Generalized Linear Models
for Proportions and
Categorical Outcomes

- Today'’s Class:
> Review of 3 parts of a generalized model
> Models for proportion and percent correct outcomes
> Models for categorical outcomes
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3 Parts of Generalized (Multilevel) Models

1. Non-Normal > Link 3. Linear Predictor
Conditional < Fu.nction = of Fixed and
Distribution of y,; Random Effects

1. Non-normal conditional distribution of y,;:

> General MLM uses a normal conditional distribution to describe the y;,
variance remaining after fixed + random effects = we called this the
level-1 residual variance, which is estimated separately and usually
assumed constant across observations (unless modeled otherwise)

> Other distributions will be more plausible for bounded/skewed y;;
so the ML function maximizes the likelihood using those instead

> Why? To get the most correct standard errors for fixed effects

> Although you can still think of this as model for the variance, not all
conditional distributions will actually have a separately estimated
residual variance (e.g., binary = Bernoulli, count = Poisson)
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3 Parts of Generalized (Multilevel) Models

1. Non-Normal > Link 3. Linear Predictor
Conditional < Fu.nction = of Fixed and
Distribution of y,; Random Effects

2. Link Function = g(-): How the conditional mean to be predicted is
transformed so that the model predicts an unbounded outcome instead

> Inverse link g (-)= how to go back to conditional mean in y, scale
> Predicted outcomes (found via inverse link) will then stay within bounds

> €.g., binary outcome: conditional mean to be predicted is probability of
a 1, so the model predicts a linked version (when inverse-linked, the
predicted outcome will stay between a probability of 0 and 1)

> e.g., count outcome: conditional mean is expected count, so the log of
the expected count is predicted so that the expected count stays > 0

> e.g., for normal outcome: an “identity” link function (y, * 1) is used given
that the conditional mean to be predicted is already unbounded...
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3 Parts of Generalized (Multilevel) Models

1. Non-Normal > Link 3. Linear Predictor
Conditional < Fu.nction = of Fixed and
Distribution of y,; Random Effects

3. Linear Predictor: How the fixed and random effects of predictors
combine additively to predict a link-transformed conditional mean

> This works the same as usual, except the linear predictor model
directly predicts the link-transformed conditional mean, which we
then convert (via inverse link) back into the original conditional mean

> That way we can still use the familiar “one-unit change” language to
describe effects of model predictors (on the linked conditional mean)

> You can think of this as “model for the means” still, but it also includes
the level-2 random effects for dependency of level-1 observations

> Fixed effects are no longer determined: they now have to be found
through the ML algorithm, the same as the variance parameters
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Probability, Odds, and Logits

- A Logit link is a nonlinear transformation of probability:
> Equal intervals in logits are NOT equal intervals of probability
> The logit goes from +oo and is symmetric about prob = .5 (logit = 0)

> Now we can use a linear model - the model will be linear with respect to
the predicted logit, which translates into a nonlinear prediction with respect to
probability - the conditional mean outcome shuts off at 0 or 1 as needed

P

Probability: 005 0.12 0.27 0.50 073 088 095
p(yi=1) T 7 " Zero-point on
each scale:

Odds: lL

1-p

. Prob = .5

Logit Odds =1
(log odds): Logit = 0

p
Log|[——| — -3 : ——F— 1

08 [1 —-p -4 -3 -2 -1 0 1 2 3 1
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Too Logit to Quit: Predicting Proportions

. The logit link can also be useful in predicting proportions:

> Range between 0 and 1, so model needs to “shut off” predictions for
conditional mean as they approach those ends, just as in binary data

> Datato model: > pin IogitS = Log (1:;;9)
> Modelto data > p = expl)
1+exp(n)

- However, because the outcome values aren't just O or 1,
a Bernoulli conditional distribution won't work for proportions

« Two distributions: Binomial (discrete) vs. Beta (continuous)
> Binomial: Less flexible (just one hump), but can include 0 and 1 values

> Beta: Way more flexible (?777), but cannot directly include 0 or 1 values

= There are “zero-inflated” and/or “one-inflated” versions for these cases
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Binomial Distribution for Proportions

. The discrete binomial distribution can be used to predict
c correct responses given n trials

> Bernoulli for binary = special case of binomial when n=1

> Prob(y =c¢) = Cl(n_c)'p (1-p) p = probability of 1
Binomial Distribution PDF 'Ags p gets cltosler to
.5 and n gets larger,
0.3 4
— n=20p=0. the binomial pdf
Mean = n 0= . .

