in Level-2 Schools
Example from Snijders & Bosker (2012): Predict language outcomes 

(M = 41.46, VAR = 77.69) for 3,566 students (𝑝) from 191 schools (𝑐)

Level-1:  𝑳𝒂𝒏𝒈𝒑𝒄 = 𝜷𝟎𝒄 + 𝒆𝒑𝒄

Level-2:  𝜷𝟎𝒄 = 𝜸𝟎𝟎 + 𝑼𝟎𝒄

Results from SAS MIXED:
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Without random intercept 𝑼𝟎𝒄: With random intercept 𝑼𝟎𝒄:

𝐈𝐂𝐂 =
𝝉𝑼

𝟐
𝟎

𝝉𝑼
𝟐

𝟎
+ 𝝈𝒆

𝟐
=

𝟏𝟕. 𝟖𝟎𝟗

𝟏𝟕. 𝟖𝟎𝟗 + 𝟔𝟐. 𝟐𝟑𝟎
= . 𝟐𝟐𝟑

22% of total language variance is due 

to school mean differences (WC r = .22)

https://www.stats.ox.ac.uk/~snijders/mlbook.htm


Adding Level-2 Cluster Predictors
• Level-2 predictors are constant over persons from the 

same cluster—they are cluster-level characteristics

➢ Example: Level-1 (L1) students (𝑝) nested in level-2 (L2) schools (𝑐) 
that vary in homework amount and mixed grades (0=no, 1=yes)

• Level-1:  𝑳𝒂𝒏𝒈𝒑𝒄 = 𝜷𝟎𝒄 + 𝒆𝒑𝒄

• “Unconditional” Level-2 (before cluster predictors):  

➢ 𝜷𝟎𝒄 = 𝜸𝟎𝟎 + 𝑼𝟎𝒄

• “Conditional” Level-2 (after cluster predictors):   

➢ 𝜷𝟎𝒄 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏 𝑯𝑾𝒄 − 𝟐
                     + 𝜸𝟎𝟐 𝑴𝒊𝒙𝑮𝒓𝒅𝒄 + 𝑼𝟎𝒄

➢ First subscript = which beta in level-1 model
Second subscript = order of predictor in level-2 model
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𝝉𝑼
𝟐

𝟎
→ All possible L2 random intercept 

 variance due to school mean differences

𝝉𝑼
𝟐

𝟎
→ L2 random intercept 

 variance leftover after HW

 and mixed grade prediction

𝝈𝒆
𝟐 → All possible L1 residual 

 variance for within-school

 differences across students



Adding Level-2 Cluster Predictors: 

(1c) Syntax by Univariate MLM Program
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SAS:
PROC MIXED DATA=work.Example COVTEST NOCLPRINT IC METHOD=REML;

     CLASS schoolID;

     MODEL langpost = hw2 mixgrd / SOLUTION DDFM=Satterthwaite;

     RANDOM INTERCEPT / TYPE=UN SUBJECT=schoolID; 

RUN; 

R lmer from lme4 package—using lmerTest package to get Satterthwaite denominator DF: 

name = lmer(data=Example, REML=TRUE,  formula=langpost~1+hw2+mixgrd+(1+|schoolID)) 

summary(name, ddf="Satterthwaite")

STATA:
mixed langpost c.hw2 c.mixgrd, || schoolID: , ///

      reml dfmethod(satterthwaite) dftable(pvalue) nolog

SPSS:

MIXED langpost BY schoolID WITH hw2 mixgrd

      /METHOD   = REML 

      /CRITERIA = DFMETHOD(SATTERTHWAITE)

      /PRINT    = SOLUTION TESTCOV 

      /FIXED    = hw2 mixgrd

      /RANDOM   = INTERCEPT | COVTYPE(UN) SUBJECT(schoolID). 



Example:  Adding Level-2 Cluster Predictors

Level-1 (L1):  𝑳𝒂𝒏𝒈𝒑𝒄 = 𝜷𝟎𝒄 + 𝒆𝒑𝒄

Level-2 (L2):  𝜷𝟎𝒄 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏 𝑯𝑾𝒄 − 𝟐 + 𝜸𝟎𝟐 𝑴𝒊𝒙𝑮𝒓𝒅𝒄 + 𝑼𝟎𝒄
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Before adding L2 predictors: After adding L2 predictors:



