CHAPTER 10

CONSIDERING ALTERNATIVE
METRICS OF TIME

Does Anybody Really Know
What “Time"” Is?

Lesa Hoffman
University of Nebraska-Lincoln

Longitudinal studies (i.e., in which each person is observed at multiple
occasions) are a cornerstone of research in psychology and human de-
velopment and have become increasingly common across fields, such as
educarion and business. Although many developmenrtal questions have
initially been addressed using cross-sectional studies, such between-person
comparisons of people of different ages at a single point in time are often
subject to well-known biases, including cohort effects, self-selection effects,
mortality effects, and other problems (for more extended discussion, see
Baltes, Cornelius, & Nesselroade, 1979; Baltes & Nesselroade, 1979; Hofer
& Sliwinski, 2006; Schaie, 1965, 2008). Longitudinal studies can offer sig-
nificant advantages over cross-sectional studies, in that not only can they
provide cross-sectional, between-person information about interindividual
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variation (i.e., when the longitudinal study begins as a cross-sectiona)

F’f persons at different ages), but because they also provide within- sud
information about intraindividual change or variation over time (al::l‘:son
tween-person differences in those within-person changes). be-

. ]?lxtenswe methodological work has focused on the development of

t]Stl.C'cﬂ }m:)dels of change, such as for describing and predicting how SC-Lta-
lastic achievement of children grows over time, how job performan >
e.mployees changes over time, how marital satisfaction waxes or wanesCe o
time, how physical and cognitive function in older adults declines o
time, and so forth. Indeed, much of this book focuses on the develo over
or refinement of longitudinal models to be able to ask and zmSWerp .
tions. of increasing complexity. Yet in order to make informed use ofques—
exciting advances for longitudinal models, we must make an imporLaI:UCh
sumption—we presuppose (o know exactly what “time” is. That is wh:lta .
thought to be the fundamental causal process by which one shoul,d ind .
Fhange? Such deliberation on the possible metrics for indexing time ([hex
i turn can reflect different processes) becomes important whencver .
sons differ at the onset of a study in the time metric of interest (e.g., per: s
of different ages at bascline). To illustrate, let us consider in m;rle) dZOI}S
threc of the examples already given: modeling growth in children’ scho;all
tic achievement, increases in employee job performance, and change n
marital satisfaction over time. , e

Considering Time

. First, witb respect to growth in children’s scholastic achievement over
time, we might reasonably assume that learning proceeds as a function
o_f grade in school, given that each child is observed in multiple grades
(i.e., there is within-person variation in grade as “time”), even if the chil-
dre.n chi.n the study in different grades (i.e., there is also between-person
variation in grade as “time”). Although children in the same grade may still
dlﬁ”er in age, to the extent that scholastic achievement is a consequence
of instruction (and not biology), then grade in school is likely to be more
relevant for indexing learning over time than chronological age. Any effect
ol age differences between children in the same grade could still be ac-
cour?tcd for by including the age at which they entered school as a person-
sPec1ﬁc covariate. Thus, in this context, what “time” should be seems rela-
tively straightforward (even if more than one option is possible).

