Introduction to Two-Level Models
for Clustered™ Data

- Today'’s Class:
> Fixed vs. Random Effects for Modeling Clustered Data

> ICC and Design Effects in Clustered Data
> Grand-Mean-Centering vs. Group-Mean Centering
> Model Extensions under Group-MC and Grand-MC

* Clustering = Nesting = Grouping...
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Multilevel Models for Clustered Data

- So far we've seen multivariate models to model variance and
covariance (dependency) arising from repeated measures
(multiple conditions or trials from the same person)

« Now we examine multivariate (multilevel) models for more
general examples of nesting/clustering/grouping:

> Students within teachers, athletes within teams
> Siblings within families, partners within dyads

> Employees within businesses, patients within doctors

- Residuals of people from same group are likely to be
correlated due to group differences (e.g., purposeful
grouping or shared experiences create dependency)

> Requires random effects - multiple piles of variance to predict
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What is a Multilevel Model (MLM)?

- Same as other terms you have heard of:
> General Linear Mixed Modael (if you are from statistics)

» Mixed = Fixed and Random effects

> Random Coefficients Model (also if you are from statistics)
« Random coefficients = Random effects

> Hierarchical Linear Model (if you are from education)

« Not the same as hierarchical regression

- Special cases of MLM:
> Random Effects ANOVA or Repeated Measures ANOVA
> (Latent) Growth Curve Model (where “Latent” - SEM)
> Within-Person Variation Model (e.g., for daily diary data)
> Clustered/Nested Observations Model (e.g., for kids in schools)
> Cross-Classified Models (e.g., “value-added” models)
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2 Options for Differences Across Groups

Represent Group Differences as Fixed Effects

- Include (#groups-1) contrasts for group membership in the model
for the means (categorical X)=> so group is NOT another “level”

- Permits inference about differences between specific groups, but
you cannot include between-group predictors (group is saturated)

- Snijders & Bosker (1999) ch. 4, p. 44 recommend if #groups < 10ish

Represent Group Differences as a Random Effect

- Include a group random intercept variance in the model for the
variance, such that group differences become another “level”

- Permits inference about differences across groups more generally,
for which you can test effects of between-group predictors

. Better if #groups > 10ish and you want to predict group differences
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Empty Means, Random Intercept Model

MLM for Clustered Data:
. Two-level notation:

> L =level 1, j = level 2

 Level 1:
Yii = Boj + €

3 Total Parameters:
Model for the Means (1):

- Fixed Intercept y,,

Model for the Variance (2):

+ Level-1 Variance of e; > o3

. Level-2 Variance of Uoj - TIZJO

. LeveI 2:
Voo + Uy;

Residual = person-specific deviation

from group’s predicted outcome

\

Random Intercept
group-specific

dewatlon from

predicted intercept

Fixed Intercept
=grand mean
(of group means)

Composite equation:
= (Yoo + Uyg;) + €;;
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Intraclass Correlation (ICC)

Intraclass Correlation (ICC):

(cC BG Intercept Variance
"~ BG+ WG Intercept Variance + Residual Variance
2
Tuy t%o - Why don't all groups have the same mean?

B TIZJO + 0'(23 6% = Why don't all people from the same group
have the same outcome?

. ICC = Proportion of total variance that is between groups
. ICC = Average correlation of persons from same group

. ICC is a standardized way of expressing how much we need to worry
about dependency due to group mean differences
(i.e., ICC is an effect size for constant group dependency)

- Whether 1[2,0>O (whether ICC>0) is testable via a likelihood ratio test
(-2ALL) against a general linear model with 62 only
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BetweenGroup LR

BetweenGroup+WithinGroup - 5, +0a

ICC=

Counter-Intuitive: Between-Group Variance is in the
numerator, but the ICC is the correlation within a group!

