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• Today’s Class:
 Review of 3 parts of a generalized model
 Models for proportion and percent correct outcomes
 Models for categorical outcomes



3 Parts of Generalized (Multilevel) Models

1. Non-normal conditional distribution of yti:
 General MLM uses a normal conditional distribution to describe the yti

variance remaining after fixed + random effects  we called this the 
level-1 residual variance, which is estimated separately and usually 
assumed constant across observations (unless modeled otherwise)

 Other distributions will be more plausible for bounded/skewed yti,
so the ML function maximizes the likelihood using those instead

 Why? To get the most correct standard errors for fixed effects 

 Although you can still think of this as model for the variance, not all 
conditional distributions will actually have a separately estimated 
residual variance (e.g., binary  Bernoulli, count  Poisson)
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3 Parts of Generalized (Multilevel) Models

2. Link Function = ࢍሺ⋅ሻ: How the conditional mean to be predicted is 
transformed so that the model predicts an unbounded outcome instead

 Inverse link ିࢍሺ⋅ሻ= how to go back to conditional mean in yti scale 

 Predicted outcomes (found via inverse link) will then stay within bounds

 e.g., binary outcome: conditional mean to be predicted is probability of 
a 1, so the model predicts a linked version (when inverse-linked, the 
predicted outcome will stay between a probability of 0 and 1)

 e.g., count outcome: conditional mean is expected count, so the log of 
the expected count is predicted so that the expected count stays > 0

 e.g., for normal outcome: an “identity” link function (yti * 1) is used given 
that the conditional mean to be predicted is already unbounded…
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3 Parts of Generalized (Multilevel) Models

3. Linear Predictor: How the fixed and random effects of predictors 
combine additively to predict a link-transformed conditional mean

 This works the same as usual, except the linear predictor model 
directly predicts the link-transformed conditional mean, which we 
then convert (via inverse link) back into the original conditional mean

 That way we can still use the familiar “one-unit change” language to 
describe effects of model predictors (on the linked conditional mean)

 You can think of this as “model for the means” still, but it also includes 
the level-2 random effects for dependency of level-1 observations

 Fixed effects are no longer determined: they now have to be found 
through the ML algorithm, the same as the variance parameters
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Probability, Odds, and Logits
• A Logit link is a nonlinear transformation of probability:

 Equal intervals in logits are NOT equal intervals of probability

 The logit goes from ±∞ and is symmetric about prob = .5 (logit = 0)

 Now we can use a linear model  the model will be linear with respect to 
the predicted logit, which translates into a nonlinear prediction with respect to 
probability  the conditional mean outcome shuts off at 0 or 1 as needed

Probability:
ܑܡሺ ൌ ሻ

Odds: 
ି

Zero-point on 
each scale:

Prob = .5
Odds = 1
Logit = 0
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Logit 
(log odds):

ܗۺ


 െ 



Too Logit to Quit: Predicting Proportions
• The logit link can also be useful in predicting proportions:

 Range between 0 and 1, so model needs to “shut off” predictions for 
conditional mean as they approach those ends, just as in binary data

 Data to model:  μ in logits ൌ Log 
ଵି

 Model to data   ൌ ୣ୶୮ ஜ
ଵାୣ୶୮ ஜ

• However, because the outcome values aren’t just 0 or 1, 
a Bernoulli conditional distribution won’t work for proportions

• Two distributions: Binomial (discrete) vs. Beta (continuous)
 Binomial: Less flexible (just one hump), but can include 0 and 1 values

 Beta: Way more flexible (????), but cannot directly include 0 or 1 values
 There are “zero-inflated” and/or “one-inflated” versions for these cases
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Binomial Distribution for Proportions
• The discrete binomial distribution can be used to predict 

correct responses given trials
 Bernoulli for binary = special case of binomial when ݊=1

 ܾݎܲ ݕ ൌ ܿ 	ൌ !
! ି !

 1 െ  ି
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 = probability of 1

As  gets closer to 
.5 and n gets larger, 
the binomial pdf
will look more like a 
normal distribution.

But if many people 
show floor/ceiling 
effects, a normal 
distribution is not 
likely to work well… 
so use a binomial!

