Introduction to Multilevel Models
for Clustered Data

- Topics:
> What do multilevel models do?
> From single-level to multilevel empty means models
> Intraclass correlation (ICC) and design effects
> Fixed effects of level-2 predictors

> Effect size for level-2 predictors

- By Lesa Hoffman, Professor of Educational Measurement and
Statistics in the University of lowa College of Education

> Presented March 14, 2023, as part of the APA Free Science Trainings Series

> Btw, my full course at Univ of lowa on Clustered Multilevel Models is in Fall 2023!
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Multilevel Models (MLMs) for Clustered™ Data

. *Clustering = Nesting = Grouping = Hierarchies

>

>

>

Key idea: Outcomes with >1 dimension of sampling simultaneously
("“micro” units are nested in one or more types of “macro” units)

Each sampling dimension is considered its own “level” > MLM

MLMSs can be used to predict outcomes from two-level (or more-level)
sampling designs that result in nested and/or crossed observations

- The term "Multilevel Model” (MLM) has many synonymes:

>

>

>

>

>

General Linear Mixed-Effects Models (Fixed + Random = Mixed)
Random Coefficients Models (Random effects = latent variables)
Hierarchical Linear Models (HLM, but not = hierarchical regression)
Most MLM software is “univariate” - predict 1 outcome at a time

Multivariate MLMs can be estimated as “multilevel structural equation
models” to predict 2+ outcomes at once (+ address missing predictors)

Intro to Clustered MLM 2



Examples of Nested Designs

- Examples of two-level sampling designs:
> Students (level 1) nested in classes/teachers (level 2)
> Patients (level 1) nested in doctors (level 2)
> Citizens (level 1) nested in countries (level 2)

- Examples of three-level sampling designs:

> Students (level 1) nested in classes/teachers (level 2)
nested in schools (level 3)

> Patients (level 1) nested in doctors (level 2)
nested in hospitals (level 3)

> Citizens (level 1) nested in survey years (level 2)
nested in countries (level 3)
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Examples of Crossed Designs

- Examples of two-level cross-classified sampling designs:

> Two kinds of nesting: Students (level 1) nested in both schools
(level-2) and neighborhoods (crossed at level 2)

> Repeated measures: Responses (level 1) nested in
both subjects (level 2) and items (crossed at level 2)

> Reliability assessment: Ratings (level 1) nested in
both raters (level 2) and targets (crossed at level 2)

> Students who change classes over time: occasions (level 1)
nested in both students (level 2) and classes (crossed at level 2)

- Example of three-level cross-classified sampling designs:

> Ratings (level 1) nested in both children (level 2) and raters
(crossed at level 2); raters are nested within sites (level 3)

> Responses (level 1) nested in both students (level 2) and items
(crossed at level 2); students are nested within schools (level 3)
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Labels for Organizing Models

- Qutcome type: General (normal) vs. Generalized (not normal)

- Dimensions of sampling: One (so one variance term per outcome) vs.
Multiple (so multiple variance terms per outcome) > OUR WORLD

- General Linear Models: conditionally normal outcome distribution, | Note: Ordinary
fixed effects (identity link: | di . f ling) Least Squares
ixed effects (identity link; only one dimension of sampling is only for GLM

- Generalized Linear Models: any conditional outcome distribution,
fixed effects through link functions, no random effects (only one dimension)

- General Linear Mixed Models: conditionally normal outcome distribution,
fixed and random effects (identity link, but multiple dimensions of sampling)

- Generalized Linear Mixed Models: any conditional outcome distribution,
fixed and random effects through link functions (multiple dimensions)

> Same concepts as for generalized or mixed separately, but with more complexity in estimation

- "Linear” - fixed effects predict the link-transformed conditional mean of
outcome in a linear combination: (effect*predictor) + (effect*predictor)...
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Levels of Analysis in Two-Level Nested Data

- Between-Cluster (BC) Variation:
> Level-2 = "INTER-cluster differences” = cluster characteristics

« Within-Cluster (WC) Variation:

> Level-1 = “INTRA-cluster differences” = person characteristics

- Any variable measured per person could have
both L2 between and L1 within variation!