{ r
| | <
L4
{- ..................................... J
—
ICC = BTW /BTW + within ICC = btw / btw + WITHIN
= Large ICC - Small ICC

- Large within-group correlation - Small within-group correlation
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Effects of Clustering on Effective N

- Design Effect expresses how much effective sample size
needs to be adjusted due to clustering/grouping

- Design Effect = ratio of the variance using a given sampling
design to the variance using a simple random sample from the
same population, given the same total sample size either way

/ n = # persons
from each group

- Design Effect = 1 + [(n=1) = ICC]

. . # Total Observations
. Effectiv mple size > N .. =
ective sample size effective Design Effect

. As ICC goes UP and cluster size goes UP,
the effective sample size goes DOWN

> See Snijders and Bosker (2012) for more info and for a modified
formula that takes unequal group sizes into account
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Design Effects in Two-Level Nesting

- Design Effect = 1 + [(n-1) = 1CC]
# Total Observations
Design Effect

. Effective sample size 2 N qociive =

- n=5 patients from each of 100 doctors, ICC=.307

> Patients Design Effect =1 + (4 *.30) = 2.20
> N =500/ 2.20 = 227 (not 500)

effective

« n=20 students from each of 50 schools, ICC=.057

> Students Design Effect =1 + (19 *.05) = 1.95
> N = 1000/ 1.95 = 513 (not 1000)

effective
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Does a non-significant ICC mean you can
ignore groups and just do a regression?

. Effective sample size depends on BOTH the ICC and the
number of people per group: As ICC goes UP and group size
goes UP, the effective sample size goes DOWN

> So there is NO VALUE OF ICC that is “safe” to ignore, not even ~0!

> An ICC=0 in an empty (unconditional) model can become ICC>0 after
adding person predictors because reducing the residual variance leads
to an increase in the random intercept variance (= conditional ICC > 0)

. So just do a multilevel analysis anyway...

> Even if “that’s not your question”... because people come from groups,
you still have to model group dependency appropriately because of:

« Effect of clustering on fixed effect SE's > biased SEs
= Potential for contextual effects of person-level (level-1) predictors
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Predictors in MLM for Clustered Data
Example: Achievement in Students nested in Schools

- Level-2 predictors are Group-Level Variables

> Can only have fixed effects (everyone gets the same effect)

> e.g., Does mean school achievement differ b/t rural and urban schools?

- Level-1 predictors are Person-Level Variables

> Can have fixed, systematically varying, or random effects over groups

> e.g., Does student achievement differ between boys and girls?

Fixed effect: Is there a gender difference in achievement, period?

Systematically varying effect: Does the gender effect differ b/t rural and
urban schools? (but the gender effect is otherwise the same within rural and
within urban schools)

Random effect: Does the gender effect differ randomly across schools?
(even after including group-level predictors for it via cross-level interactions)
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Level-1 (Person-Level) Predictors

- Modeling of level-1 predictors is complicated (and usually
done incorrectly) because each level-1 predictor is usually
really 2 predictor variables (each with their own effect), not 1

- Example: Student SES when students are clustered in schools

> Some kids have more money than other kids in their school:
- WG variation in SES (represented directly as deviation from school mean)
> Some schools have more money than other schools:

=BG variation in SES (represented as school mean SES or via external info)

- Can quantify each source of variance with an ICC
> ICC = (BG variance) / (BG variance + WG variance)
> ICC > 07 Level-1 predictor has BG variation (so it could have BG effect)
> ICC < 1?7 Level-1 predictor has WG variation (so it could have WG effect)
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Between-Group vs.Within-Group Effects

- Between-group and within-group effects in SAME direction
> SES—> Achievement?

BG: Schools with more money than other schools may have
greater mean achievement than schools with less money

= WAG: Kids with more money than other kids in their school may have greater
achievement than other kids in their school (regardless of school mean SES)

. Between-group and within-group effects in OPPOSITE directions

> Body mass =2 life expectancy in animals (Curran and Bauer, 2011)?

