Introduction to Two-Level Models for Clustered* Data

- Today's Class:
 - > Fixed vs. Random Effects for Modeling Clustered Data
 - > ICC and Design Effects in Clustered Data
 - Grand-Mean-Centering vs. Group-Mean Centering
 - Model Extensions under Group-MC and Grand-MC
- * Clustering = Nesting = Grouping...

Multilevel Models for Clustered Data

- So far we've seen multivariate models to model variance and covariance (dependency) arising from repeated measures (multiple conditions or trials from the same person)
- Now we examine multivariate (multilevel) models for more general examples of nesting/clustering/grouping:
 - > Students within teachers, athletes within teams
 - > Siblings within families, partners within dyads
 - > Employees within businesses, patients within doctors
- Residuals of people from same group are likely to be correlated due to group differences (e.g., purposeful grouping or shared experiences create dependency)
 - > Requires random effects -> multiple piles of variance to predict

What is a Multilevel Model (MLM)?

- Same as other terms you have heard of:
 - General Linear Mixed Model (if you are from statistics)
 - Mixed = Fixed and Random effects
 - Random Coefficients Model (also if you are from statistics)
 - Random coefficients = Random effects
 - Hierarchical Linear Model (if you are from education)
 - Not the same as hierarchical regression
- Special cases of MLM:
 - > Random Effects ANOVA or Repeated Measures ANOVA

 - Within-Person Variation Model (e.g., for daily diary data)
 - > Clustered/Nested Observations Model (e.g., for kids in schools)
 - Cross-Classified Models (e.g., "value-added" models)

2 Options for Differences Across Groups

Represent Group Differences as Fixed Effects

- Include (#groups-1) contrasts for group membership in the model for the means (categorical X)→ so group is NOT another "level"
- Permits inference about differences between specific groups, but you cannot include between-group predictors (group is saturated)
- Snijders & Bosker (1999) ch. 4, p. 44 recommend if #groups < 10ish

Represent Group Differences as a Random Effect

- Include a group random intercept variance in the model for the variance, such that group differences become another "level"
- Permits inference about differences across groups more generally, for which you can test effects of between-group predictors
- Better if #groups > 10ish and you want to predict group differences

Empty Means, Random Intercept Model

MLM for Clustered Data:

- Two-level notation:
 - $\rightarrow i$ = level 1, j = level 2
- Level 1:

$$y_{ij} = \beta_{0j} + e_{ij}$$

• Level 2:

$$\beta_{0j} = \gamma_{00} + \bigcup_{0j}$$

3 Total Parameters:

Model for the Means (1):

Fixed Intercept Y₀₀

Model for the Variance (2):

- Level-1 Variance of $e_{ij} \rightarrow \sigma_e^2$
- Level-2 Variance of $U_{0j} \rightarrow \tau_{U_0}^2$

<u>Residual</u> = <u>person</u>-specific deviation from <u>group's</u> predicted outcome

Fixed Intercept
= grand mean
(of group means)

Random Intercept
= group-specific
deviation from
predicted intercept

$$y_{ij} = (y_{00} + U_{0j}) + e_{ij}$$

Intraclass Correlation (ICC)

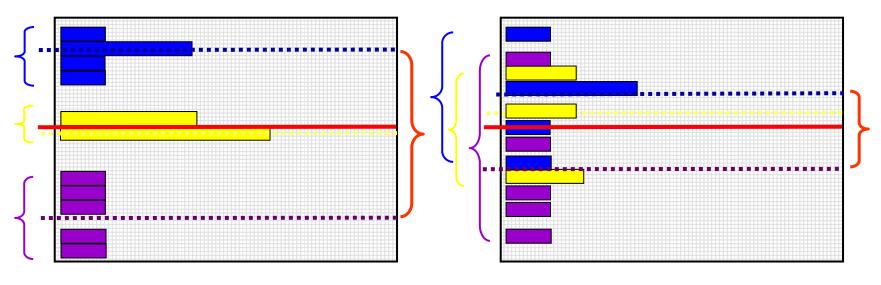
Intraclass Correlation (ICC):

$$\begin{split} ICC &= \frac{BG}{BG + WG} = \frac{Intercept\ Variance}{Intercept\ Variance + Residual\ Variance} \\ &= \frac{\tau_{U_0}^2}{\tau_{U_0}^2 + \sigma_e^2} \quad \begin{bmatrix} \tau_{U_0}^2 \rightarrow \text{Why don't all groups have the same mean?} \\ \sigma_e^2 \rightarrow \text{Why don't all people from the same group have the same outcome?} \\ \end{split}$$