Example:  Adding Level-2 Cluster Predictors

Level-1 Model:   𝑳𝒂𝒏𝒈𝒑𝒄 = 𝜷𝟎𝒄 + 𝒆𝒑𝒄

Level-2 Model:   𝜷𝟎𝒄 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏 𝑯𝑾𝒄 − 𝟐 + 𝜸𝟎𝟐 𝑴𝒊𝒙𝑮𝒓𝒅𝒄 + 𝑼𝟎𝒄

Model for the Means:

• 𝜸𝟎𝟎 = 41.55   = fixed intercept: expected language for students in a school

                         with homework=2 (~mean) and mixgrd=0 (=not mixed)

• 𝜸𝟎𝟏 =   0.51   = fixed slope of HW−2: difference in school mean language

                          for each unit more homework the school tends to assign

• 𝜸𝟎𝟐 = −1.99* = fixed slope of mixgrd: difference in school mean language

                          in schools with mixed grades instead of un-mixed grades 

Model for the Variance:

• 𝑼𝟎𝒄 = level-2 random intercept = deviation between actual and predicted      

          school mean language for school 𝑐 (with variance 𝝉𝑼
𝟐

𝟎
 = 17.16)

• 𝒆𝒑𝒄  = level-1 residual = deviation of the actual outcome for student 𝑝 

          from their outcome predicted by 𝜷𝟎𝒄 (with variance 𝝈𝒆
𝟐 = 62.20)
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What if we used single-level GLM instead?
Level-1 (L1):  𝑳𝒂𝒏𝒈𝒑𝒄 = 𝜷𝟎𝒄 + 𝒆𝒑𝒄

Level-2 (L2):  𝜷𝟎𝒄 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏 𝑯𝑾𝒄 − 𝟐 + 𝜸𝟎𝟐 𝑴𝒊𝒙𝑮𝒓𝒅𝒄 + 𝑼𝟎𝒄
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Without random intercept 𝑼𝟎𝒄: With random intercept 𝑼𝟎𝒄:



Effect Size for Level-2 Cluster Predictors
• Direct: convert 𝑡-statistic for fixed effect into 𝑑 or partial 𝑟

➢ 𝑑 =
2𝑡

𝐷𝐹𝑑𝑒𝑛
 ,      𝑟 =

𝑡

𝑡2+ 𝐷𝐹𝑑𝑒𝑛

• Indirect: explained variance of two complementary kinds

➢ Pseudo-𝑹𝟐: amount of variance explained per variance component

▪ Pseudo-𝑅2 =
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑓𝑒𝑤𝑒𝑟 − 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑚𝑜𝑟𝑒

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑓𝑒𝑤𝑒𝑟

▪ It can go negative if adding useless predictors or if the level-1 model is 

mis-specified (stay tuned!); these problems can be remedied by calculating 

it with model-implied total variance instead (see Rights & Sterba, 2019; 2020)

▪ Only pseudo-𝑅2 for the L2 random intercept var is relevant for L2 predictors

➢ Total-𝑹𝟐: amount of total variance explained (across piles)

▪ Generate model-predicted ෝ𝒚𝒑𝒄 values from fixed effects ONLY and correlate 

them with observed outcomes; square that correlation to get total-𝑅2
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Note: These formulas can be used 

with any model (multilevel or not)

“fewer” = model with fewer parameters

“more” = model with more parameters

https://doi.org/10.1037/met0000184
https://doi.org/10.1080/00273171.2019.1660605


Example Conditional MLM Effect Size
• Results from example predicting student language:

➢ Empty: Level-1 𝝈𝒆
𝟐 = 62.230 and Level-2 𝝉𝑼𝟎

𝟐 = 17.809, so ICC = .223

➢ Conditional: Level-1 𝝈𝒆
𝟐 = 62.201 (≈ because no person predictors yet), 

Level-2 𝝉𝑼𝟎

𝟐 = 17.164 after controlling for mixed grade and HW

• Variance explained by the two level-2 cluster fixed slopes:

➢ Pseudo-𝑹𝑼𝟎
𝟐 =

𝟏𝟕.𝟖𝟎𝟗−𝟏𝟕.𝟏𝟔𝟒

𝟏𝟕.𝟖𝟎𝟗
 = .036 → 3.6% of the level-2 random 

intercept variance (due to school mean differences) in language

➢ Total-𝑹𝟐 = correlation(ෝ𝒚𝒑𝒄, 𝒚𝒑𝒄)2 = .0792 = .006 → 0.6% of the total 

variance in language (22.3% of which was due to school mean diffs)

▪ Total-𝑅2 approximation when there is only a random intercept: 