BG: Larger species tend to have longer life expectancies than smaller species
(e.g., whales live longer than cows, cows live longer than ducks)

« WG: Within a species, relatively bigger animals have shorter life expectancy
(e.g., fat ducks die sooner than skinny ducks)

- Variables have different meanings and different scales across
levels (so “one-unit” effects will rarely be the same across levels)!
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Model Predictors (level-1 x = x;)

+ Level-2 effect of x;;:

> The level-2 effect of x; can be represented by the group’s mean across
its persons of level-1 X; (labeled as GMYx; or X;)

> GMx; should be centered at a CONSTANT (grand mean or conceptually
other useful value) so that 0 is meaningful, just like any other predictor

- Level-1 effect of x;; has two options:

> "Grand-mean-centering (Grand-MC)" > L1x; = x;; — C
- level-1 predictor is centered using a CONSTANT
(often but not necessarily the grand mean; it's just called that)

> "Group-mean-centering (Group-MC)" > WGx;; = x;; — X
- level-1 predictor is centered using a level-2 VARIABLE

> The interpretation of the level-2 effect of x; WILL DIFFER based on
which centering method you choose for the level-1 effect of x;!

= Grand-MC is more common in clustered data, so we'll use this

j
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3 Kinds of Effects for Level-1 Predictors

. Is the Within-Group (WG; level-1) fixed effect significant?

> If you have higher predictor values than others in your group, do you also have higher
outcomes values than others in your group, such that the within-group deviation WGx;;
accounts for level-1 residual variance (62)?

> Given directly by the level-1 effect of WGx;; if using Group-MC —OR — given directly
by the level-1 effect of L1x; if using Grand-MC and including GMx; at level 2
(without GMx;, the level-1 effect of L1x; if using Grand-MC is the smushed effect)

- Is the Between-Group (BG; level-2) fixed effect significant?

> Are groups with higher predictor values than other groups also higher on'Y
than other groups, such that the group mean of the person-level predictor GMx;
accounts for level-2 random intercept variance (rUO)

> Given directly by level-2 effect of GMx; if using Group-MC for the level-1 predictor
(or can be requested via ESTIMATE if using Grand-MC for the level-1 predictor)

> After controlling for the absolute value of the level-1 predictor for each person, is there
still an incremental contribution from the group mean of the predictor (i.e., does a group’s
general tendency predict T%O above and beyond the person-specific predictor value)?

> Given directly by level-2 effect of GMx; if using Grand-MC for the level-1 predictor
(or can be requested via ESTIMATE if usmg Group-MC for the level-1 predictor)
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Contextual Effects in Clustered Data

Grand-MC can be more convenient in clustered data due to its ability to
directly provide level-2 contextual effects (that are often of interest)

Example: Effect of SES for students (nested in schools) on achievement:

Grand-MC of level-1 student SES.,

ij 1
> Atlevel-1 > L1_SES;; = SES; — C At level-2 > = SES; - C

> Level-1 WG effect: Effect of being rich kid relative to your school
(is purely WG after statistically controlling for SES;)

school mean SES; included at level 2

> Level-2 effect: Incremental effect of going to a rich school
(after statistically controlling for kid SES;)

Group-MC of level-1 student SES;;, school mean SES; included at level 2

> Atlevel-1 > WG_SES;; = SES;; — SES; At level-2 > BG_SES;; = SES; — C

> Level-1 WG effect: Effect of being rich kid relative to your school L
(is already purely WG because of centering around SES;)

> Level-2 BG effect: Effect of going to a rich school NOT controlling for kid SES;
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WRONG WAY: Clustered Data Model with

X;; represented at Level 1 Only:
= WG and BG Effects are Smushed Together

WITHOUT GMYx; at L2:

; is grand-mean-centered into L1x;,

level 1: v. = B~ + B-.(L1Xx..) + e.. L1x; = x;; — C > it still
yU BOJ BlJ( U) J has both Level-2 BG and

Level-1 WG variation

Level 2: BOj = Yoo T UOj Because L1x; still contains
its original 2 different kinds
Blj = Y10 of variation (BG and WG),
/ its 1 fixed effect has to do
Vo = *smushed* the work of 2 predictors!