- ICC = Proportion of total variance that is **between groups**
- ICC = Average **correlation** of persons from same group
- ICC is a standardized way of expressing how much we need to worry about dependency due to group mean differences (i.e., ICC is an effect size for constant group dependency)
- Whether $\tau_{U_0}^2 > 0$ (whether ICC>0) is testable via a likelihood ratio test (-2 Δ LL) against a general linear model with σ_e^2 only

$$ICC = \frac{BetweenGroup}{BetweenGroup + WithinGroup} = \frac{\tau_{U_0}^2}{\tau_{U_0}^2 + \sigma_e^2}$$

<u>Counter-Intuitive:</u> Between-Group Variance is in the numerator, but the ICC is the correlation within a group!



ICC = BTW / BTW + within

- → Large ICC
- → Large within-group correlation

ICC = btw / btw + WITHIN

- → Small ICC
- → Small within-group correlation

Effects of Clustering on Effective N

- Design Effect expresses how much effective sample size needs to be adjusted due to clustering/grouping
- Design Effect = ratio of the variance using a given sampling design to the variance using a simple random sample from the same population, given the same total sample size either way
- Design Effect = 1 + [(n-1) * ICC] from each group
- Effective sample size \rightarrow $N_{\text{effective}} = \frac{\text{\# Total Observations}}{\text{Design Effect}}$
- As ICC goes UP and cluster size goes UP, the effective sample size goes DOWN
 - See Snijders and Bosker (2012) for more info and for a modified formula that takes unequal group sizes into account

Design Effects in Two-Level Nesting

- Design Effect = 1 + [(n-1) * ICC]
- Effective sample size \rightarrow $N_{effective} = \frac{\text{\# Total Observations}}{\text{Design Effect}}$
- n=5 patients from each of 100 doctors, ICC=.30?
 - \rightarrow Patients Design Effect = 1 + (4 * .30) = 2.20
 - $Arr N_{\text{effective}} = 500 / 2.20 = 227 \text{ (not 500)}$
- n=20 students from each of 50 schools, ICC=.05?
 - Students Design Effect = 1 + (19 * .05) = 1.95
 - $ightharpoonup N_{effective} = 1000 / 1.95 = 513 \text{ (not } 1000)$

Does a non-significant ICC mean you can ignore groups and just do a regression?

- Effective sample size depends on BOTH the ICC and the number of people per group: As ICC goes UP and group size goes UP, the effective sample size goes DOWN
 - > So there is NO VALUE OF ICC that is "safe" to ignore, not even ~0!
 - ➤ An ICC=0 in an *empty (unconditional)* model can become ICC>0 after adding person predictors because reducing the residual variance leads to an increase in the random intercept variance (→ *conditional* ICC > 0)
- So just do a multilevel analysis anyway...
 - > Even if "that's not your question"... because people come from groups, you still have to model group dependency appropriately because of:
 - Effect of clustering on fixed effect SE's → biased SEs
 - Potential for contextual effects of person-level (level-1) predictors

Predictors in MLM for Clustered Data Example: Achievement in Students nested in Schools

- <u>Level-2</u> predictors are <u>Group-Level</u> Variables
 - Can only have fixed effects (everyone gets the same effect)
 - > e.g., Does mean school achievement differ b/t rural and urban schools?
- <u>Level-1</u> predictors are <u>Person-Level</u> Variables
 - > Can have fixed, systematically varying, or random effects over groups
 - > e.g., Does student achievement differ between boys and girls?
 - Fixed effect: Is there a gender difference in achievement, period?
 - <u>Systematically varying effect</u>: Does the gender effect differ b/t rural and urban schools? (but the gender effect is otherwise the same within rural and within urban schools)
 - Random effect: Does the gender effect differ randomly across schools?
 (even after including group-level predictors for it via cross-level interactions)

Level-1 (Person-Level) Predictors

- Modeling of level-1 predictors is complicated (and usually done incorrectly) because each level-1 predictor is usually really 2 predictor variables (each with their own effect), not 1
- Example: Student SES when students are clustered in schools
 - > Some kids have more money than other kids in their school:
 - **WG variation in SES** (represented directly as deviation from school mean)
 - > Some schools have more money than other schools:
 - BG variation in SES (represented as school mean SES or via external info)
- Can quantify each source of variance with an ICC
 - > ICC = (BG variance) / (BG variance + WG variance)
 - > ICC > 0? Level-1 predictor has BG variation (so it *could* have BG effect)
 - > ICC < 1? Level-1 predictor has WG variation (so it *could* have WG effect)

