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Modeling Retest and Aging Effects
in a Measurement Burst Design

Martin Sliwinski, Lesa Hoffman, and Scott Hofer

Researchers who study human development are interested in how psychological,
physiological, and behavioral phenomena change over time in aging individuals.
In fact, Baltes and Nesselroade (1979) identified the primary objective of longi-
tudinal developmental research as the “direct identification of intraindividual
change” (p. 23). However, this goal is complicated by the possibility that observ-
able change in any given individual may reflect the joint influences of muitiple
processes. For example, observable decreases in memory performance over time
{i.e., with increasing age) may reflect the complementary effects of declining
vascular health and the progression of Alzheimer’s dementia (Sliwinski, Hofer,
Hall, Buschke, & Lipton, 2003; Sliwinski, Lipton, Buschke, & Stewart, 1996).
In contrast, observable change in cognitive performance may reflect a mixture of
competing influences, such as aging-related declines that are partially or com-
pletely offset by performance gains attributable to repeated testing (i.e., retest
or practice effects).

The purpose of this chapter is to examine a novel approach to decompose
age (decline) and retest (gains) effects in longitudinal data. Specifically, we argue
that conventional longitudinal designs consisting of repeated and widely spaced
single measurements are significantly limited in their ability to disentangle mul-
tiple time-dependent processes, such as practice gains and age-related declines
in cognition. We present an alternative approach that relies on the longitudinal
measurement burst design (Nesselroade, 1991) and a nonlinear measurement
model that represents cognitive performance as a function of previous experience
and latent potential (i.e., asymptotic performance).

Retest Effects in Aging Research

The term refest (or practice) effects refers to performance gains that result from
repeated exposure to testing procedures or materials. There is considerable evi-
dence to indicate that repeated administration of the same or similar cognitive

This research was supported in part by Grants AG12448, AG026453, and AG026728 from the
National Institute on Aging.
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38 SLIWINSKI, HOFFMAN, AND HOFER

tests results in improved performance {e.g., Horn, 1972), and several studies
have demonstrated significant retest gains after testing intervals of 5 to 10 years
{e.g., Salthouse, Schroeder, & Ferrer, 2004; Schaie, 1996; Thorndike, Bregman,
Tilton, & Woodyard, 1928). Because many longitudinal studies have retest
intervals well less than 10 years, the potential durability of retest-related prac-
tice gains complicates the statistical analysis of developmental and maturational
influences on cognitive performance. Failure to consider the influence of retest
effects can lead to the inaccurate characterization of the rate and pattern of
cognitive change {Salthouse et al., 2004) as well as confound attempts to study
predictors of and correlations among estimates of change (Ferrer, Salthouse,
McArdle, Stewart, & Schwartz, 2005; Wilson, Bienias, & Bennett, 2006). These
rather serious consequences have prompted researchers to examine and try o
correct for possible retest effects in longitudinal data.

Traditional longitudinal designs consist of widely spaced measurement
occasions, often separated by long intervals (typically between 1 and 7 years).
This type of design confounds the influence of repeated testing (i.e., practice)
and aging on performance because the difference between any two scores from
adjacent occasions reflects both the passage of time (and, presumably, aging)
and increased exposure to testing (i.e., Occasion 1, Occasion 2, Occasion 3, etc.).
If performance were to improve as a function of retest (because of practice) but
decrease as a function of time (because of aging), then the observed performance
would reflect the combined influence of these two competing latent processes.
One approach to disentangle retest from aging has been to compare a control
group (e.g., Schaie, 1965; Thorvaldsson, Hofer, Berg, & Johansson, 2006) that
was tested only one time but at the same age ag a comparison group that was
tested multiple times as part of a longitudinal study. This experimental approach
works well for quantifying the average retest effects in the population, but it
cannot distinguish between retest and age effects in any given individual, which
complicates both intraindividual and interindividual analyses of change.