> BC = some clusters are higher/lower on average than other clusters
> WC = some people are higher/lower than the rest of their cluster

> Btw, univariate MLMs must address this differently for level-1 predictors
vs. level-1 outcomes, but multivariate MLMs treat both the same way

= Stay tuned for APA Free Training 2 for level-T1 person predictors!

- So how do MLMs “handle” multiple levels of sampling?
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The Two Sides of *Any™* Model

- Model for the Means:
> Fixed Effects, the “structural” part (= latent variables means)
> What you are used to caring about for testing hypotheses

> How the expected outcome for a given observation varies
as a function of their values for the predictor variables

- Model for the Variance:

> Random Effects and Residuals, the “stochastic” or "error” part
= Btw, random effect variances = latent variable variances
> What you are used to making assumptions about instead

> How residuals are distributed and related across observations
(persons, clusters, items, etc.) = these relationships are called
"dependency” and this is the primary way that multilevel
models differ from general linear models (GLMs; “regression”)
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Two Sides of a General Linear Model (GLM)

p =person| Yp = ,80 + ,Bl(xlp) ~+ ﬁz(xzp) + ..o+ e,
!

. Model for the Means (> Predicted Values): Our focus

» Each person’s expected (predicted) outcome is a weighted linear
function of his/her values on x1,, and x2,, (and any other predictors);

each variable is measured once per person (given by the p subscript)
» Estimated f constants are called fixed effects (intercept or slopes)

- Model for the Variance (= “Piles” of Variance):
> e, ~ N(0,0%)> ONE (between-person) source of unexplained variation

> In GLMs, e, has a mean of 0 with some estimated constant variance o¢,
is normally distributed, is unrelated to x1,, and x2,,, and is independent
across all observations (which is just one outcome per person here)

> There is only ONE source of residual variance in the above GLM
because it was designed for only ONE dimension of sampling!
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An “Empty Means” General Linear Model
—> Single-Level Model for the Variance

140+ yp — ﬁO + ep

Filling in values:

32 =QYQ, + —58

yp\ Model

Y, = "y-hat” model-|| for the
predicted outcome || Means

y, residual variance:

Mean = 89.55 2 _ Z(yp o yp)z

Std. Dev. = 15.114 o
/ N = 1,334 € N-—-1

Without predictors, 62 = o

2
y

20—
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Adding Multiple Persons per Cluster
- Two-Level Model for the Variance

Full Sample Distribution 3 Clusters (c), 5 Persons (p)

H ¥,c Per person

Y, per
and cluster

person

12

10

80

60

Mean = 89.55
40 Std. Dev. =15.114
N=1,334

20—
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Empty Means, Two-Level Model for the Variance

From a one-level to a two-
level model for the variance:

Intro to Clustered MLM

Start off with the outcome’s
mean as a “best guess” for
any outcome'’s value:

= Grand Mean
- Fixed Intercept

Can make better guess
by taking advantage of
cluster-common information:

= Cluster Mean

- Random Intercept



Empty Means, Two-Level Model for the Variance

Bo 2> mean of cluster means Ype = o+ Uy + €,
Y, Variance - 2 sources:

A Level-2 Random Intercept U,

: e . )
e —— (with variance labeled 3 ):
R

|

|

Y UOc

- Between-cluster (BC) variance

- INTER-cluster differences to be
explained by cluster predictors

Level-1 Residual e, per person
(with variance labeled ¢?2):

« Within-cluster (WC) variance

-« INTRA-cluster differences to be
explained by person predictors
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Two-Level Model Using Multilevel Notation:
Empty Means, Random Intercept Model

GLM Empty Model:

yp — ﬁO + ep
MLM Empty Model:

- Level T:
Ypc = Boc + €pc

3 total parameters:
Model for the Means (1):

- Fixed Intercept y,,
Model for the Variance (2):
- Level-1 WC Variance of e,; > o2

+ Level-2 BC Variance of Uy, > g,

. Level 2; \
Boc =Yoo+t U

Oc

/ \

L1 Residual = person-specific deviation
from cluster-predicted outcome

Fixed Intercept L2 Random In’fe.rcept composite equation:
= mean of cluster || = cluster-specific

means (because deviation from Ypc = Yoo + Upc + €pc
no predictors yet) || predicted intercept
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Intraclass Correlation (ICC)

(CC = BC L2 Intercept Var
- BC+ WC L2 Intercept Var + L1 Residual Var
2
_ Ty (5, > Why don't all clusters have the same mean?