Between-Group vs. Within-Group Effects

- Between-group and within-group effects in <u>SAME</u> direction
 - > SES -> Achievement?
 - BG: <u>Schools</u> with more money <u>than other schools</u> may have <u>greater</u> mean achievement than schools with less money
 - WG: <u>Kids</u> with more money <u>than other kids in their school</u> may have <u>greater</u> achievement than other kids in their school (regardless of school mean SES)
- Between-group and within-group effects in <u>OPPOSITE</u> directions
 - \rightarrow Body mass \rightarrow life expectancy in animals (Curran and Bauer, 2011)?
 - BG: <u>Larger species</u> tend to have longer life expectancies than <u>smaller species</u> (e.g., whales live longer than cows, cows live longer than ducks)
 - WG: Within a species, <u>relatively bigger</u> animals have <u>shorter</u> life expectancy (e.g., fat ducks die sooner than skinny ducks)
- Variables have different meanings and different scales across levels (so "one-unit" effects will rarely be the same across levels)!

Model Predictors (level-1 $x = x_{ij}$)

Level-2 effect of x_{ii}:

- > The level-2 effect of x_{ij} can be represented by the group's mean across its persons of level-1 x_{ij} (labeled as $\mathbf{GMx_i}$ or $\overline{\mathbf{X}_j}$)
- > **GMx**_j should be centered at a <u>CONSTANT</u> (grand mean or conceptually other useful value) so that 0 is meaningful, just like any other predictor

• Level-1 effect of x_{ij} has two options:

- \succ "Grand-mean-centering (Grand-MC)" → L1 $x_{ij} = x_{ij} C$
 - → level-1 predictor is centered using a CONSTANT (often but not necessarily the grand mean; it's just called that)
- ightarrow "Group-mean-centering (Group-MC)" ightarrow WGx_{ij} = $x_{ij} \overline{X}_{j}$
 - → level-1 predictor is centered using a <u>level-2 VARIABLE</u>
- > The interpretation of the level-2 effect of x_{ij} WILL DIFFER based on which centering method you choose for the level-1 effect of x_{ij} !
 - Grand-MC is more common in clustered data, so we'll use this

3 Kinds of Effects for Level-1 Predictors

Is the Within-Group (WG; level-1) fixed effect significant?

- If you have higher predictor values <u>than others in your group</u>, do you also have higher outcomes values <u>than others in your group</u>, such that the within-group deviation $\mathbf{WGx_{ij}}$ accounts for level-1 residual variance (σ_e^2)?
- > Given directly by the level-1 effect of WGx_{ij} if using Group-MC OR given directly by the level-1 effect of L1x_{ij} if using Grand-MC and including GMx_j at level 2 (without GMx_j, the level-1 effect of L1x_{ij} if using Grand-MC is the smushed effect)

Is the Between-Group (BG; level-2) fixed effect significant?

- Are groups with higher predictor values than other groups also higher on Y than other groups, such that the group mean of the person-level predictor GMx_j accounts for level-2 random intercept variance $(\tau_{U_0}^2)$?
- \rightarrow Given directly by level-2 effect of GMx_j if using Group-MC for the level-1 predictor (or can be requested via ESTIMATE if using Grand-MC for the level-1 predictor)

Are the BG and WG effects different: Is there a level-2 contextual effect?

- After controlling for the absolute value of the level-1 predictor for each person, is there still an incremental contribution from the group mean of the predictor (i.e., does a group's general tendency predict $\tau_{U_0}^2$ above and beyond the person-specific predictor value)?
- > Given directly by level-2 effect of GMx_j if using Grand-MC for the level-1 predictor (or can be requested via ESTIMATE if using Group-MC for the level-1 predictor)

Contextual Effects in Clustered Data

- Grand-MC can be more convenient in clustered data due to its ability to directly provide level-2 contextual effects (that are often of interest)
- Example: Effect of SES for students (nested in schools) on achievement:
- **Grand-MC** of level-1 student SES_{ij} , school mean \overline{SES}_{j} included at level 2
 - \rightarrow At level-1 \rightarrow L1_SES_{ij} = SES_{ij} C At level-2 \rightarrow BG_SES_{ij} = $\overline{\text{SES}}_{j}$ C
 - Level-1 WG effect: Effect of being rich kid relative to your school (is purely WG after statistically controlling for SES_i)
 - Level-2 Contextual effect: Incremental effect of going to a rich school (after statistically controlling for kid SES_{ii})
- **Group-MC** of level-1 student SES_{ij} , school mean \overline{SES}_{j} included at level 2
 - \rightarrow At level-1 \rightarrow WG_SES_{ij} = SES_{ij} SES_j At level-2 \rightarrow BG_SES_{ij} = $\overline{SES}_j C$
 - Level-1 WG effect: Effect of being rich kid relative to your school (is already purely WG because of centering around SES_i)
 - Level-2 BG effect: Effect of going to a rich school NOT controlling for kid SES_{ij}