Second, in considering employee joh performance over time, we might
assume that performance improves as a function of years of experience
on.the job, which we can monitor through repeated performance obser-
vattons (i.e., “time” represents within-person variation in work experience
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at their organization). But complications arise because employees often
pegin their position with different employment histories (i.e., “time” in-
cludes between-person variation in work experience also). For instance,
consider the process of university promotion and tenure. Whether or not
renure requirements have been met is often evaluated as a function of
years of experience (i.e., most candidates will apply for tenure 5-7 years
into a tenure-track position), but at what point does the “work experience”
that is relevant for promotion and tenure really begin? Does the relevant
experience begin only at the entry point into that tenure-track position,
or does it begin earlier, at the point of receipt of the doctoral degree, or
npon completion of postdoctoral training or internship? What about per-
sons who enter a tenure-track position after completing several years in a
similar position at another university? If multple candidates with different
amounts of previous work experience (e.g., only graduate work, postgradu-
ate work, or a previous tenure-track position) apply for tenure at the same
time, the expectations for their accomplishments at that point in time may
heavily depend on how their relevant “time on the job” is conceptualized
and measured. Thus, in this instance, what “time” should be is debatable,
but with significant repercussions resulting from each possible alternative.
In other contexts, the best choice for “time” may be even less obvious.
For instance, in studying changes in marital satisfaction over time, a logi-
cal first choice for time might be “time in marriage” (i.e., marital satisfac-
tion may wax or wane the longer one is married, or due to within-person
variation in “time in marriage™), even if couples differ in how long they've
been married when they enter the study (i.e., there is also between-person
variation in “time in marriage”). However, there is likely to be considerable
heterogeneity in how quickly different couples may decide to marry. If one
believes that relationship satisfaction progresses as a function of the length
of the overall relationship (rather than just the length of the marriage),
then “time in relationship” may more accurately index observed changes in
relationship satisfaction than would “time in marriage.” But some couples
may meet and begin dating immediately, whereas others may be friends
initially and then later decide to begin dating. In that case, “time in rela-
tionship” would need to be further distinguished as “time in any relation-
ship” versus “time in a romantic relationship.” Furthermore, some couples
may have more volatile relationships, such that they may break up, but then
later decide to get back together (perhaps doing so multiple times). Should
any time in between their relationship epochs “count” within whichever
lime metric is used to index change in relationship satisfaction over time?
In addition, alternative theoretical viewpoints of relationship dynamics
may require very different metrics of time for indexing change in relation-
ship satisfaction. What if one believes that relationship satisfaction changes
due to changing responsibilities of the spouses or partners (e.g., the transi-
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tion to parenthood)? If so, how long a couple has been together
defined) would be less relevant than how long they have been
gether (e.g., the age of their first child). Further sdll, couples ma; ;
to ellld their unions at different points in their relationship, and soy ecide
declines in satisfaction could he described more parsimonic’)usl b tp erhi-l :
change. as a function of a meaningful event, such as beginningyco):.x rad?m
separation, or divorce. In that case, time would be measured backv:v1 SEhn. '
orde‘r to describe change over time 2s a function of the dissolutio e in
relationship instead. That is, couples would be aligned with res ec:z o he
soon they will be apart, rather than how long they've been togetll)ler If’o how
because the couples that are still together after a long relationshi are
a random subsample of all couples who had begun a relationshi F(’bf:e -
thfiy ha'vc chosen to stay together), inferences about changes ill)l rel Cf'l o
ship satisfaction need to be viewed as conditional on this self-selectio iy
cess. Thus, what “time” should be in this context is anything but c]ea?-glrt(l)-

The Focus of This Chapter

”1."]?6 poir{t of the three preceding examples was to illustrate how th
decision to index change over time should reflect the theoretical pr .
thought. to be responsible for any observed change, and thus howI;e(\)fceSi
a.lternatlve metrics of time (corresponding to different theoretical orieem
tions) may be useful for tracking change in a given outcome as a resmla_
The purpose of the present work is to thoroughly explore these issnes .
r(?1111d1ng the choices we make for the speciﬁcLau'on of time within lo .
dinal rn(?dels. The title of this chapter is based on a song recorded !;]gltﬂl“
band f]hu:_ago in 1969, in which the lyrics query: “Does anybody reall lZn er
what time it is?... Does anybody really care (about time)?* T believe t);mt e
sh_ould indeed care about time (at least when conducting longitudinal a Wle
ysis), anfl so the goal of this chapter is to present how often unreco ni;lac;
assumptions about the treatment of time can have important conse Eence
for subs‘equent model interpretation. T use a working example exgminine )
cha‘nge in Cf)gnitive functioning in older adults as a function of three alterg-
native n_'nemcs of time (time since birth, tine until death, and time since
dementia diagnosis) to address two general issues: (1) WhE,lt “time” should
be and (2) how “time” should be modeled. .

What Should Time Be?

Iuis umportant to note that the question of what “time” should be is not
rel.evant within persons, in which all metrics for indexiug time are indistin-
guishable. For instance, in the previous relatiouship example, as each year
passes relative to a person’s status at the beginning of the stu,dy, he oryshe

(hOWever
parenty to-
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jas been married one year longer, in the relationship one year longer, in
(he romantic relationship one year longer, has been a parent one year lon-

er, and may be one year closer to separation or divorce. Within persons,
these alternative metrics of time cannot be distinguished—within persons,
fime is just time. Between persons, however, all time metrics are not equiva-
jent—people may begin the study at different points in “time” (e.g., they
may have been married longer, have been a parent longer, or may begin the
study closer to separation or divorce). As a result, both the amount of in-
terindividual variation in “time” and its relationship with a given outcome
are likely to differ depending on what “time” is. Thus, the first question
is, given the presence of both between-person and within-person variation
in time, from what point should we start counting—how should time be

aligned between persons?