1:%] + aﬁ a% > Why don't all people from the same cluster
0 have the same outcome?

- ICC = Proportion of total variance that is between clusters
- ICC = Average correlation of persons from same cluster

- ICC is a standardized way of expressing how much dependency
(correlation) there is due to cluster mean differences
- ICC is an effect size for constant cluster dependency

> Dependency of other kinds can still be created by differences across
clusters in the slopes of person predictors (stay tuned for part 2!)

- Btw, no variance has been “explained” yet (just 2 kinds of “error”)
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Even though between-cluster variance is the
numerator, ICC = within-cluster correlation!

{ =

—

ICC = BTW /BTW + within

- Large ICC

—> Large correlation
within clusters

f
> =
<
.

2

T
ICC = —2—
T, T+ Oe
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Effects of Clustering on Effective N

- Design Effect expresses how much sample size needs to
be adjusted due to clustering - "effective sample size”

- Design Effect = ratio of the variance using a given sampling
design to the variance using a simple random sample from the
same population, given the same total sample size either way

- Design Effect =1 + ([L1n — 1] * ICC) |L1n = # level-1 units

# Total Observations

- Effective sample size - Effective N = .
Design Effect

- As ICC and cluster size go UP, effective N goes DOWN

> See Snijders & Bosker (2012) for more info and for a modified
formula that takes unequal group sizes into account
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Demonstrating Two-Level Design Effects
- Design Effect =1 + ([L1n — 1] * ICC)

# Total Observations
Design Effect

- Effective sample size - Effective N =

- n = 5 patients from each of 100 doctors, ICC = .307
> Patients Design Effect = 1 + ([5-1] *.30) = 2.20
> Effective N = 500 / 2.20 = 227 (not 500)

- n = 20 students from each of 50 schools, ICC = .05?

> Students Design Effect = 1 + ([20-1] * .05) = 1.95
> Effective N = 1000/ 1.95 = 513 (not 1000)
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Does a non-significant ICC mean you can
ignore clustering and just do a regression!?

- As ICC and cluster size go UP, effective N goes DOWN

> So there is NO VALUE OF ICC that is “safe” to ignore, not even ~0!

> An ICC=0 in an empty means (unconditional) model can become ICC>0
after adding person predictors because reducing the residual variance
will then increase the random intercept variance (= conditional ICC > 0)

= Design effects can increase after including good person predictors!

- So just plan to do a multilevel analysis anyway...

> Even if “that’s not your question”... because people are in clusters, we
still need to address cluster dependency (= correlation) because of:

= Effect on person predictor fixed slope SEs - biased SEs
= Potential for contextual effects of person predictors (stay tuned!)

— A “clustered-sampling correction” to the SEs will not fix this problem!
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2 Options for Cluster Differences

Represent Cluster Differences via Fixed Effects

- Include (#clusters—1) binary predictors for cluster membership
in the model for the means = so cluster is NOT a model “level”

> Main effects control for cluster mean differences only; interactions with
person predictors are also needed to control for cluster slope differences

- Useful if #clusters < 10ish or you care about specific clusters, but
then you cannot include cluster predictors - saturated mean diffs

Represent Cluster Differences via Random Effects

- Include a random intercept variance across clusters in the
model for the variance - then cluster IS a model “level”

> A random intercept controls for cluster mean differences only; a random
slope variance is needed for cluster differences in person predictor slopes

- Better if #clusters > 10ish or you want to predict cluster differences

- So let's see an example!
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Empty Means, Random Intercept Model:
(1b) Syntax by Univariate MLM Program

SAS:
PROC MIXED DATA~=work.Example COVTEST NOCLPRINT IC METHOD=REML;

CLASS schoolID;