WRONG WAY: Clustered Data Model with x_{ij} represented at Level 1 Only:

→ WG and BG Effects are **Smushed Together**

x_{ij} is grand-mean-centered into L1 x_{ij} , WITHOUT GM x_j at L2:

Level 1:
$$y_{ij} = \beta_{0j} + \beta_{1j}(\mathbf{L1x_{ij}}) + \mathbf{e_{ij}}$$

L1 $x_{ij} = x_{ij} - C \rightarrow \text{it still}$ has both Level-2 BG and Level-1 WG variation

Level 2:
$$\beta_{0j} = \gamma_{00} + U_{0j}$$

$$\beta_{1j} = \gamma_{10}$$

$$\gamma_{10} = *smushed*$$

WG and BG effects

Because L1x_{ij} still contains its original 2 different kinds of variation (BG and WG), its 1 fixed effect has to do the work of 2 predictors!

A *smushed* effect is also referred to as the convergence, conflated, or composite effect

Convergence (Smushed) Effect of a Level-1 Predictor

$$Convergence \ Effect: \gamma_{conv} \approx \frac{\frac{\gamma_{BG}}{SE_{BG}^2} + \frac{\gamma_{WG}}{SE_{WG}^2}}{\frac{1}{SE_{BG}^2} + \frac{1}{SE_{WG}^2}}$$

Adapted from Raudenbush & Bryk (2002, p. 138)

- The convergence effect will often be closer to the within-group effect (due to larger level-1 sample size and thus smaller SE)
- It is the rule, not the exception, that between and within effects differ (Snijders & Bosker, 1999, p. 52-56, and personal experience!)
- However—when grand-mean-centering a level-1 predictor, convergence is testable by including a contextual effect (carried by the group mean) for how the BG effect differs from the WG effect...

Clustered Data Model with Grand-Mean-Centered Level-1 x_{ij}

→ Model tests difference of WG vs. BG effects (It's been fixed!)

x_{ij} is grand-mean-centered into L1 x_{ij} , WITH GM x_j at L2:

Level 1:
$$y_{ij} = \beta_{0j} + \beta_{1j}(\mathbf{L1x_{ij}}) + \mathbf{e_{ij}}$$

L1 $x_{ij} = x_{ij} - C$ → it still has both Level-2 BG and Level-1 WG variation

Level 2:
$$\beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_j) + U_{0j}$$

 $\beta_{1j} = \gamma_{10}$

 $GMx_j = \overline{X}_j - C \Rightarrow$ it has only Level-2 BG variation

γ₁₀ becomes the WG effect → unique level-1 effect after controlling for GMx_i

γ₀₁ becomes the contextual effect that indicates how the BG effect differs from the WG effect

→ unique level-2 effect after controlling for L1x_{ij}

→ does group matter beyond individuals?

Clustered Data Model with Group-Mean-Centered Level-1 x_{ij}

→ WG and BG Effects directly through <u>separate</u> parameters

 x_{ij} is group-mean-centered into WGx_{ij}, with GMx_j at L2:

Level 1:
$$y_{ij} = \beta_{0j} + \beta_{1j}(\mathbf{WGx_{ij}}) + \mathbf{e_{ij}}$$

 $\mathbf{WGx_{ij}} = \mathbf{x_{ij}} - \overline{\mathbf{X}_{j}} \Rightarrow \mathbf{it} \text{ has}$ only Level-1 WG variation

Level 2:
$$\beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_j) + U_{0j}$$

$$\beta_{1j} = \gamma_{10}$$

 $GMx_j = \overline{X}_j - C \Rightarrow$ it has only Level-2 BG variation

 γ_{10} = WG main effect of having more x_{ij} than others in your group γ_{01} = BG main effect of having more \overline{X}_j than other groups

Because WGx_{ij} and GMx_j are uncorrelated, each gets the <u>total</u> effect for its level (WG=L1, BG=L2)

Why the Difference? Remember Regular Old Regression?