An alternative approach (McArdle & Anderson, 1990; McArdle & Woodcock,
1997) involves statistically partialing the effects of age and retest occasion. This
statistical approach has been used in numerous studies and is an increasingly
popular analytic model for separating age and retest effects in longitudinal
data (e.g., Ferrer, Salthouse, Stewart, & Schwartz, 2004; Ferrer et al., 2005;
Ghigletta, McArdle, & Lindenberger, 2006; McArdle, Ferrer-Caja, Hamagami, &
Woodcock, 2002; Rabbitt, Diggle, Smith, Holland, & Meclnnes, 2001; Salthouse
et al., 2004; Wilson et al., 2006). The idea behind this approach. is to include sep-
arate terms that capture both maturational influences (i.e., aging) and practice
effects (1.e., retest occasion) in the analytic model of intraindividual change:

Y, = by; + by {ages )=bui{occasion, ) +ry,  (3.1)

where Y} is the cognitive performance for person i at time £, by; is the intercept for
person i, by; is the linear age (or time in study) slope, and b, is the linear retest
(practice) effect for person i. The estimate b; is the age effect partialed or statis-
tically controlled for the effect of occasion (retest). We refer to this model as the
age + occasion retest model. This approach will accurately recover population
parameters for retest and age effects if its assumptions are reasonably met.
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One set of assumptions is general to the underlying statistical model used for
estimating the parameters of interest in longitudinal settings (e.g., the mixed
model). The other set of assumptions pertains to the underlying conceptual model
that allows interpretation of the estimated parameters as reflecting separa-
ble retest (practice) and age effects. It is this second set of assumptions that
we examine in this chapter.

- Retest effects in longitudinal studies could reflect several types of influences.
Performance gains across repeated testing might reflect habituation to a type
of “white coat” phenomenon resulting in a relief of general testing anxiety.
Individuals might also become better at test taking, which would produce a gen-
eralized improvement across all cognitive tests, or they might become more pro-
ficient only at taking the specific tests in the longitudinal assessment battery.
Also, as is the case for many longitudinal studies, individuals might learn the
specific content of tests that repeat the same items across repeated assessments.
For simplicity, we assume that retest effects in longitudinal studies reflect some
type of learning of general test-taking skill, specific testing procedures, or testing
material. :

The age + occasion retest model requires that there be some variability in
the interval between testing occasions, or else the longitudinal effects for age
(time) and retest would be completely collinear. By introducing variability in
the duration of follow-up it becomes possible to estimate the longitudinal effect
of retest, which depends solely on the occasion variable (without respect to the
actual interval), and the longitudinal effect of age, which depends solely on the
interval between testing occasions. Thus, the age + occasion approach assumes
that practice effects are invariant across different retest intervals. This raises
the question of whether it is plausible to assume equivalent performance gains
between two testing occasions that were separated by either a few days or a few
decades.

It seems likely that retest effects would to some extent depend on the inter-
val between testing occasions. At least one study, which had retest intervals
ranging from a few days to a few decades, suggested that the magnitude of
retest effects does diminish as the interval between testing occasions increases
(Salthouse et al., 2004). One reason for diminishing practice effects with increas-
ing retest intervals is that they are offset by the influence of aging. Another
reason might be that the benefits of practice dissipate over time, indepen-
dent of the influence of aging. Also, as Salthouse et al. (2004) suggested, this
loss of performance gains across time may be an important component of retest
effects in longitudinal studies. However, if retest effects do diminish as a fune-
tion of time, then the age effect in the age + occasion retest model becomes dif-
ficult to interpret. This effect (b;; from Equation 3.1) could reflect aging (as is its
nsual inferpretation), but it could also reflect a type of forgetting (i.e., the time-
dependent loss of retest gains) or some combination of both aging and forget-
ting. In skill acquisition studies forgetting, as evidenced by loss of previously
demonstrated performance gains, is observed over intervals as short as 1 day
(e.g. Newell, Mayer-Kress, & Lui, 2006; Rickard, 2007), and the magnitude of
this loss may depend on the interval between assessments (Anderson, Fincham,
& Douglass, 1999). A further complication is that there might be individual dif-
ferences in the amount and rate of time-dependent forgetting (Mac¢Donald,
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Stigsdotter-Neely, Derwinger, & Backman, 2006} that would complicate analy-
sig of individual differences in estimates of age-related change obtained from
the age + occasion retest model.

This discussion of the conceptual assumptions of the age + occasion retest
model is not meant to imply that the results from any given application of this
model are incorrect; instead, it is intended to highlight the complexity of dis-
entangling multiple time-dependent processes that drive intraindividual cog-
nitive change. The age + occasion retest model addresses this complexity by
representing intraindividual change as a function of two competing processes:
(a) aging, which is measured by the passage of time, and (b) retest, which is
measured by the number of testing occasions, We now present an alternative
approach that relies on the longitudinal measurement burst design (Nesselroade,
1991) and a formal measurement model that represents cognitive performance as
a nonlinear function of both testing experience and latent potential (i.e., asymp-
totic performance).