Mean = ݊
Variance = ሺ1݊ െ ሻ



Binomial Distribution for Proportions
• SAS PROC GLIMMIX allows the outcome variable to be 

defined as #events/#trials on MODEL statement
 LINK=LOGIT so that the conditional mean stays bounded 

between 0 and 1 as needed (or alternatively, CLOGLOG/LOGLOG)
 DIST=BINOMIAL so variance (and SEs) are determined by that 

mean, as they should be assuming independent events

• STATA MELOGIT does the same with this option after ||:
 Binomial(VarforNtrials); outcome then has number of events

• Be careful of overdispersion
 Overdispersion = more variability than the mean would predict 

(cannot happen in binary outcomes, but it can for binomial)
 Indicated by Pearson χଶ/df  1 in SAS GLIMMIX output
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Beta Distribution for Proportions
• The continuous beta distribution (SAS GLIMMIX LINK=LOGIT, 

DIST=BETA) can predict percent correct  (must be 0 ൏  ൏ 1)

 ܨ ,ߙ|ݕ ߚ ൌ  ఈାఉ
 ఈ  ఉ

yఈିଵ	 1 െ y ఉିଵ
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ߙ and ߚ are ”shape” parameters (> 0)
Mean = μ = 

ାஒ

“Scale” = ϕ = α  β

Variance = ஜ ଵିஜ
ଵାம

SAS GLIMMIX will 
provide a fixed 
intercept as logit(μ) 
and the “scale” ϕ



Beta Distribution for Proportions
• STATA appears to do beta regression models via a “betabin” 

add-on installed separately
• Does not appear to have a mixed effects version…?

• The beta distribution is extremely flexible (i.e., can take on 
many shapes), but outcomes must be 0 ൏ ࢟ ൏ 1
 If have 0’s in outcome, need to add “zero-inflation” factor: 
 predicts logit of 0, then beta after 0 via two simultaneous models

 If have 1’s in outcome, need to add “one-inflation” factor: 
 predicts beta, then logit of 1 via two simultaneous models

 Need both inflation factors if your outcome has 0s and 1s (3 models)

 Can be used with outcomes that have other ranges of possible values 
if they are rescaled into 0 to 1
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Too Logit to Quit…http://www.youtube.com/watch?v=Cdk1gwWH-Cg

• The logit is the basis for many other generalized models for 
categorical (ordinal or nominal; polytomous) outcomes

• Next we’ll see how ܥ possible response categories can be 
predicted using ܥ െ 1 binary “submodels” that involve carving 
up the categories in different ways, in which each binary 
submodel uses a logit link to predict its outcome

• Types of categorical outcomes:
 Definitely ordered categories: “cumulative logit”

 Maybe ordered categories: “adjacent category logit” (not used much)

 Definitely NOT ordered categories: “generalized logit”
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Logit-Based Models for C Ordinal Categories
• Known as “cumulative logit” or “proportional odds” model in 

generalized models; known as “graded response model” in IRT
 LINK=CLOGIT, (DIST=MULT) in SAS GLIMMIX; MEOLOGIT or MEGLM in STATA

• Models the probability of lower vs. higher cumulative categories via 
ܥ െ 1 submodels (e.g., if ܥ ൌ 4 possible responses of ܿ ൌ 0,1,2,3): 

0 vs. 1, 2,3 0,1 vs. 2,3 0,1,2 vs. 3

• What the binary submodels predict depends on whether the model is 
predicting DOWN ܑܡ) ൌ ) or UP (ܑܡ ൌ ) cumulatively

• Example predicting UP in an empty model (subscripts=parm,submodel)

• Submodel 1: Logitሾሺy୧  0ሻሿ ൌ βଵ 	 y୧  0 ൌ exp βଵ / 1  exp βଵ
• Submodel 2: Logitሾሺy୧  1ሻሿ ൌ βଶ 	 y୧  1 ൌ exp βଶ / 1  exp βଶ
• Submodel 3: Logitሾሺy୧  2ሻሿ ൌ βଷ  	 y୧  2 ൌ exp βଷ / 1  exp βଷ

Submodel3Submodel2Submodel1

I’ve named these submodels 
based on what they predict, 
but program output will 
name them their own way…

SPLH 861: Lecture 10 12



Logit-Based Models for C Ordinal Categories
• Models the probability of lower vs. higher cumulative categories via ܥ െ 1

submodels (e.g., if ܥ ൌ 4 possible responses of ܿ ൌ 0,1,2,3): 

0 vs. 1,2,3 0,1 vs. 2,3 0,1,2 vs. 3

• What the binary submodels predict depends on whether the model is 
predicting DOWN ܑܡ) ൌ ) or UP (ܑܡ ൌ ) cumulatively
 Either way, the model predicts the middle category responses indirectly

• Example if predicting UP with an empty model:

 Probability of 0 =       1 – Prob1
Probability of 1 = Prob1– Prob2
Probability of 2 = Prob2– Prob3
Probability of 3 = Prob3– 0

Submodel3
 Prob3

Submodel2
 Prob2

Submodel1
 Prob1

The cumulative submodels that create these 
probabilities are each estimated using all the 
data (good, especially for categories not chosen 
often), but assume order in doing so (may be 
bad or ok, depending on your response format).