- In this model: $Y_i = \beta_0 + \beta_1(X_{1i}) + \beta_2(X_{2i}) + e_i$
- If X_{1i} and X_{2i} **ARE NOT** correlated:
 - β_1 is **ALL the relationship** between X_{1i} and Y_i
 - β_2 is **ALL the relationship** between X_{2i} and Y_i
- If X_{1i} and X_{2i} **ARE** correlated:
 - β_1 is **different than** the full relationship between X_{1i} and Y_i
 - "Unique" effect of X_{1i} controlling for X_{2i} or holding X_{2i} constant
 - β_2 is **different than** the full relationship between X_{2i} and Y_i
 - "Unique" effect of X_{2i} controlling for X_{1i} or holding X_{1i} constant
- Hang onto that idea...

Why the Difference? Group-MC vs. Grand-MC Variable for Level-1 Predictors

Level 2		Original	Group-MC Level 1	Grand-MC Level 1
\overline{X}_{j}	$\mathbf{GMx_j} = \overline{\mathbf{X}}_{\mathbf{j}} - 5$	x _{ij}	$\mathbf{WGx_{ij}} = \mathbf{x_{ij}} - \ \overline{\mathbf{X}}_{\mathbf{j}}$	$L1x_{ij} = x_{ij} - 5$
3	-2	2	-1	-3
3	-2	4	1	-1
7	2	6	-1	1
7	2	8	1	3

Same GMx_j goes into the model using either way of centering the level-1 variable x_{ii}

Using **Group-MC**, **WGx**_{ij} has NO level-2

BG variation, so it is not correlated with **GMx**_i

Using **Grand-MC**, **L1**x_{ij} STILL has level-2 BG variation, so it is STILL CORRELATED with **GM**x_i

So the effects of GMx_j and $L1x_{ij}$ when included together under Grand-MC will be different than their effects would be if they were by themselves...

Group-MC and Grand-MC Models are Equivalent Given a Fixed Level-1 Main Effect Only

Group-MC:
$$WGx_{ij} = x_{ij} - GMx_j$$

Level-1: $y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij} - GMx_j) + e_{ij}$

Level-2:
$$\beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_j) + U_{0j}$$

$$\beta_{1j} = \gamma_{10}$$

Composite Model:

- ← As Group-MC
- ← As Grand-MC

Grand-MC: $L1x_{ij} = x_{ij}$

Level-1:
$$y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij}) + e_{ij}$$

Level-2:
$$\beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_j) + U_{0j}$$

 $\beta_{1j} = \gamma_{10}$

$$\rightarrow y_{ij} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{10}(x_{ij}) + U_{0j} + e_{ij}$$

Effect	Group-MC	Grand-MC
Intercept	Υ00	γ ₀₀
WG Effect	Υ10	Y 10
Contextual	$\gamma_{01} - \gamma_{10}$	γ ₀₁
BG Effect	γ ₀₁	γ ₀₁ + γ ₁₀

Variance Accounted For By Level-2 Predictors

Fixed effects of level 2 predictors by themselves:

- > Level-2 (BG) main effects reduce level-2 (BG) random intercept variance
- > Level-2 (BG) interactions also reduce level-2 (BG) random intercept variance

Fixed effects of cross-level interactions (level 1* level 2):

- > If the interacting level-1 predictor is <u>random</u>, any cross-level interaction with it will reduce its corresponding level-2 BG random slope variance (that line's U)
- > If the interacting level-1 predictor <u>not random</u>, any cross-level interaction with it will reduce the level-1 WG residual variance instead
 - This is because the level-2 BG random slope variance would have been created by decomposing the level-1 residual variance in the first place
 - The level-1 effect would then be called "**systematically varying**" to reflect a compromise between "fixed" (all the same) and "random" (all different)—it's not that each group needs their own slope, but that the slope varies systematically across groups as a function of a known group predictor (and not otherwise)

Variance Accounted For By Level-1 Predictors

Fixed effects of level 1 predictors by themselves:

- > Level-1 (WG) main effects reduce Level-1 (WG) residual variance
- Level-1 (WG) interactions also reduce Level-1 (WG) residual variance

What happens at level 2 depends on what kind of variance the level-1 predictor has:

- > If the level-1 predictor ALSO has level-2 variance (e.g., Grand-MC predictors), then its level-2 variance will also likely reduce level-2 random intercept variance
- If the level-1 predictor DOES NOT have level-2 variance (e.g., Group-MC predictors), then its reduction in the level-1 residual variance will cause an INCREASE in level-2 random intercept variance
 - Same thing happens with Grand-MC level-1 predictors, but you don't generally see it
- > It's just an artifact that the estimate of true random intercept variance is:

True
$$\tau_{U_0}^2$$
 = observed $\tau_{U_0}^2 - \frac{\sigma_e^2}{n}$ \rightarrow so if only σ_e^2 decreases, $\tau_{U_0}^2$ increases

The Joy of Interactions Involving Level-1 Predictors

- Must consider interactions with both its BG and WG parts:
- Example: Does the effect of employee motivation (x_{ij}) on employee performance interact with type of business (for profit or non-profit; Type_i)?