Modeling Changes in Performanece and Latent Potential

Performance differences across long as compared with short retest intervals may
reflect both increased aging influences and diminished retest influences (e.g., due
to forgetting). One approach to addressing this confound is to use a mix of very
closely spaced retest intervals to model practice effects and longer intervals
to model age-related changes. This type of longitudinal design is referred fo
as a measurement burst (Nesselroade, 1991; Sliwinski, 2008), and it consists
of repeated bursts of closely spaced measurements. This measurement burst
design is in contrast to conventional multiwave longitudinal designs, which
consist of widely spaced single measurements. In the present study, a “burst”
consisted of six measurement occasions that occurred within a 10-day period. A
day or two separated occasions within each burst, and each burst was repeated
every 6 months for 2 years, yielding up to 30 observations for each individual.
We hypothesized that overt performance on a speeded cognitive task would
improve across sessions within bursts, because of the benefit of practice, but
that estimates of individuals’ latent potential (i.e., their asymptotic or best
level of performance) would reveal slowing across bursts, because of aging
(i.e., senescence, involution).

To represent this hypothesis mathematically, we begin with a model that
represents response time (RT) as a negative exponential function of practice
occagions: :

RTy; = a; + g; exp[-n (occasions )] -+e;. (3.2

The first part of this equation, a;, refers to a person’s asymptotic response time,
which is his or her fastest RT (or latent potential) given unlimited practice. The
second part, g; exp[-r.(occasion,)], reflects that portion of the observed response
time, RT, that is attributable to his or her experience. The r; parameter is the
rate of learning or improvement across repeated measurement occasions, and
the g;, or gain parameter, refers to the difference between an individual’s initial
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performance with no practice and his or her estimated asymptotic performance.
Other funetions (e.g., power, hyperbolic) could also have been used, but the neg-
ative exponential has provided consistently better fits to our data than alterna-
tive functions.

Figure 3.1A shows what such a learning function might look like for data col-
lected from a measurement burst design. The points on the graph connected by a
line are from the same burst and separated by 1 day, whereas adjacent points
that are not connected by a line come from different measurement bursts and are
separated by approximately 6 months. The function in Figure 3.1A depicts a sit-
uation in which learning is not disrupted by the interval between bursts because
an individual picks up on the first session of a burst exactly where he or she
should be given where he or she left off on the last session of the previous burst.
There is also a common asymptote across bursts, signifying that an individual’s
latent potential remains constant across the study’s duration.

Figure 3.1B shows a slightly more complicated but perhaps more realistic
situation in which individuals exhibit some forgetting (i.e., slowing) from the last
session of the previous burst to the first session of the current burst. The practice
gains on bursts after the first session reflect a recovery of what was lost during
the interburst inferval as well as performance gains that reflect a continuation of
learning that oceurred during earlier bursts. One way to model this sitnation
would be to fit separate learning functions to data from each burst (see Rickard
2007). This would imply that there is a single learning process that transpires
across bursts but would allow the learning rate to vary from burst to burst.
Another approach would assume that the learning function for all bursts after
the first reflects two processes: (a) continuous learning and (b) a recovery or
warm-up effect. The result would be a rate of improvement during follow-up
bursts that is faster than could be predicted by a single exponential learning
function. This can be represented mathematically by a double negative exponen-
tial function:

RT; = a; + g; exp[-n (occasiony )] + (Bursty > 1)

x g¥exp[—ri;(occasionu )| +es.  (3.3)

This equation stipulates that RT is a function of a person’s asymptote plus
two different learning/retest processes. The first, conveyed by the term g;
exp[-r{occasiony;)], reflects how a person’s RT decreases as a function of the
total amount of practice he or she has received on that task. The second
process, conveyed by the term(Buarst,; > 1) x gF exp[-r(occasiong,)], is a warm-
up’ process, which operates only during follow-up bursts (i.e., bursts > 1) and
indicates that a person’s RT starts off higher on the first session of a new
burst and then decreases rapidly (i.e., a warm-up effect).