WG and BG effects

A *smushed* effect is also referred to as the
convergence, conflated, or composite effect
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Convergence (Smushed) Effect
of a Level-1 Predictor

YBG N Twe

SE?2 SE?2 Adapted from
1BG ]\_NG Raudenbush & Bryk

S (2002, p. 138)
SEg; SEyg

Convergence Effect: y ,,, =~

- The convergence effect will often be closer to the within-group effect
(due to larger level-1 sample size and thus smaller SE)

- Itis the rule, not the exception, that between and within effects differ
(Snijders & Bosker, 1999, p. 52-56, and personal experience!)

- However—when grand-mean-centering a level-1 predictor, convergence is

testable by including a
for how the BG effect differs from the WG effect...
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Clustered Data Model with
Grand-Mean-Centered Level-1 x;;
— Model tests difference of WG vs. BG effects (It’s been fixed!)

X;; is grand-mean-centered into L1x;, WITH GMx; at L2:

leij = xii — C 2 it still
Level 1: Yij = BOj + Blj(l'lxij) T € has both Level-2 BG and
Level-1 WG variation
Level 2: By = Yoo + Youl ) + Uy =X —C>ithas
only Level-2 BG variation
Blj = Y10

Y10 becomes the WG Vo becomes the
effect 2 unique

level-1 effect after
controlling for

that indicates
how the BG effect differs from the WG effect

~ unique level-2 effect after controlling for L1x;
-> does group matter beyond individuals?
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Clustered Data Model with

Group-Mean-Centered Level-1 x;

J

— WG and BG Effects directly through separate parameters

X;; is group-mean-centered into WGx

Level 1: y;

Level 2: By = Yoo + Vo1 (GMx;) + Uy

Blj = Y10

BOJ- + BlJ(WGXIj) + eu

AN

i with GVix; at L2:

WGXij = xii — )_(] -> it haS

only Level-1 WG variation

GMx; = X; — € > it has
only Level-2 BG variation

/L
Y10 = WG main
effect of having
more x;; than others
in your group

Yo: = BG main effect
of having more X,

than other groups
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are uncorrelated, each
gets the total effect for
its level (WG=L1, BG=L2)
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Why the Difference!?
Remember Regular Old Regression!?

» Inthis model: Y, = By + B1(X1;) + B2 (X2:) + €
If X,; and X,, ARE NOT correlated:

- [, is ALL the relationship between X, and Y,
- f3, is ALL the relationship between X,; and Y,

If X,;, and X,, ARE correlated:
- B, is different than the full relationship between X, and Y,

- "Unique” effect of X, controlling for X,, or holding X,; constant
- B, is different than the full relationship between X,; and Y,

- "Unique” effect of X,, controlling for X;; or holding X;; constant

Hang onto that idea...
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Why the Difference? Group-MC vs. Grand-

MC Variable for Level-1 Predictors

Level 2 Original | Group-MC Level1 | Grand-MC Level 1
X; |GMx;=X;—5 Xj WGx;; = x5 — )_(i L1x; = X3 — 5
3 -2 2 -1 -3
3 . 4 1 -1
7 2 6 -1 1
7 2 8 1 3

Same GMx; goes into
the model using either
way of centering the
level-1 variable x;

Using Group-MC,
WGx;; has NO level-2
BG variation, so it is not
correlated with GMXx;

Using Grand-MC, L1x;
STILL has level-2 BG
variation, so it is STILL
CORRELATED with GMx;

So the effects of GMx; and L1x;; when included together under Grand-MC
will be different than their effects would be if they were by themselves...
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Group-MC and Grand-MC Models are Equivalent
Given a Fixed Level-1 Main Effect Only

Level-1: y; = By + Byj(x; — GMx;) + e

Level-2: BOJ =Yoo T Vol(GMXj) + UO]