Group-Mean-Centering:

- \rightarrow WGx_{ii} * Type_i \rightarrow Does the WG motivation effect differ between business types?
- \rightarrow GMx_i * Type_i \rightarrow Does the BG motivation effect differ between business types?
 - Moderation of total group motivation effect (not controlling for individual motivation)
 - If forgotten, then Type_i moderates the motivation effect only at level 1 (WG, not BG)

Grand-Mean-Centering:

- ▶ $L1x_{ii} * Type_{i}$ → Does the WG motivation effect differ between business types?
- \rightarrow GMx_i * Type_i \rightarrow Does the *contextual* motivation effect differ b/t business types?
 - Moderation of <u>incremental</u> group motivation effect <u>controlling for employee motivation</u> (moderation of the "boost" in group performance from working with motivated people)
 - If forgotten, then although the level-1 main effect of motivation has been un-smushed via the main effect of GMx_j , the interaction of $L1x_{ij} * Type_j$ would still be smushed

Interactions with Level-1 Predictors: Example: Employee Motivation (x_{ij}) by Business Type $(Type_i)$

```
Group-MC: WGx_{ij} = x_{ij} - GMx_{j}

Level-1: y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij} - GMx_{j}) + e_{ij}

Level-2: \beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \gamma_{02}(Type_{j}) + \gamma_{03}(Type_{j})(GMx_{j}) + U_{0j}

\beta_{1j} = \gamma_{10} + \gamma_{11}(Sex_{i})

Composite: y_{ij} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \gamma_{10}(x_{ij} - GMx_{j}) + U_{0j} + e_{ij}

+ \gamma_{02}(Type_{j}) + \gamma_{03}(Type_{j})(GMx_{j}) + \gamma_{11}(Type_{j})(x_{ij} - GMx_{j})
```

```
\begin{aligned} & \underline{Grand\text{-}MC:} \quad L1x_{ij} = x_{ij} \\ & \text{Level-1:} \quad y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij}) + \mathbf{e}_{ij} \\ & \text{Level-2:} \quad \beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \gamma_{02}(Type_{j}) + \gamma_{03}(Type_{j})(GMx_{j}) + \mathbf{U}_{0j} \\ & \beta_{1j} = \gamma_{10} + \gamma_{11}(Type_{j}) \end{aligned}
& \text{Composite:} \quad y_{ij} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \gamma_{10}(x_{ij}) + \mathbf{U}_{0j} + \mathbf{e}_{ij} \\ & \quad + \gamma_{02}(Type_{j}) + \gamma_{03}(Type_{j})(GMx_{j}) + \gamma_{11}(Type_{j})(x_{ij}) \end{aligned}
```

Interactions Involving Level-1 Predictors Belong at Both Levels of the Model

On the left below \rightarrow Group-MC: $WGx_{ij} = x_{ij} - GMx_{j}$

$$y_{ij} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \gamma_{10}(x_{ij} - GMx_{j}) + U_{0j} + e_{ij} \\ + \gamma_{02}(Type_{j}) + \gamma_{03}(Type_{j})(GMx_{j}) + \gamma_{11}(Type_{j})(x_{ij} - GMx_{j})$$

$$\leftarrow As Group-MC$$

$$y_{ij} = \gamma_{00} + (\gamma_{01} - \gamma_{10})(GMx_{j}) + \gamma_{10}(x_{ij}) + U_{0j} + e_{ij} \\ + \gamma_{02}(Type_{j}) + (\gamma_{03} - \gamma_{11})(Type_{j})(GMx_{j}) + \gamma_{11}(Type_{j})(x_{ij})$$

$$\leftarrow As Grand-MC$$

On the right below \rightarrow Grand-MC: L1 $x_{ij} = x_{ij}$

$$y_{ij} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{10}(x_{ij}) + U_{0j} + e_{ij} + \gamma_{02}(Type_j) + \gamma_{03}(Type_j)(GMx_j) + \gamma_{11}(Type_j)(x_{ij})$$

After adding an interaction for **Type**_j with **x**_{ij} at both levels, then the Group-MC and Grand-MC models are equivalent

```
Intercept: \gamma_{00} = \gamma_{00} BG Effect: \gamma_{01} = \gamma_{01} + \gamma_{10} Contextual: \gamma_{01} = \gamma_{01} - \gamma_{10} WG Effect: \gamma_{10} = \gamma_{10} BG*Type Effect: \gamma_{03} = \gamma_{03} + \gamma_{11} Contextual*Type: \gamma_{03} = \gamma_{03} - \gamma_{11} Type Effect: \gamma_{20} = \gamma_{20} BG*WG or Contextual*WG is the same: \gamma_{11} = \gamma_{11}
```

Intra-variable Interactions

- Still must consider interactions with both its BG and WG parts!
- Example: Does the effect of employee motivation (x_{ij}) on employee performance interact with business group mean motivation (GMx_i) ?