For a real life example of such dual-process learning consider a middle-aged
adult who takes up cross-country skiing. During her first season, she displays
considerable and rapid improvement in her skiing ability, perhaps indexed by
the time taken to complete a local trail. Then spring arrives, the snow melts, and
9 months pass before she can resume skiing. When she resumes skiing the fol-
lowing winter, she is a bit rusty and not quite as fast as she was at the end of the
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previous season. With practice, however, she quickly recovers the skill that was
“lost” during the off-season and then continues to improve upon her best time.
After a substantial temporal disruption in practice, performance becomes a func-
tion not only of the total amount practice (i.e., the cumulative practice) but also
of how much practice has recently occurred (i.e., local practice).

Another complication may be overlaid on performance gains attributable to
cumulative and local practice, namely that another process operates during the
interval that separates measurement bursts. To follow our example, although
our novice skier is becoming more skilled every season, as reflected in her per-
formance, her potential or maximal speed might be decreasing across seasons
because she is aging. Figure 3.1C shows the expected pattern of RTs if there
were dual-process learning (i.e., cumulative learning and local warm-up effects)
along with an upward drift in asymptote to signify age-related slowing that
manifests across bursts. Assuming change in asymptote is a linear function of
aging, the function would be:

RTy = a; + Aa; (bursty;) + g; exp[-7: (occasiony )] + (Burst,, > 1)

x gfexp[-rf(occasiong )]+ e (3.4)

This equation adds the term Aa,(bursty,), which conveys the amount by which the
asymptote changes from one burst to the next. The “fast” change that occurs
across sessions within bursts conveys information about retest learning and
relearning (the r and r* parameters, respectively), whereas the “slow” change that
oceurs across bursts (Ag,) reflects the effects of aging, senescence or involution.

The Present Study
2

The present study used a measurement burst design in which each burst con-
sisted of six sessions that were repeated every six months for a period of 2 years.
As depicted in Figure 3.2, the measurement burst design allows modeling of per-
formance changes across different time scales. Performance change within each
burst reflects fast practice gains, whereas change across bursts reflects the slow
effects of aging. Performance change within follow-up bursts (i.e., bursts >1)
reflects two processes: (a) cumulative learning and (b) local warm-up effects.

The first objective of this analysis was to determine whether a double nega-
tive learning function can describe the retest effects observed in an intensive
- measurement burst study. If the data follow the pattern depicted in Figure 3.1A,
then a double learning function would not be necessary because there would
be no forgetting or relearning processes. However, if the pattern of results
resembles either Figure 3.1B or Figure 3.1C, that would imply that retest
effects depend on the actual interval between occasions and would rule out use of
the age + occasion retest model. The fit of a double negative exponential function
will be compared with the fit of multiple single negative exponential functions
fit to each measurement burst.

The second objective was to test the hypothesis that, despite retest-related
improvements in observed performance, asymptotic performance shows age-
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related declines (i.e., slowing). This prediction implies results that follow the pat-

tern depicted in Figure 3.1C and is grounded in research on cognitive training -

and testing-the-limits (Kliegl, Smith, & Baltes, 1989). Older adults maintain the
ability to improve performance through practice; however, despite this preserved
cognitive plasticity advancing age may result in diminished latent potential or
reserve capacity. Detecting significant slowing in asymptotic speeded perfor-
mance would be consistent with age-related reductions in latent potential.

Method

SAMPLE. One hundred sixteen older adulis were recruited for participation
in a longitudinal study of health and cognition through advertisements in local
newspapers and flyers posted in senior centers. All older adults had intact men-
tal status and were compensated $10 for each completed session. The average
age was 80.23 (8D = 6.30, range: 66-95), the average years of education was 14,9
(8D = 2.40), and there was a higher percentage of women than men (72% vs.
28%, respectively).

PROCEDURE AND STIMULL, Participants were given a briefintroduction to the
study, and the experimenter obtained informed consent as approved by the
Syracuse University institutional review board. Participants were told that
they were taking part in a study that was examining health and cognition in
adulthood. They were scheduled to visit the research site six times within a
14-day period. The research site was a rented apartment at a local senior resi-
dence. Half of the sessions (each lasting 1 hour) for each participant were sched-
uled before 11:00 a.m., and half were scheduled after 1:00 p.m. These bursts of
daily measurements were repeated every 6 months, for a 2-year period, yielding
up to five bursts of 30 daily assessments.