Blj = Y10
Composite Model:
>VYii = Yoo + Yo1(GMX)) + yyo(x; — GMx;) + Uy + €; < As Group-MC
>Yii = Yoo + (Vo1 = Y10)(GMX,) + y10(X;) + Ug; + €; SasierEngsNC
Effect Group-MC| Grand-MC
Grand-MC: L1x;; = x; Intercept | vy Yoo
Level-1: y; = By; + Byj(x;) + € WG Effect |y Y10
Level-2: By = yoo + Vi ) + Uy, Yo1 = Y10
Blj = Y10 BG Effect |y, + V10

2VYii =Yoo+ Vol ) + Y10(x;) + Ug; + €
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Variance Accounted For By Level-2 Predictors

- Fixed effects of level 2 predictors by themselves:
> Level-2 (BG) main effects reduce level-2 (BG) random intercept variance

> Level-2 (BG) interactions also reduce level-2 (BG) random intercept variance

- Fixed effects of cross-level interactions (level 1* level 2):

> If the interacting level-1 predictor is random, any cross-level interaction with it
will reduce its corresponding level-2 BG random slope variance (that line's U)

> If the interacting level-1 predictor not random, any cross-level interaction with it
will reduce the level-1 WG residual variance instead

This is because the level-2 BG random slope variance would have been created
by decomposing the level-1 residual variance in the first place

The level-1 effect would then be called “systematically varying” to reflect a
compromise between “fixed” (all the same) and “random” (all different)—it's not that
each group needs their own slope, but that the slope varies systematically across
groups as a function of a known group predictor (and not otherwise)
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Variance Accounted For By Level-1 Predictors

- Fixed effects of level 1 predictors by themselves:
> Level-1 (WG) main effects reduce Level-1 (WG) residual variance

> Level-1 (WGQG) interactions also reduce Level-1 (WG) residual variance

- What happens at level 2 depends on what kind of variance the
level-1 predictor has:

> If the level-1 predictor ALSO has level-2 variance (e.g., Grand-MC predictors),
then its level-2 variance will also likely reduce level-2 random intercept variance

> If the level-1 predictor DOES NOT have level-2 variance (e.g., Group-MC
predictors), then its reduction in the level-1 residual variance will cause an
INCREASE in level-2 random intercept variance

Same thing happens with Grand-MC level-1 predictors, but you don't generally see it
> It's just an artifact that the estimate of true random intercept variance is:

2
e

(e) . .
True T3 = observed t3 — =% > so if only 62 decreases, T increases
Uo Uo n e Up

SPLH 861: Lecture 7
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The Joy of Interactions Involving
Level-1 Predictors

- Must consider interactions with both its BG and WG parts:

- Example: Does the effect of employee motivation (x;;) on employee performance
interact with type of business (for profit or non-profit; Type))?

- Group-Mean-Centering:
> WGx; * Type; > Does the WG motivation effect differ between business types?
- GMx; = Type; - Does the BG motivation effect differ between business types?

Moderation of total group motivation effect (not controlling for individual motivation)
If forgotten, then Type; moderates the motivation effect only at level 1 (WG, not BG)

- Grand-Mean-Centering:
» L1x; = Type; 2 Does the WG motivation effect differ between business types?
* Type; > Does the contextual motivation effect differ b/t business types?

Moderation of incremental group motivation effect controlling for employee motivation
(moderation of the "boost” in group performance from working with motivated people)

If forgotten, then although the level-1 main effect of motivation has been un-smushed via
the main effect of , the interaction of L1x;; x Type; would still be smushed
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Interactions with Level-1 Predictors:
Example: Employee Motivation (x;) by Business Type (Type))
Group-MC: WGx;; = x;; — GMx;
Level-1: Yi; = BOj + [311-(xii — GMx;) + e;

Level-2: By = Yo + V0:1(GMX;) + ypo(Type;) + yp:(Type)(GMx;) + U,
B1j = Y10 + Y1a(Sex))

Composite: y; = Vg + Vo1 (GMx)) + yyo(x; — GMx;) + Uy + €
+ Yo2(Type;) + yo:(Type))(GMx;) + y,,(Type)(x;; — GMx;)