MODEL langpost = / SOLUTION DDFM=Satterthwaite;

RANDOM INTERCEPT / VCORR TYPE=UN SUBJECT=schoolID; * VCORR gives ICC;
RUN;

R Imer from Ime4 package—using ImerTest package to get Satterthwaite denominator DF, and using
performance package to get ICC from lmer:

name = Imer(data=Example, REML=TRUE, formula=langpost~1+(1+|school1D))
summary(name, ddf="satterthwaite")

icc(name); ranova(name) # ICC and LRT for random intercept

STATA:
mixed langpost , || schoolID: , ///

reml dfmethod (satterthwaite) dftable (pvalue) nolog
estat ice // Get ICC

SPSS:

MIXED langpost BY schoolID
/METHOD = REML
/CRITERIA = DFMETHOD ( )
/PRINT = SOLUTION TESTCOV
/FIXED =

/RANDOM = INTERCEPT | COVTYPE (UN) SUBJECT (schoolID).
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Example: Level-1 Students in Level-2 Schools

Example from Snijders & Bosker (2012): Predict language outcomes

(M = 41.46, VAR = 77.69) for 3,566 students (p) from 191 schools (c)

Level-1: Lang,. = Boc + €y

Level-2: ﬁOC =Yoo + UOC

Results from SAS MIXED:

L7 17.809

ICC = =

5, + 02 17.809 + 62.230

=.223

22% of total language variance is due
to school mean differences (WC r = .22)

Without random intercept Uy,

With random intercept Uy,

Solution for Fixed Effects

Standard
Effect Estimate Error DF tValue Pr>|t]
Intercept 41.4635 0.1476 3565 280.91 <.0001

Solution for Fixed Effects

Standard
Error DF tValue Pr> |t

0.3371 175 121.87 <.0001

Estimate
41.0791

Effect

Intercept

Covariance Parameter Estimates

Standard .
Error V. 4. "Pr 2

1.8402 4= 2= 01

Estimate
77.6905

Cov Parm

Residual

Covariance Parameter Estimates

Standard
Error } e Y4

23063 | 72 0 1
1.5179 4. J01

Cov Parm Subject Estimate
UN(1,1) 17.8085
Residual 62.2296

schoollD

Intro to Clustered MLM
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Adding Level-2 Cluster Predictors

- Level-2 predictors are constant over persons from the
same cluster—they are cluster-level characteristics

> Example: Level-1 (L1) students (p) nested in level-2 (L2) schools (c)
that vary in homework amount and mixed grades (0=no, 1=yes)

a% > All possible L1 residual
- Level-1: Langpc = Poc + €pc variance for within-school
differences across students

- "Unconditional” Level-2 (before cluster predictors):

> Boe = Voo + Upe 757, All possible L2 random intercept
variance due to school mean differences

- "Conditional” Level-2 (after cluster predictors):

_ %4 > L2 random intercept
> Boc =Yoo + Yor(HW, — 2) Uo P
. variance leftover after HW
+ Vo2 (MixGrd,) + Uy,

and mixed grade prediction
> First subscript = which beta in level-1 model
Second subscript = order of predictor in level-2 model
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Adding Level-2 Cluster Predictors:
(1c) Syntax by Univariate MLM Program

SAS:

PROC MIXED DATA=work.Example COVTEST NOCLPRINT IC METHOD=REML;
CLASS schoollD;
MODEL langpost = hw2 mixgrd / SOLUTION DDFM=Satterthwaite;
RANDOM INTERCEPT / TYPE=UN SUBJECT=schoolID;

RUN;

R Imer from Ime4 package—using ImerTest package to get Satterthwaite denominator DF:
name = Imer(data=Example, REML=TRUE, formula=langpost~l+hw2+mixgrd+(1l+|schoolID))
summary(name, ddf="satterthwaite")

STATA:
mixed langpost c.hw2 c.mixgrd, || schoolID: , ///
reml dfmethod (satterthwaite) dftable (pvalue) nolog