We examined performance on number comparison speed task, which
required participants to compare two strings (three digits in length) to deter-
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mine whether the same digits were in each string, regardless of their order. In
the first session of each burst, sufficient practice trials for all tasks were provided
until participants become comfortable with each procedure. Approximately 10
warm-up trials were given before commencement of each task during Sessions 2
through 6. Participants performed a block of 40 trials at each session. Participants
were told to press the “/” key if the two digit strings were a2 match and to press the
“2” key if there were a nonmatch. The next number string appeared 500 milli-
seconds after each response. Participants were instructed to be both fast and
accurate. A high-resolution monitor controlled by a Pentium IV-hased computer
displayed the stimuli. The average RT from correct trials served as the dependent
measure for this task. Accuracy was very high (mean Proporticn correct = .96)
and did not significantly change across session within bursts or across bursts, so
only RT data were analyzed. A computer-based vision check was administered
to verify that all participants could identify test stimuli within video displays of
10.4° of visual angle.

Results

The RTs for each session and burst averaged across all individuals are displayed
in Figure 3.3. Connected points belong to sessions obtained within the same
burst, and there is approximately a 6-month gap between the last session of
one burst and the first session of the following burst. The pattern of average
RTs shows a decelerating rate of improvement across sessions within bursts

Speed (3-digit string comparison)
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Figure 3.3. Observed and fitted values for average response time for the number
coInparison.,
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but exhibits slowing at the first session of each new burst, producing a scal-
loped retest pattern across bursts, This pattern demonstrates that the duration
between occasions influences retest effects, making the age + occasion retest
model unsuitable for these data.

We next compared the fit of the double negative exponential model {(Equa-
tion 3.4) with that of single negative exponential (Equation 3.2), Preliminary
model fitting indicated that the best-fitting single negative exponential model

allowed all parameters (a, g, and r) to vary across bursts. The best-fitting double

negative exponential constrained the parameters 7, g, and r* to be constant across
bursts and allowed £* and ¢ to vary linearly across bursts.

 We fit both models using nonlinear mixed medeling implemented by the
PROC NLMIXED routine in SAS, Parameters that entered the model linearly
(¢, g, and g*, and Ag) were specified as random, but the rate parameters (r and
") were constrained to be fixed to facilitate estimation and convergence of the
mixzed model. Although there is no formal significance test for COMpAaring non-
nested models, the double negative exponential fit better than the single accord-
ing to both the Akaike information criterion (~1,222 vs. —1,207) and Bayesian
information eriterion (1,180 vs. —1,174). There are no established guidelines for
assessing meaningful differences in comparative fit indices, but Raftery (1995)
suggested that a 10-point difference in the Bayesian information criterion con-
stitutes “very strong” evidence in favor of the model with the more negative
value,

Figure 3.3 represents the average of the fitted values obtained from the
double negative exponential, which closely approximates the observed average
values across all 30 sessions. Two different time scales are conveyed in this
plot: (@) data points that are connected by a line oceur on adjacent days, and
(b) adjacent data points not connected by a line are separated by approximately
6 months, Fast change (within bursts) is described by the two rate parameters
(r and r*), and slow change (across bursts) is described by the Aa parameter.
The estimated parameters for the double negative exponential model are shown
in Table 3.1. The two rate parameters (r=0.17, SE = 0.011, and r* = 3.44,

Table 3.1. Fixed and Random Effects Estimates from Dual-Exponential Fit

Parameter Estimate SE

a 1.500 0.048
Aa 0.054 0.007
g 0.580 0.043
r 0.172 0.011
g% 1.060 0.007
¥ 3.450 0.141
Var(a) 0.200 0.028
Var(g) 0.115 0.023
Var(g®) 0.187 0.056

Var(Aa) 0.054 0.001

e
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SE = 0.144) reflect the cumulative learning rate across all sessions and the
rate of warm-up related improvement at follow-up bursts, respectively. The
asymptote was estimated to be 1.500 seconds (SE = 0.048) at the first burst
and significantly increased (Ax = 0.053, SE = 0.007) across the follow-up bursts.
These results indicate that, on average, asymptotic speed was slowing by
about 53 milliseconds across every 6-month interval separating the measure-
ment bursts. However, the significant variance component for the A param-
eter (var(Aal=.003, p < .001) implies significant individual differences in the
rate at which asymptotic speed slowed across the bursts. All values of Aa
greater than 0 indicate slowing, so dividing the difference between 0 and the
average Aa value of 0.053 by the square root of the variance component yields
a z score of —0.92, implying that approximately 82% of individuals would be
expected to exhibit asymptotic slowing, assuming a normal distribution of the
random Aq effects. :