Logitሾሺy୧  2ሻሿ ൌ βଷ

	 y୧  2 ൌ ୣ୶୮ ஒబయ
ଵାୣ୶୮ ஒబయ
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Logit-Based Models for C Ordinal Categories
• Ordinal models usually use a logit link transformation, but they can also use 

cumulative log-log or cumulative complementary log-log links
 LINK= CUMLOGLOG or CUMCLL in SAS GLIMMIX; CLOGLOG link in MEGLM in STATA

• Almost always assume proportional odds, that effects of predictors are the 
same across binary submodels—for example (subscripts = parm, submodel)
 Submodel 1: Logitሾሺy୧  0ሻሿ ൌ   βଵX୧  βଶZ୧  βଷX୧Z୧
 Submodel 2: Logitሾሺy୧  1ሻሿ ൌ   βଵX୧  βଶZ୧  βଷX୧Z୧
 Submodel 3: Logitሾሺy୧  2ሻሿ ൌ   βଵX୧  βଶZ୧  βଷX୧Z୧

• Proportional odds essentially means no interaction between submodel and 
predictor effects, which greatly reduces the number of estimated parameters
 Despite the importance of this assumption, there appears to be no way to test it 

directly in most software packages for mixed effects models (except SAS NLMIXED)

 If the proportional odds assumption fails, you can use a nominal model instead
(dummy-coding to create separate outcomes can approximate a nominal model)
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Logit-Based Models for C Categories
• Uses multinomial distribution, whose PDF for ܥ ൌ 4 categories 

of ܿ ൌ 0,1,2,3, an observed ݕ ൌ ܿ, and indicators ܫ if ܿ ൌ ݕ
݂ y୧ ൌ c ൌ ୧

୍ሾ୷ୀሿ୧ଵ
୍ሾ୷ୀଵሿ୧ଶ

୍ሾ୷ୀଶሿ୧ଷ
୍ሾ୷ୀଷሿ

 Maximum likelihood is then used to find the most likely parameters in 
the model to predict the probability of each response through the 
(usually logit) link function; probabilities sum to 1: ∑ ୧ୡେ

ୡୀଵ ൌ 1

• Other models for categorical data that use the multinomial:
 Adjacent category logit (partial credit): Models the probability of 

each next highest category via ܥ െ 1 submodels (e.g., if ܥ ൌ 4): 

0 vs. 1 1 vs. 2 2 vs. 3

 Baseline category logit (nominal): Models the probability of reference 
vs. other category via ܥ െ 1 submodels (e.g., if ܥ ൌ 4 and 0 ൌ ref): 

0 vs. 1 0 vs. 2 0 vs. 3

Only  for the response 
ݕ ൌ ܿ	 gets used
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In nominal models, all 
parameters are estimated 
separately per submodel



One More Idea…
• Ordinal data can sometimes also be approximated with a logit

link and binomial distribution instead
 Example: Likert scale from 0−4  #	trials ൌ 4, #	correct ൌ yi
 Model predicts  of binomial distribution,  ∗ 	ݏ݈ܽ݅ݎݐ# ൌ 	݉݁ܽ݊
 ሺyiሻ = proportion of sample expected in that ݅ݕ response category

• Advantages: 
 Only estimates one parameter that creates a conditional mean for each 

response category, instead of ܥ െ 1 cumulative intercepts or thresholds

 Can be used even if there is sparse data in some categories

 Results may be easier to explain than if using cumulative sub-models

• Disadvantages: 
 # persons in each category will not be predicted perfectly to begin with, 

so it may not fit the data as well without the extra intercept parameters
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Generalized MLM: Summary
• Statistical models come from probability distributions
 Conditional outcomes are assumed to have some distribution
 The normal distribution is one choice, but there are lots of others: 

so far we’ve seen Bernoulli, binomial, beta, and multinomial
 ML estimation tries to maximize the height of the data using that 

distribution along with the model parameters

• Generalized models have three parts:
1. Non-normal conditional outcome distribution
2. Link function: how bounded conditional mean of yti gets 

transformed into something unbounded we can predict linearly
 So far we’ve seen identity, logit, probit, log-log, and cumulative log-log

3. Linear predictor: how we predict that linked conditional mean
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