Group-Mean-Centering:

- \rightarrow WGx_{ii} * GMx_i \rightarrow Does the WG motivation effect differ by group motivation?
- \rightarrow GMx_i * GMx_i \rightarrow Does the BG motivation effect differ by group motivation?
 - Moderation of total group motivation effect (not controlling for individual motivation)
 - If forgotten, then GMx_i moderates the motivation effect only at level 1 (WG, not BG)

Grand-Mean-Centering:

- \rightarrow L1x_{ij} * GMx_i \rightarrow Does the WG motivation effect differ by group motivation?
- > $GMx_i * GMx_i \rightarrow Does$ the *contextual* motivation effect differ by group motiv.?
 - Moderation of <u>incremental</u> group motivation effect <u>controlling for</u> employee motivation (moderation of the boost in group performance from working with motivated people)
 - If forgotten, then although the level-1 main effect of motivation has been un-smushed via the main effect of GMx_i , the interaction of $L1x_{ij} * GMx_j$ would still be smushed

Intra-variable Interactions:

Example: Employee Motivation (x_{ij}) by Business Mean Motivation (GMx_j)

```
Group-MC: WGx_{ij} = x_{ij} - GMx_{j}

Level-1: y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij} - GMx_{j}) + e_{ij}

Level-2: \beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \gamma_{02}(GMx_{j})(GMx_{j}) + U_{0j}

\beta_{1j} = \gamma_{10} + \gamma_{11}(GMx_{j})

Composite: y_{ij} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \gamma_{10}(x_{ij} - GMx_{j}) + U_{0j} + e_{ij} + \gamma_{02}(GMx_{j})(GMx_{j}) + \gamma_{11}(GMx_{j})(x_{ij} - GMx_{j})
```

```
\begin{array}{ll} \textbf{Grand-MC:} & L1x_{ij} = x_{ij} \\ \textbf{Level-1:} & y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij}) + \textbf{e}_{ij} \\ \textbf{Level-2:} & \beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \gamma_{02}(GMx_{j})(GMx_{j}) + \textbf{U}_{0j} \\ & \beta_{1j} = \gamma_{10} + \gamma_{11}(GMx_{j}) \\ \end{array} \textbf{Composite:} & y_{ij} = \gamma_{00} + \gamma_{01}(GMx_{j}) + \gamma_{10}(x_{ij}) + \textbf{U}_{0j} + \textbf{e}_{ij} \\ & + \gamma_{02}(GMx_{i})(GMx_{j}) + \gamma_{11}(GMx_{i})(x_{ii}) \end{array}
```

Intra-variable Interactions:

Example: Employee Motivation (x_{ij}) by Business Mean Motivation (GMx_i)

On the left below \rightarrow Group-MC: WGx_{ij} = x_{ij} - GMx_j

$$y_{ij} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{10}(x_{ij} - GMx_j) + U_{0j} + e_{ij} + \gamma_{02}(GMx_j)(GMx_j) + \gamma_{11}(GMx_j)(x_{ij} - GMx_j)$$

$$y_{ij} = \gamma_{00} + (\gamma_{01} - \gamma_{10})(GMx_j) + \gamma_{10}(x_{ij}) + U_{0j} + e_{ij} + (\gamma_{02} - \gamma_{11})(GMx_j)(GMx_j) + \gamma_{11}(GMx_j)(x_{ij})$$

← As Group-MC

← As Grand-MC

On the right below \rightarrow Grand-MC: L1 $x_{ij} = x_{ij}$

$$y_{ij} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{10}(x_{ij}) + U_{0j} + e_{ij} + \gamma_{02}(GMx_j)(GMx_j) + \gamma_{11}(GMx_j)(x_{ij})$$

After adding an interaction for **Type**_j with **x**_{ij} at both levels, then the Group-MC and Grand-MC models are equivalent