As a final step in the analyses we correlated the random Ag effects with
age and sensorimotor functioning, both of which are thought to relate to the
rate of slowing in older adults. Age was positively associated with Ac (r=.29,
p <.01), indicating that older individuals exhibited more rapid slowing. There
was a strong negative correlation (7 = —.40, p < .01) with a composite sensori-
motor variable (a z-score average of visual acuity and grip strength). These
correlations are in the expected direction and consistent with the a priori
expectation that cognitive slowing would be accelerated in older individuals
and in those with poorer sensorimotor function (MacDonald, Dixon, Cohen, &
Hazlitt, 2004).

Discussion

The present results question the validity of a key assumption underlying age +
occasion retest models, namely, that retest (i.e., practice) effects are invariant
across different time intervals. They also support the utility of both measure-
ment burst designs and the dual-exponential learning function as a model of
clustered-practice effects that occur in measurement burst designs. The data
summarized in Figure 3.2 clearly show within-burst speedup, across-burst loss of
practice gains, and warm-up effects at follow-up bursts. The double-exponential
learning model represents such clustered-practice effects by specifying two
learning functions, one that describes cumulative learning and a second that
describes local warm-up effects that result after a temporal delay between prac-
tice opportunities. These data are also similar in form to multisession learning
data presented by Rickard (2007), which tend to show within-session learning,
across-session forgetting, and a rapid warm-up effect at follow-up sessions.
Additional research is required to determine whether a double-exponential
learning model can also describe learning and warm-up effects in other contexts
(e.g., multisession skill acquisition paradigms).

There are several noteworthy limitations of the present analyses. First,
only six sessions per burst might not have been sufficient to bring each individ-
ual close to his or her asymptotic performance. Tnspection of individual plots
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indicated that this was the case. Therefore, the present results depend on the
accuracy of the extrapolation the model made for each individual asymptotic
performance. Second, we aggregated across trials within each session and exam-
ined practice effects for the average RT across sessions, ignoring microlearning
across trials within sessions. Consequently, the present analyses did not charac-
terize microlevel (within-session) learning effects, which could have distorted the
characterization of learning across sessions, within a given burst. For example,
the warm-up effect might have been fully contained within the first dozen trials
on the first session of follow-up bursts. :

As intensive measurement designs become more prevalent, researchers will
need to incorporate more dynamic measurement models that explicitly represent
the role of time and repeated measurements. If cognitive performance is variable
and does change across time, then a useful measurement model must specify
how performance changes (e.g., exponentially with repeated measures), which
aspects of cognitive function remain invariant (e.g., asymptote or latent poten-
tial), and the time scale over which change and invariance obtaing (e.g., Newell
et al., 2006). Most studies of learning and development have examined changes
across fixed intervals and thus have not considered the importance of time scale
for characterizing changes that are due to learning and development. One excep-
tion Newell, Mayer-Kress, and Lui’s (2001) work, which provided a general
theoretical framework for understanding motor learning and development
across different time scales. Although consistent with Newell et al.’s argument
for the importance of time scale, the present approach is purely descriptive.
Equations 3.2 through 3.4 provide a simple measurement model that may be
usefully applied to performance data that exhibit long-term (e.g., development)
changes in parameters that are invariant in the short term (e.g., asymptotic

performance). Future research is required to develop integrated theoretical
accounts of short-term learning and long-term development (or aging) along
the lines described by Newell et al.

Intensive measurement designs offer advantages over conventional single-
shot prospective longitudinal designs, such as improved precision for tracking
intraindividual change and estimation of changes in asymptotic performance.
Processing capacity or latent potential, as indexed by asymptotic performance,
might prove to be an especially sensitive marker of aging effects. However, a
noteworthy limitation of the present study was the need to constrain » and r*
as fixed to obtain model convergence. Tn practice, learning rates will likely vary
across individuals and within individuals across time. Future studies should
consider including more within-burst sessions to facilitate estimation of person-
specific learning rates as well as across-burst changes in rates. Despite this
limitation, the analyses described in this chapter illustrate the utility of mea-
surement burst designs and the dual-exponential learning function for separat-
ing retest performance gains, warm-up effects, and aging declines in asymptotic
performance. Thus, the pairing of multiburst designs and informative mea-
surement models may offer an especially useful approach for separating local
and global developmental processes that operate across very different time
scales.
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