SPSS:
MIXED langpost BY schoolID WITH hw2 mixgrd
/METHOD = REML
/CRITERIA = DFMETHOD ( )
/PRINT = SOLUTION TESTCOV
/FIXED = hw2 mixgrd
/RANDOM = INTERCEPT | COVTYPE (UN) SUBJECT (schoolID).
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Example: Adding Level-2 Cluster Predictors

Level-1 (L1): Lang,. = Boc + €pc
Level-2 (L2): Boc =Yoo + Vo1 (HW, —2) + yo2(MixGrd,) + Uy,

Before adding L2 predictors:

After adding L2 predictors:

Solution for Fixed Effects

Standard
Error DF tValue Pr> |t

0.3371 175 121.87 <.0001

Effect

Intercept

Estimate
41.0791

Solution for Fixed Effects

Standard
Effect Estimate Error DF tValue Pr> |t
Intercept 41.5479  0.5051 168 82.26 <.0001
hw2 0.5068  0.6352 172 0.80 0.4261
mixgrd -1.9931 0.7083 189 -2.81 0.0054

Covariance Parameter Estimates

Standard -
Cov Parm Subject Estimate Error ¥ = + \Z
UN(1,1)  schoollD 17.8085 23063 |\ 7= 0 A1
Residual 62.2296 1.5179 4% J01

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error V Fv 2
UN(1,1) schoollD 17.1640 2.2341 68 A |
Residual 62.2013 1.5165 41 J01

Intro to Clustered MLM
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Example: Adding Level-2 Cluster Predictors

Level-1 Model: Lang,. = Bo: + €.
Level-2 Model: BOC = VYoo T YO].(HWC — 2) + Yo2 (MixGrdc) + Uy,

Model for the Means:

* Yoo = 41.55 = fixed intercept: expected language for students in a school
with homework=2 (~mean) and mixgrd=0 (=not mixed)

* Yor = 0.51 = fixed slope of HW-2: difference in school mean language
for each unit more homework the school tends to assign

© Yo = —1.99* = fixed slope of mixgrd: difference in school mean language
in schools with mixed grades instead of un-mixed grades

Model for the Variance:

- Uy, = level-2 random intercept = deviation between actual and predicted
school mean language for school ¢ (with variance T%lo = 17.16)

- e,. = level-1 residual = deviation of the actual outcome for student p
from their outcome predicted by By, (with variance o2 = 62.20)
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What if we used single-level GLM instead!?

Level-1 (L1): Lang,. = Boc + €pc

Level-2 (L2): Boc =Yoo + Vo1 (HW, —2) + yo2(MixGrd,) + Uy,

Without random intercept Uy,

With random intercept Uy,

Solution for Fixed Effects

Standard
Effect Estimate Error DF tValue Pr> |t
Intercept 41.6370 0.2163 3563 192.50 <.0001
hw2 0.4110 0.2796 3563 147 0.1416
mixgrd -1.4745 0.3472 3563 -4.25 <.0001

Solution for Fixed Effects

Standard
Effect Estimate Error DF tValue Pr> |t

Intercept 41.5479 0.5051 168 82.26 <.0001
hw2 0.5068 0.6352 172 0.80 0.4261
mixgrd -1.9931 0.7083 189 -2.81 0.0054

Covariance Parameter Estimates

Covariance Parameter Estimates

Standard
c P Estimat Sta“Edard Vv < P Cov Parm Subject Estimate Error V Fv 2
oV rFarm sStumate I'ror 18 \
UN(1,1) schoollD 17.1640 2.2341 68 0 |
Residual = 77.2515 1.8303 42 Residual 62.2013  1.5165 41 201
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Effect Size for Level-2 Cluster Predictors

- Direct: convert t-statistic for fixed effect into d or partial r

2t t
Note: These formulas can be used

» d = r =
/ 2
VDFgen Jt2+ DF gen with any model (multilevel or not)

- Indirect: explained variance of two complementary kinds

> Pseudo-R?: amount of variance explained per variance component

variancerewer — variancemore | “fewer” = model with fewer parameters
variancefewer "more” = model with more parameters

Pseudo-R? =

It can go negative if adding useless predictors or if the level-1 model is
mis-specified (stay tuned!); these problems can be remedied by calculating
it with model-implied total variance instead (see Rights & Sterba, 2019; 2020)