Total-𝑅2 = (Pseudo-𝑅𝑈
2

0
* ICC) + (Pseudo-𝑅𝑒

2* [1−ICC]) = .008 (see excel)

➢ Because these 𝑅2 values mean very different things, it is essential to 

clearly describe how you calculated them and what they then mean!
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Part 1: Summary
• MLMs begin with an empty model to determine how much outcome 

variance is attributable to each dimension of sampling:

➢ Level-2 between-cluster mean differences → random intercept (𝝉𝑼
𝟐

𝟎
)

➢ Level-1 within-cluster person differences → residual (𝝈𝒆
𝟐)

➢ Dependency effect size via Intraclass Correlation: 𝐈𝐂𝐂 = 𝝉𝑼
𝟐

𝟎
 / (𝝉𝑼

𝟐
𝟎
+𝝈𝒆

𝟐)

▪ ICC = proportion of total variance due to cluster mean differences

▪ ICC = average correlation of persons from same cluster

▪ Higher ICC and level-1 sample size → larger design effect → smaller effective 𝑁

• Modeling cluster differences using random effects (by including 𝝉𝑼
𝟐

𝟎
 

at a minimum, possibly random slope variances, stay tuned!) allows
us to test the effects of level-2 between-cluster predictors

➢ Significance tests via Wald tests (usually with denominator DF) as usual 

➢ Adding fixed slopes for level-2 predictors (cluster characteristics) can 
explain level-2 random intercept variance (cluster mean differences)

▪ Reduction in level-2 intercept variance can be quantified by pseudo-𝑹𝑼
𝟐

𝟎

▪ Reduction in total variance can be quantified by total-𝑹𝟐 ( ≈ pseudo-𝑅𝑈
2

0
* ICC)
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Foreshadowing Part 2

• Part 2 on Thursday March 16: Adding Level-1 

Predictors to Multilevel Models for Clustered Data 

➢ Fixed slopes of level-1 person predictors

▪ Cluster-mean-centering, constant-centering, and latent centering

➢ Random slopes of level-1 person predictors

➢ Cross-level interactions and systematically varying effects

• Thank you for your attention!
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Begin Bonus Material

• Significance testing for each side of the model

• Likelihood ratio tests and information criteria

• Maximum likelihood (ML) vs. 

residual maximum likelihood (REML)

• Model comparisons in ML vs. REML

• Why explaining level-1 residual variance will increase 

level-2 random intercept variance (and the design effect)

Intro to Clustered MLM 31    



Relative Model Fit by Model Side
• Nested models (i.e., in which one is a subset of the other) 

can now differ from each other in two distinct ways

• Model for the Means → which predictors and which fixed 
slopes for them are included in the model 

➢ Does not require assessment of relative model fit using −2LL 
because we can still use univariate or multivariate Wald tests for this 
(although we have more choices for denominator degrees of freedom)

• Model for the Variance → what the pattern of variance and 
covariance of residuals from the same sampling unit should be

➢ DOES require assessment of relative model fit using −2LL

➢ Cannot use the Wald test p-values (even if they show up on the output) 
for testing the significance of variances because those p-values use a 
two-sided sampling distribution for what the variance could be 
(but variances cannot be negative, so those p-values are not valid)
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Significance of Fixed Effects in MLM
Denominator DF 

is infinite

(Proper Wald test)

Denominator DF is 

estimated instead

(“Modified” Wald test)

Numerator DF = 1 

(test one fixed effect) is 

Univariate Wald Test

use 𝒛 distribution

(Mplus, 

STATA default)

use 𝒕 distribution

(SAS, SPSS, STATA with 

dfmethod option)

Numerator DF > 1

(test 2+ fixed effects) is 

Multivariate Wald Test

use 𝝌𝟐
 distribution

(Mplus, 

STATA default)

use 𝑭 distribution

(SAS, SPSS, STATA with 

dfmethod option)

Options for estimating 

Denominator DF (DDF)

not applicable SAS, STATA: 

Kenward-Roger 

SAS, STATA, SPSS: 

Satterthwaite
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In R, the default and optional DDF behavior vary across packages: 

• Kenward-Roger and Satterthwaite are available through the lmerTest package 
(for use with the lmer function from the lme4 package)

• Satterthwaite DDF may not always work in nlme package (gls or lme functions) 



Denominator DF (DDF) Methods
• Between-Within (DDFM=BW in SAS, REPEATED in STATA): 