0.25 1 Variance = I; B —n=20p=0.5 | |will look more like a
_ 02 ariance = np( P) —n=20p=0.9 1 ' normal distribution.
§ " But if many people

01 show floor/ceiling

0.05 effects, a normal

n distribution is not
0 : 10 15 20 likely to work well...
Random Variable so use a binomial!
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Binomial Distribution for Proportions

« SAS PROC GLIMMIX allows the outcome variable to be
defined as #events/#trials on MODEL statement

> LINK=LOGIT so that the conditional mean stays bounded
between 0 and 1 as needed (or alternatively, CLOGLOG/LOGLOG)

> DIST=BINOMIAL so variance (and SEs) are determined by that
mean, as they should be assuming independent events

- STATA MELOGIT does the same with this option after ||:

> Binomial(VarforNtrials); outcome then has number of events

- Be careful of overdispersion

> Overdispersion = more variability than the mean would predict
(cannot happen in binary outcomes, but it can for binomial)

> Indicated by Pearson x%/df > 1 in SAS GLIMMIX output
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Beta Distribution for Proportions

« The continuous beta distribution (SAS GLIMMIX LINK=LOGIT,
DIST=BETA) can predict percent correct p (mustbe 0 < p < 1)
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Beta Distribution for Proportions

- STATA appears to do beta regression models via a “betabin”
add-on installed separately

- Does not appear to have a mixed effects version...?

. The beta distribution is extremely flexible (i.e., can take on
many shapes), but outcomes mustbe 0 <y <1

> If have O's in outcome, need to add “zero-inflation” factor:
—> predicts logit of O, then beta after 0 via two simultaneous models

> If have 1's in outcome, need to add “one-inflation” factor:
—> predicts beta, then logit of 1 via two simultaneous models

> Need both inflation factors if your outcome has Os and 1s (3 models)

> Can be used with outcomes that have other ranges of possible values
if they are rescaled into O to 1
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Too Logit to Quit...

- The logit is the basis for many other generalized models for
categorical (ordinal or nominal; polytomous) outcomes

- Next we'll see how C possible response categories can be
predicted using C — 1 binary “submodels” that involve carving
up the categories in different ways, in which each binary
submodel uses a logit link to predict its outcome

- Types of categorical outcomes:
> Definitely ordered categories: “cumulative logit”
> Maybe ordered categories: “adjacent category logit” (not used much)

> Definitely NOT ordered categories: “generalized logit”
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Logit-Based Models for C Ordinal Categories

Known as “cumulative logit” or “proportional odds” model in
generalized models; known as “graded response model” in IRT

> LINK=CLOGIT, (DIST=MULT) in SAS GLIMMIX; MEOLOGIT or MEGLM in STATA

Models the probability of lower vs. higher cumulative categories via
C — 1 submodels (e.g., if C = 4 possible responses of ¢ = 0,1,2,3):

Ovs. 1, 2,3 0,1vs. 2,3 0,1,2 vs. 3 | I've named these submodels
N y N g N y,

Submodel, Submodel, Submiodel, | 2ased on what they predict,
but program output will

name them their own way...

What the binary submodels predict depends on whether the model is
predicting DOWN (y; = 0) or UP (y; = 1) cumulatively

Example predicting UP in an empty model (subscripts=parm,submodel)
» Submodel 1: Logit[p(y; > 0)] = Bo1 2 p(yi > 0) = exp(Bo1)/[1 + exp(Bo1)]

- Submodel 2: Logit[p(y; > 1)] = Bo2 =2 p(yi > 1) = exp(Bo2)/[1 + exp(Bo2)]
- Submodel 3: Logit[p(y; > 2)] = Boz =2 p(yi > 2) = exp(Bo3)/[1 + exp(Bo3)]
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Logit-Based Models for C Ordinal Categories

- Models the probability of lower vs. higher cumulative categories via € — 1
submodels (e.g., if C = 4 possible responses of ¢ = 0,1,2,3):