Only pseudo-R? for the L2 random intercept var is relevant for L2 predictors

> Total-R?: amount of total variance explained (across piles)

Generate model-predicted y,,. values from fixed effects ONLY and correlate
them with observed outcomes; square that correlation to get total-R?
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Example Conditional MLM Effect Size

- Results from example predicting student language:
~ Empty: Level-1 62 = 62.230 and Level-2 73, = 17.809, so ICC = .223

> Conditional: Level-1 6% = 62.201 (~ because no person predictors yet),
Level-2 r%,(): 17.164 after controlling for mixed grade and HW

- Variance explained by the two level-2 cluster fixed slopes:

> Pseudo-R%, = 17'8(1)3;33'164 = .036 = 3.6% of the level-2 random

intercept variance (due to school mean differences) in language

~ Total-R* = correlation(y,,, y,.)? = .079? = .006 > 0.6% of the total
variance in language (22.3% of which was due to school mean diffs)

- Total-R? approximation when there is only a random intercept:
Total-R? = (Pseudo—R?]O* ICC) + (Pseudo-RZ%* [1-1CC]) = .008 (see excel)

> Because these R? values mean very different things, it is essential to
clearly describe how you calculated them and what they then mean!
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Part 1: Summary

- MLMs begin with an empty model to determine how much outcome
variance is attributable to each dimension of sampling:

> Level-2 between-cluster mean differences - random intercept (r%,o)
> Level-1 within-cluster person differences = residual (¢2)
> Dependency effect size via Intraclass Correlation: ICC = rﬁo / (r50+a§)

ICC = proportion of total variance due to cluster mean differences
ICC = average correlation of persons from same cluster
Higher ICC and level-1 sample size = larger design effect > smaller effective N

- Modeling cluster differences using random effects (by including r%,o

at a minimum, ]E)ossibly random slope variances, stay tuned!) allows
us to test the effects of level-2 between-cluster predictors

> Significance tests via Wald tests (usually with denominator DF) as usual

> Adding fixed slopes for level-2 predictors (cluster characteristics) can
explain level-2 random intercept variance (cluster mean differences)

Reduction in level-2 intercept variance can be quantified by pseudo-R%,O
Reduction in total variance can be quantified by total-R? ( ~ pseudo-R?]O* ICC)
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Foreshadowing Part 2

- Part 2 on Thursday March 16: Adding Level-1
Predictors to Multilevel Models for Clustered Data

> Fixed slopes of level-1 person predictors
« Cluster-mean-centering, constant-centering, and latent centering

> Random slopes of level-1 person predictors

> Cross-level interactions and systematically varying effects

- Thank you for your attention!

Intro to Clustered MLM
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Begin Bonus Material

- Significance testing for each side of the model
- Likelihood ratio tests and information criteria

- Maximum likelihood (ML) vs.
residual maximum likelihood (REML)

- Model comparisons in ML vs. REML

- Why explaining level-1 residual variance will increase
level-2 random intercept variance (and the design effect)

Intro to Clustered MLM
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Relative Model Fit by Model Side

- Nested models (i.e., in which one is a subset of the other)
can now differ from each other in two distinct ways

- Model for the Means - which predictors and which fixed
slopes for them are included in the model

> Does not require assessment of relative model fit using —2LL
because we can still use univariate or multivariate Wald tests for this
(although we have more choices for denominator degrees of freedom)

- Model for the Variance - what the pattern of variance and
covariance of residuals from the same sampling unit should be

> DOES require assessment of relative model fit using —2LL

> Cannot use the Wald test p-values (even if they show up on the output)
for testing the significance of variances because those p-values use a
two-sided sampling distribution for what the variance could be
(but variances cannot be negative, so those p-values are not valid)
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Significance of Fixed Effects in MLM

Denominator DF
is infinite
(Proper Wald test)

Denominator DF is
estimated instead
(“Modified” Wald test)

Numerator DF = 1
(test one fixed effect) is
Univariate Wald Test

use z distribution
(Mplus,
STATA default)

use t distribution
(SAS, SPSS, STATA with
dfmethod option)