➢ Total DDF comes from total number of observations, separated into 

level-2 for L2n clusters and level-1 for L1n persons (like in RM ANOVA)

▪ Level-2 DDF = L2n – #level-2 fixed effects

▪ Level-1 DDF = Total DDF – Level-2 DDF – #level-1 fixed effects

▪ Level-1 effects with random slopes still get level-1 DDF

• Satterthwaite (DDFM=Satterthwaite in SAS and STATA, 

available in LME and LMER in R, default in SPSS):

➢ More complicated, but analogous to two-group t-test given 

unequal residual variances and unequal group sizes

➢ Incorporates contribution of variance components at each level

▪ Level-2 DDF will resemble Level-2 DDF from BW method

▪ Level-1 DDF will resemble Level-2 DDF from BW method if the level-1 effect 

also has a random slope, but it will resemble level-1 DDF otherwise
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Denominator DF (DDF) Methods
• Kenward-Roger (DDFM=KR in SAS, KROGER in STATA, 

available in LME and LMER in R, available in SPSS 26+):

➢ Adjusts the asymptotic covariance matrix of the fixed effects 

to reflect the uncertainty introduced by using large-sample 

techniques of maximum likelihood estimation in small L2n samples

➢ This creates different (larger) SEs for the fixed effects

➢ Then uses Satterthwaite DDF, new SEs, and t to get p-values

• Differences in inference not likely to matter often 

in practice unless sample sizes are very small

➢ e.g., critical t-value at DDF=20 is 2.086, at infinite DDF is 1.960 instead

• When in doubt, use KR (is overkill at worst, becomes Satterthwaite)

➢ I use Satterthwaite in my teaching for comparability across programs
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Comparing Models for the Variance
• Unlike fixed effects (which can always use Wald-type tests), testing 

random effects requires assessment of relative model fit: 
how well does the model fit relative to other possible models?

• Model fit is indexed by overall model log-likelihood (LL):

➢ Multivariate height for each cluster’s outcomes given model parameters

➢ Sum heights across all (independent) clusters = model LL

➢ Two flavors in MLM: Maximum Likelihood (ML) or Restricted ML (REML) 

• What you get for this on your output varies by software…

• Given as −2*log likelihood (−2LL) in SAS or SPSS MIXED, some R:
−2LL gives BADNESS of fit, so smaller value = better model

• Given as just log-likelihood (LL) in STATA MIXED and Mplus, some R:
  LL gives GOODNESS of fit, so bigger value = better model
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Comparing Models for the Variance
• Nested models are compared using a “likelihood ratio test”: 

−2ΔLL test (aka, “𝜒2 test” in SEM; “deviance difference test” in MLM)

1. Calculate −2ΔLL:  if given −2LL, use −2ΔLL = (−2LLfewer)  –  (−2LLmore)
                             if given LL, use −2ΔLL = −2 *(LLfewer – LLmore)

2. Calculate  ΔDF = (# Parmsmore)  – (# Parmsfewer)

3. Compare −2ΔLL to 𝝌𝟐 distribution with numerator DF = ΔDF 

4. Get p-value (from CHIDIST in excel, LRTEST in STATA, R/ANOVA in R)

• When testing random effect variances (that can’t be negative), a 
“mixture” 𝝌𝟐 distribution should be used (otherwise is conservative)

➢ e.g., Add random intercept? DF is mixture of 1 (when positive) and 0 
(when it would have been negative), so you can just cut the p-value in half  

➢ e.g., Add random slope variance (stay tuned!)? DF is mixture of 2 (when 
positive) and 1 (when it would have been negative), so critical value is lower
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Results of 1. & 2. must 

be positive values!

“fewer” = from model with fewer parameters

“more” = from model with more parameters



Comparing Models for the Variance

• What your p-value for the −2ΔLL test means:

➢ If you ADD parameters, then your model can get better 

(if −2ΔLL test is significant ) or not better (not significant)

➢ If you REMOVE parameters, then your model can get worse

(if −2ΔLL test is significant ) or not worse (not significant)

• Nested or non-nested models can also be compared by 

Information Criteria that also reflect model parsimony

➢ No significance tests or critical values, just “smaller is better”

➢ AIC = Akaike IC     = −2LL +        2 *(#parameters)

➢ BIC = Bayesian IC  = −2LL + log(N)*(#parameters) 

➢ What “parameters” means depends on flavor (not in R or STATA!):

▪ ML = ALL parameters; REML = variance model parameters only
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Flavors of Maximum Likelihood
• For MLMs, maximum likelihood estimation comes in 2 flavors:

• “Restricted (or residual) maximum likelihood”

➢ Only available for general linear models or general linear mixed models 

(key: based on normally distributed residuals at all levels of analysis)

➢ REML = OLS given complete outcomes, but it doesn’t require them

➢ Estimates variances the same way as in OLS (accurate) → 

• “Maximum likelihood” (ML; also called FIML*)

➢ Is more general, is available for all of the above, as well as for non-

normal outcomes and models with latent variables (CFA/SEM/IRT/DCM)

➢ Is NOT equivalent to OLS: It under-estimates variances by 

not accounting for number of estimated fixed effects →

• *FI = Full information→ it uses all original data (they both do)
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σ 𝒚𝒑𝒄 − ෝ𝒚𝒑𝒄
𝟐

𝑵 − 𝒌

σ 𝒚𝒑𝒄 − ෝ𝒚𝒑𝒄
𝟐

𝑵



LRTs using ML vs. REML in a nutshell
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All comparisons 

must use exact same 

sample to be valid!!!

ML REML

To select, type… METHOD=ML

(-2 log likelihood)

METHOD=REML default 

(-2 res log likelihood)

In estimating 

variances, it treats 

fixed effects as…

Known (DF for having 

to also estimate fixed 

effects is not factored in)

Unknown (DF for having 

to also estimate fixed 

effects is factored in)

So, in small samples, 

L2 variances will be…

Too small (but less of a 

difference after Level-2 

sample size = 100 or so)

Unbiased (correct)

But because it indexes 

the fit of the…

Entire model 

(means + variances)

Variance model only 

You can compare 

models differing in…

Fixed and/or random 

effects (either/both)

Random effects only 

(same fixed effects)



Intro to Clustered MLM

Summary of Rules for Comparing Models
All observations must be the same across models!
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Type of 

Comparison:

Means Model      

(Fixed Effects) 

Only

Variance Model 

(Random Effects) 

Only

Both Means and 

Variance Model 

(Fixed and Random)

Nested? 

YES, can do 

significance 

tests via…

Fixed effect 

p-values from 

ML or REML 

-- OR --

ML −2ΔLL only 

(NO REML −2ΔLL)

NO p-values

REML −2ΔLL 

(ML −2ΔLL is 

ok if big N)

ML −2ΔLL only 

(NO REML −2ΔLL)

Non-Nested? 

NO signif. tests, 

instead see…

ML AIC, BIC

(NO REML AIC, BIC)

REML AIC, BIC

(ML ok if big N)

ML AIC, BIC only

(NO REML AIC, BIC)

Compare Models Differing In:

Nested = one model is a direct subset of the other

Non-Nested = one model is not a direct subset of the other



Increases in Random Intercept Variance
• Level-2 random intercept variance 𝝉𝑼

𝟐
𝟎

 will often increase 

as a consequence of reducing level-1 residual variance 𝝈𝒆
𝟐 

• Observed level-2 𝝉𝑼
𝟐

𝟎
 is NOT just between-cluster variance

➢ Also has a small part of within-cluster variance (level-1 𝛔𝐞
𝟐), or:

      Observed 𝝉𝑼
𝟐

𝟎
 = True 𝝉𝑼

𝟐
𝟎
 + (𝝈𝒆

𝟐/𝑳𝟏𝒏)

▪ With increasing 𝐿1𝑛 perons, bias in true 𝝉𝑼
𝟐

𝟎
 due to level-1 𝝈𝒆

𝟐 is minimized

➢ Model estimates of “True” 𝝉𝑼
𝟐

𝟎
 use (𝝈𝒆

𝟐/𝑳𝟏𝒏) as correction factor:

     True 𝝉𝑼
𝟐

𝟎
 = Observed 𝝉𝑼

𝟐
𝟎
 − (𝝈𝒆

𝟐/𝑳𝟏𝒏)

• e.g., Observed level-2 𝝉𝑼
𝟐

𝟎
= 4.65, level-1 𝝈𝒆

𝟐 = 7.06, 𝑳𝟏𝒏 = 4

➢ True 𝛕𝐔
𝟐

𝟎
= 4.65 −(7.06/4) = 2.88 in empty means model

➢ Add L1 within-cluster predictor → reduce 𝝈𝒆
𝟐 from 7.06 to 2.17

➢ But now True 𝛕𝐔
𝟐

𝟎
= 4.65 −(2.17/4) = 4.10 → more dependency!
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