Grand-MC: L1x; = X;
Level-1: y; = By; + Byj(x;) + €
Level-2: By; = Voo + Vo (C115) + yoa(Type)) + 1 (Type)(G11x) + Ug,

Bij = Y10 + Y12(Type)

Composite: y; = ygo + Vo ( ) + V1o(X;) + Ug; + €
+ Vo2(Type)) + v..(Type)( ) + Y11 (Typey)(xy)
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Interactions Involving Level-1 Predictors
Belong at Both Levels of the Model

On the left below & Group-MC: WGx;; = x;; — GMx;
Yii = Yoo + Yo1(GMX)) + yyo(x; — GMx;) + Uy + €
+ Yo2(Type)) + yo3(Type))(GMx) + y;;(Type)(x;; — GMx;)

Yii = Yoo + (Vo1 = Y10)(GMX)) + yy4(Xy) + Ug; + € & As Grand-MC
+ Vo2(Type)) + (Vos = V1) (Type))(GMx) + y4;(Type;)(xy)

< As Group-MC

On the right below > Grand-MC: L1x; = x; After adding an

J interaction for Type;

- + + %) + U + @ with x;; at both levels,
Yij Yoo ( ) + Yol u) 0j ) then t]he Group-MC
+ Yo2Type;)) + v, (Type;)( ) + v11(Type;)(x;) and Grand-MC
models are equivalent
Intercept: y,0 = Yoo BG Effect: y,, = + Y10 Contextual: v, =y, - V10
WG Effect: y,, =y,, BG*Type Effect: y,; = +y;; Contextual*Type: = Yoz — Y11
Type Effect: y,, =y, BG*WG or Contextual*WG is the same: y;; =y,
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Intra-variable Interactions

Still must consider interactions with both its BG and WG parts!

Example: Does the effect of employee motivation (x;) on employee
performance interact with business group mean motivation (GMx;)?

Group-Mean-Centering:
~ WGx; * GMx; > Does the WG motivation effect differ by group motivation?

- GMx; » GMx; - Does the BG motivation effect differ by group motivation?

= Moderation of total group motivation effect (not controlling for individual motivation)
= If forgotten, then GMx; moderates the motivation effect only at level 1 (WG, not BG)

Grand-Mean-Centering:
> L1x;; * GMx; - Does the WG motivation effect differ by group motivation?

* GMx; = Does the contextual motivation effect differ by group motiv.?

Moderation of incremental group motivation effect controlling for employee motivation
(moderation of the boost in group performance from working with motivated people)

If forgotten, then although the level-1 main effect of motivation has been un-smushed via
the main effect of , the interaction of L1x; * GMX; would still be smushed

SPLH 861: Lecture 7
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Intra-variable Interactions:
Example: Employee Motivation (x;;) by Business Mean Motivation (GMx))

Group-MC: WGx;; = x;; — GMx;
Level-1: Yij = BOj + B1j(xij — GMx;) + €
Level-2: By = Yoo + V01(GMx)) + y,(GMx;)(GMx;) + Uy
By = Y10 *+ Y12(GMx;)

Composite: y; = Yqo + Vo:1(GMx)) + yyo(x; — GMx;) + Uy + €
+ Vo2(GMx;)(GMx;) + y;,(GMx;)(x;; — GMx;)

Grand-MC: L1x; = X;

Level-1: y; = By; + Byj(x;) + €
Level-2: BOj = Yoo * ( ) + (GMX]')( ) + Uoj

By = Y10 + V12(GMX;)

Composite: y; = Yoo + Vo ( ) + Yio(x;) + Ug; + €
+ . (GMx;)( ) + Y11(GMx)(x;)
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Intra-variable Interactions:
Example: Employee Motivation (x;;) by Business Mean Motivation (GMx))

On the left below & Group-MC: WGx;; = x;; — GMx;