Numerator DF > 1
(test 2+ fixed effects) is

Multivariate Wald Test

use y?distribution
(Mplus,
STATA default)

use F distribution
(SAS, SPSS, STATA with
dfmethod option)

Options for estimating
Denominator DF (DDF)

not applicable

SAS, STATA:
Kenward-Roger
SAS, STATA, SPSS:
Satterthwaite

In R, the default and optional DDF behavior vary across packages:
- Kenward-Roger and Satterthwaite are available through the ImerTest package

(for use with the Imer function from the Ime4 package)

- Satterthwaite DDF may not always work in nlme package (gls or Ime functions)

Intro to Clustered MLM




Denominator DF (DDF) Methods

- Between-Within (DDFM=BW in SAS, REPEATED in STATA):

> Total DDF comes from total number of observations, separated into
level-2 for L2n clusters and level-1 for L1n persons (like in RM ANOVA)

Level-2 DDF = L2n - #level-2 fixed effects
Level-1 DDF = Total DDF — Level-2 DDF — #level-1 fixed effects
Level-1 effects with random slopes still get level-1 DDF

- Satterthwaite (DDFM=Satterthwaite in SAS and STATA,
available in LME and LMER in R, default in SPSS):

> More complicated, but analogous to two-group t-test given
unequal residual variances and unequal group sizes

> Incorporates contribution of variance components at each level

Level-2 DDF will resemble Level-2 DDF from BW method

Level-1 DDF will resemble Level-2 DDF from BW method if the level-1 effect
also has a random slope, but it will resemble level-1 DDF otherwise
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Denominator DF (DDF) Methods

- Kenward-Roger (DDFM=KR in SAS, KROGER in STATA,
available in LME and LMER in R, available in SPSS 26+):

> Adjusts the asymptotic covariance matrix of the fixed effects
to reflect the uncertainty introduced by using large-sample
techniques of maximum likelihood estimation in small L2n samples

> This creates different (larger) SEs for the fixed effects

> Then uses Satterthwaite DDF, new SEs, and t to get p-values

- Differences in inference not likely to matter often
in practice unless sample sizes are very small

> e.g., critical t-value at DDF=20 is 2.086, at infinite DDF is 1.960 instead

- When in doubt, use KR (is overkill at worst, becomes Satterthwaite)

> | use Satterthwaite in my teaching for comparability across programs
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Comparing Models for the Variance

- Unlike fixed effects (which can always use Wald-type tests), testing
random effects requires assessment of relative model fit:
how well does the model fit relative to other possible models?

- Model fit is indexed by overall model log-likelihood (LL):
> Multivariate height for each cluster’s outcomes given model parameters

> Sum heights across all (independent) clusters = model LL
> Two flavors in MLM: Maximum Likelihood (ML) or Restricted ML (REML)

- What you get for this on your output varies by software...

- Given as —2*log likelihood (=2LL) in SAS or SPSS MIXED, some R:
—-2LL gives BADNESS of fit, so smaller value = better model

- Given as just log-likelihood (LL) in STATA MIXED and Mplus, some R:
LL gives GOODNESS of fit, so bigger value = better model
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Comparing Models for the Variance

- Nested models are compared using a “likelihood ratio test”:
—2ALL test (aka, “y? test” in SEM; “deviance difference test” in MLM)

“fewer” = from model with fewer parameters
“more” = from model with more parameters

Results of 1. & 2. must
be positive values!

1. Calculate —2ALL: if given —-2LL, use —2ALL = (-2LL;y,e) — (—2LL
if given  LL, use —=2ALL = -2 *(LL,,o, — LL

2. Calculate ADF = (# Parms, ) — (# Parms;,,.,)

more)

more)

3. Compare -2ALL to y? distribution with numerator DF = ADF
4. Get p-value (from CHIDIST in excel, LRTEST in STATA, R/ANOVA in R)

- When testing random effect variances (that can't be negative), a
"“mixture” y? distribution should be used (otherwise is conservative)