Intercept: $\gamma_{00} = \gamma_{00}$ BG Effect: $\gamma_{01} = \gamma_{01} + \gamma_{10}$ Contextual: $\gamma_{01} = \gamma_{01} - \gamma_{10}$

WG Effect: $\gamma_{10} = \gamma_{10}$ BG² Effect: $\gamma_{02} = \gamma_{02} + \gamma_{11}$ Contextual²: $\gamma_{02} = \gamma_{02} - \gamma_{11}$

BG*WG or Contextual*WG is the same: $\gamma_{11} = \gamma_{11}$

When Group-MC \neq Grand-MC: Random Effects of Level-1 Predictors

Group-MC:
$$WGx_{ij} = x_{ij} - GMx_j$$

Level-1: $y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij} - GMx_j) + e_{ij}$

Level-2: $\beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_j) + U_{0j}$

$$\beta_{1j} = \gamma_{10} + U_{1j}$$

$$\Rightarrow y_{ij} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{10}(x_{ij} - GMx_j) + U_{0j} + U_{1j}(x_{ij} - GMx_j) + e_{ij}$$

Grand-MC: L1
$$x_{ij} = x_{ij}$$
Level-1: $y_{ij} = \beta_{0j} + \beta_{1j}(x_{ij}) + e_{ij}$
Level-2: $\beta_{0j} = \gamma_{00} + \gamma_{01}(GMx_j) + U_{0j}$

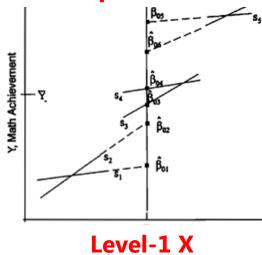
$$\Rightarrow y_{ij} = \gamma_{00} + \gamma_{01}(GMx_j) + \gamma_{10}(x_{ij}) + \gamma_{$$

Random Effects of Level-1 Predictors

- Random intercepts mean different things under each model:
 - > **Group-MC** \rightarrow Group differences at **WG** x_{ij} =0 (that every group has)
 - > **Grand-MC** → Group differences at $L1x_{ij}=0$ (that not every group will have)
- **Differential shrinkage of the random intercepts** results from differential reliability of the intercept data across models:
 - ➤ Group-MC → Won't affect shrinkage of slopes unless highly correlated
 - ➤ Grand-MC → Will affect shrinkage of slopes due to forced extrapolation
- As a result, the random slope variance may be smaller under Grand-MC than under Group-MC
 - Problem worsens with greater ICC of level-1 predictor (more extrapolation)
 - > Anecdotal example was presented in Raudenbush & Bryk (2002; chapter 5)

Bias in Random Slope Variance

OLS Per-Group Estimates



<u>Top right</u>: Intercepts and slopes are homogenized in Grand-MC because of intercept extrapolation

<u>Bottom</u>: Downwardly-biased random slope variance in Grand-MC relative to Group-MC

EB Shrunken Estimates



Unconditional Results

Conditional Results

Group-MC

$$\hat{\mathbf{T}} = \begin{bmatrix} 8.68 & 0.05 \\ 0.05 & 0.68 \end{bmatrix}$$

$$\hat{\sigma}^2 = 36.70$$

$$\hat{\mathbf{T}} = \begin{bmatrix} 2.38 & 0.19 \\ 0.19 & 0.15 \end{bmatrix}$$

$$\hat{\boldsymbol{\sigma}}^2 = 36.70$$

Grand-MC

$$\widehat{\mathbf{T}} = \begin{bmatrix} 4.83 & -0.15 \\ -0.15 & 0.42 \end{bmatrix}$$

$$\widehat{\mathbf{r}}^2 = 36.83$$

$$\widehat{\mathbf{T}} = \begin{bmatrix} 2.41 & 0.19 \\ 0.19 & 0.06 \end{bmatrix}$$

$$\widehat{\sigma}^2 = 36.74$$

MLM for Clustered Data: Summary

- Models now come in only two kinds: "empty" and "conditional"
 - > The lack of a comparable dimension to "time" simplifies things greatly!
- L2 = Between-Group, L1 = Within-Group (between-person)
 - Level-2 predictors are group variables: can have fixed or systematically varying effects (but not random effects in two-level models)
 - Level-1 predictors are person variables: can have fixed, random, or systematically varying effects
- No smushing main effects or interactions of level-1 predictors:
 - > Group-MC at Level 1: Get L1=WG and L2=BG effects directly
 - > Grand-MC at Level 1: Get L1=WG and L2=contextual effects directly
 - As long as some representation of the L1 effect is included in L2;
 otherwise, the L1 effect (and any interactions thereof) will be smushed