Yii = Yoo * Yo1(GMX)) + yyo(x;— GMx;) + Ug; + €

Yii = Yoo * (Vo1 = Y1) (GMX;) + yy(x;) + Ug; + € € A Coand MIC
+ (Voo — yll)(GMx]-)(GMXj) + V11(GMXj)(Xij)

< As Group-MC

On the right below > Grand-MC: Lix; = x; After adding an

) | interaction for Type;

— ith x;; at both levels,
Yij = Yoo * ( ) + VaolXy) + Uoj AL V\t”henx’lc]hae G(r)oup?\l</e|CS
+ (GMXj)( ) + V11(GMX,-)(X11') and Grand-MC models

are equivalent

Intercept: yo0 = Yoo BG Effect: y,, = + Y10 Contextual: =VYo1 — Y10
WG Effect: y,;, = Y10 BG? Effect: y,, = +Yy,; Contextual® = Vo2 = Y11
BG*WG or Contextual*WG is the same: y,; = y;;
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When Group-MC # Grand-MC:
Random Effects of Level-1 Predictors

Level-1: y; = By; + Byj(x; — GMx;) + e;

Level-2: By; = ygo + V0:(GMx;) + Uy,
By = Y10 + Uy

>Yii =Yoo *+ Yo1(GMX;) + yio(x; — GMx;) + UOj + Ulj(Xii — GMx;) + e;

Variance due to GMXx;

is removed from the
random slope in
Group-MC.

Grand-MC: L1x; = Xx;

LEVEI']-: yU - BOJ + BIJ(XI]) + elj

Level-2: By = ygo + Vo ( ) + Uy;
By = Y10 + Uy

Variance due to GMXx; is

still part of the random

slope in Grand-MC. So

these models cannot be
made equivalent.

/

2 Vi =Yoo+ Vol ) + Vio(X;) + Ug + Uylx;) + e
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Random Effects of Level-1 Predictors

- Random intercepts mean different things under each model:
> Group-MC - Group differences at WGx; =0 (that every group has)
> Grand-MC - Group differences at L1x;=0 (that not every group will have)

- Differential shrinkage of the random intercepts results from
differential reliability of the intercept data across models:

> Group-MC > Won't affect shrinkage of slopes unless highly correlated
> Grand-MC > Will affect shrinkage of slopes due to forced extrapolation

. As aresult, the random slope variance may be smaller
under Grand-MC than under Group-MC

> Problem worsens with greater ICC of level-1 predictor (more extrapolation)

> Anecdotal example was presented in Raudenbush & Bryk (2002; chapter 5)
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Bias in Random Slope Variance

OLS Per-Group Estimates EB Shrunken Estimates

Level-1 X

Top right: Intercepts and slopes
are homogenized in Grand-MC
because of intercept extrapolation

Bottom: Downwardly-biased
random slope variance in
Grand-MC relative to Group-MC

SPLH 861: Lecture 7

Y, Math

Level-1 X
Unconditional Results Conditional Resulis
Group-MC
= B.68 0.05 - 238 0.19
T 10.05 068 T 10.19 |0.15
a® =36.70 g = 36.70
Grand-MC
% - 483 ~0.15 B 241 0.19
1015 042 0.19 |0.06
0! = 36.83 o = 36.74
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MLM for Clustered Data: Summary

- Models now come in only two kinds: “empty” and “conditional”

> The lack of a comparable dimension to “time” simplifies things greatly!

.« L2 = Between-Group, L1 = Within-Group (between-person)

> Level-2 predictors are group variables: can have fixed or systematically
varying effects (but not random effects in two-level models)

> Level-1 predictors are person variables: can have fixed, random, or
systematically varying effects

- No smushing main effects or interactions of level-1 predictors:

> Group-MC at Level 1: Get L1=WG and L2=BG effects directly
> Grand-MC at Level 1: Get L1=WG and L2=contextual effects directly

= Aslong as some representation of the L1 effect is included in L2;
otherwise, the L1 effect (and any interactions thereof) will be smushed
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