> e.g., Add random intercept? DF is mixture of 1 (when positive) and 0

(when it would have been negative), so you can just cut the p-value in half

> e.g., Add random slope variance (stay tuned!)? DF is mixture of 2 (when
positive) and 1 (when it would have been negative), so critical value is lower
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Comparing Models for the Variance

- What your p-value for the —2ALL test means:

> |If you ADD parameters, then your model can get better
(if —2ALL test is significant ) or not better (not significant)

> |f you REMOVE parameters, then your model can get worse
(if —2ALL test is significant ) or not worse (not significant)

- Nested or non-nested models can also be compared by
Information Criteria that also reflect model parsimony

> No significance tests or critical values, just “smaller is better”

> AIC = Akaike IC = -2LL + 2 *(#parameters)

> BIC = Bayesian IC = -2LL + log(N)*(#parameters)

> What “parameters” means depends on flavor (not in R or STATA!):

« ML = ALL parameters; REML = variance model parameters only
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Flavors of Maximum Likelihood

For MLMs, maximum likelihood estimation comes in 2 flavors:

“Restricted (or residual) maximum likelihood”

> Only available for general linear models or general linear mixed models
(key: based on normally distributed residuals at all levels of analysis)

> REML = OLS given complete outcomes, but it doesn’t require them

> Estimates variances the same way as in OLS (accurate) 2 Y (Vpe — ypc)z
N -k

“Maximum likelihood” (ML; also called FIML*)

> |s more general, is available for all of the above, as well as for non-
normal outcomes and models with latent variables (CFA/SEM/IRT/DCM)

> Is NOT equivalent to OLS: It under-estimates variances by

—~ 2
not accounting for number of estimated fixed effects 2> X(Ypc — Ipc)

N

*FI = Full information =2 it uses all original data (they both do)
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LRTs using ML vs. REML in a nutshell

(-2 log likelihood)

All comparisons ML REML
must use exact same

sample to be valid!!!

To select, type... METHOD=ML METHOD=REML defautt

(-2 res log likelihood)

In estimating
variances, it treats
fixed effects as...

Known (DF for having
to also estimate fixed
effects is not factored in)

Unknown (DF for having
to also estimate fixed
effects is factored in)

So, in small samples,
L2 variances will be...

Too small (but less of a
difference after Level-2
sample size = 100 or so)

Unbiased (correct)

But because it indexes
the fit of the...

Entire model
(means + variances)

Variance model only

You can compare
models differing in...

Fixed and/or random
effects (either/both)

Random effects only
(same fixed effects)
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Summary of Rules for Comparing Models
All observations must be the same across models!
Compare Models Differing In:

Type of Means Model Variance Model Both Means and
Combarison: (Fixed Effects) (Random Effects) Variance Model
P Only Only (Fixed and Random)

Nested? Fixed effect NO p-values

YES, can do p-values from ML —2ALL only
significance ML or REML REML -2ALL (NO REML -2ALL)
tests via... - OR - (ML -2ALL is

ML —-2ALL only ok if big N)

(NO REML -2ALL)

Non-Nested?

NO signif. tests, ML AIC, BIC REML AIC, BIC ML AIC, BIC only
iInstead see... (NO REML AIC, BIC) | (ML ok if big N) (NO REML AIC, BIC)

Nested = one model is a direct subset of the other
Non-Nested = one model is not a direct subset of the other
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Increases in Random Intercept Variance

- Level-2 random intercept variance r%,o will often increase
as a consequence of reducing level-1 residual variance o2

- Observed level-2 r%,o Is NOT just between-cluster variance

> Also has a small part of within-cluster variance (level-1 ¢2), or:
Observed 7, = True 3, + (07/L1n)

= With increasing L1n perons, bias in true TUO due to level-1 a2 is minimized

> Model estimates of “True” rUO use (02/L1n) as correction factor:
True rUO = Observed rUO - (6%/L1n)

- e.g., Observed level-2 tj; = 4.65, level-1 ¢ = 7.06, L1n = 4
» True tjj,= 4.65 —(7.06/4) = 2.88 in empty means model

> Add L1 within-cluster predictor = reduce o2 from 7.06 to 2.17
> But now True rUO: 4.65 —(2.17/4) = 4.10 - more dependency!
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