Ovs. 1,23 0,1vs. 2,3 0,1,2vs.3
N J N J \ Y

SumeodeI1 Subr?wfodel2 Subrr\{odel3
- Prob, - Prob, > Prob; €—— p(y; > 2) = 1eXp(B((é3))
+exp(po3

Logit[p(y; > 2)] = Bos

- What the binary submodels predict depends on whether the model is
predicting DOWN (y; = 0) or UP (y; = 1) cumulatively

> Either way, the model predicts the middle category responses indirectly

- Example if predicting UP with an empty model:
~ Probability of 0 = 1 - Prob, The cumulative submodels that create these

- B probabilities are each estimated using all the
Probability of 1 = PrObl_ PrObZ data (good, especially for categories not chosen

Probability of 2 = Prob,— Prob; | often), but assume order in doing so (may be
Probability of 3 = Prob3— 0 bad or ok, depending on your response format).
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Logit-Based Models for C Ordinal Categories

« Ordinal models usually use a logit link transformation, but they can also use
cumulative log-log or cumulative complementary log-log links

> LINK= CUMLOGLOG or CUMCLL in SAS GLIMMIX; CLOGLOG link in MEGLM in STATA

- Almost always assume proportional odds, that effects of predictors are the
same across binary submodels—for example (subscripts = parm, submodel)

> Submodel 1: LOglt[p(yl > O)] = B(n + BlXi + Bzzi + BSXiZi
> Submodel 2; Loglt[p(yl > 1)] = BOZ + BlXi + BZZi + B3Xizi
> Submodel 3: LOglt[p(yl > 2)] = 603 + BlXi + Bzzi + BSXiZi

- Proportional odds essentially means no interaction between submodel and
predictor effects, which greatly reduces the number of estimated parameters

> Despite the importance of this assumption, there appears to be no way to test it
directly in most software packages for mixed effects models (except SAS NLMIXED)

> If the proportional odds assumption fails, you can use a nominal model instead
(dummy-coding to create separate outcomes can approximate a nominal model)
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Logit-Based Models for C Categories

. Uses multinomial distribution, whose PDF for C = 4 categories
of c = 0,1,2,3, an observed y; = ¢, and indicators I if ¢ = y;

. =0]_I[y;=1]_I[y;=2]_I[yi=3] Only p;. for the response
flyi=0) = p O lp T Up =2y Vi = ¢ gets used

> Maximum likelihood is then used to find the most likely parameters in
the model to predict the probability of each response through the
(usually logit) link function; probabilities sum to 1: ¥¢_; pic = 1

.« Other models for categorical data that use the multinomial:

> Adjacent category logit (partial credit): Models the probability of
each next highest category via € — 1 submodels (e.g., if C = 4):

Ovs. 1 1vs. 2 2vs. 3

> Baseline category logit (nominal): Models the probability of reference
vs. other category via C — 1 submodels (e.g., if C = 4 and 0 = ref):

Ovs. 1 0vs. 2 0vs. 3 In nominal models, all
parameters are estimated

separately per submodel
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One More ldea...

- Ordinal data can sometimes also be approximated with a logit
link and binomial distribution instead

> Example: Likert scale from 0—4 - # trials = 4, # correct =y,

> Model predicts p of binomial distribution, p * #trials = mean

> p(y,) = proportion of sample expected in that y; response category
. Advantages:

> Only estimates one parameter that creates a conditional mean for each
response category, instead of C — 1 cumulative intercepts or thresholds

> Can be used even if there is sparse data in some categories
> Results may be easier to explain than if using cumulative sub-models
- Disadvantages:

> # persons in each category will not be predicted perfectly to begin with,
so it may not fit the data as well without the extra intercept parameters
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Generalized MLM: Summary

. Statistical models come from probability distributions
> Conditional outcomes are assumed to have some distribution

> The normal distribution is one choice, but there are lots of others:
so far we've seen Bernoulli, binomial, beta, and multinomial

> ML estimation tries to maximize the height of the data using that
distribution along with the model parameters

- Generalized models have three parts:
1. Non-normal conditional outcome distribution

2. Link function: how bounded conditional mean of y,; gets
transformed into something unbounded we can predict linearly

« So far we've seen identity, logit, probit, log-log, and cumulative log-log
3. Linear predictor: how we predict that linked conditional mean
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