How Should Time Be Modeled?

Second, how should our model of change account for the potentially dif-
ferent effects of between- and within-person differences in “time”? Differ-
ent model specifications {in addition to different time metrics) may result
in different conclusions for the description and prediction of change over
time. Such considerations have been described more generally for multi-
level models as they relate to distinguishing individual effects from contex-
mal effects (e.g., Raudenbush & Bryk, 2002; Snijders & Bosker, 1999}, or
distinguishing time-specific effects from individual effects of time-varying
covariates (e.g., Hedeker & Gibbons, 2006; Hoffman & Stawski, 2009), but
relatively little attention has been paid to this issue in the context of index-
ing time in longitudinal studies, in which the same concerns are also rele-
vant. Thus, the second guestion is, within a chosen time metric, how should
the model be specified to best account for ellsources of variation in time?

EXAMPLE DATA

Sample

These questions surroundiug alternative metrics and models of time
are addressed using data from the Octogenarian Twin Study of Aging (as
described in Johansson et al.,, 2004), in which observations were collected
longitudinally from same-sex twin pairs. One twin from each pair was ran-
domly selected for use in the current analyses, which inchided 173 persons
(656% women} who were sampled on np to five occasions over an 8-year
period (i.e., every 2 years). Other relevant characteristics of the analysis
sample are summarized below.
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OQutcomes

Two cognition outcomes were examined. The Mini-Mental Status Fy
(.MMSE; Folstein, Folstein, & McHugh, 1975) is a general test of orje 2
f:lon and memory that is often used to identify persons suspected of 1? N
ing dementia. The questions are relatively easy and thus most participa -
without cognitive impairment score at ceiling, The second outcome wams
more sensitive measure of memory, the Memory—in—Reality Object Reciﬂ
Te:?t {(Johansson, 1988), in which participants were asked to place real-lif,
objects in a three-dimensional model of an apartment and were later givee
a free-recall test for those objects. For ease of interpretation, both outcom N
were Tscored to the same scale (M= 50, $D=10). Additional inforrrrlati(;a "
about the original OCTO-Twin sample and these measures of cognition ¢ ,
be found in Johansson et al. (1999, 2004). o

Decomposing Variance

Before building longitudinal models, it is useful to decompose the oyt.
come variability into between-person variability in the mean level of the out-
come over time (i.e., cross-sectional variability representing interindividua]
differences) and within-person variability around a person’s mean outcome
over time (i.e., longitudinal variability representing intraindividual change
and fluctuation). These sources of variation can be quantified by estimat-

ing what is called an “empty” longitudinal (multilevel) model, as shown in
equation 10.1:

Level 1: y; =y, +¢, (10.1)
Level 2: Bo, = voo + U,

in which y, is the outcome at time #for individual 7 The level-1 model con-
structs an outcome at each occasion as a function of an individual inter-
Cept, represented by the placeholder B, and a time- and individual-specific
resxdual ¢; The level-2 model then describes how each person’s intercept
1s constructed: Here, as a function of the fixed intercept Yoo» Which is the
grand mean of the outcome over time, and the random intercept U, , which
i the deviation from the grand mean of individual #s mean ov‘gr time.
Thu.s, U, represents between-person (BP) variation in the person-means
{estimated as 17, ) and ¢, represents within-person (WP) variation around
those person-mcans {estimated as 0:). We can then form a ratio of these
two variance components in order to calculate an intraclass correlation
(1CC), as shown in equation 10.2:
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_ wvar{Uy) 15, _  BPvariation (10.2)
var(Up, )+ var(e;) 15, +G-  (BP + WP) variation

in which the ICC is the proportion of variance that is between persons (or
equivalently, the average correlation across occasions assuming compound sym-
metry). In this example, the ICCs for the MMSE and Object Recall outcomes
were .50 and .42, respectively, indicating that approximately half of their vari-
ance was in mean level over time (between-person, cross-sectional variance).

Accelerated Longitudinal Designs

The example data were collected in an accelerated longitudinel design
(i.e., overlapping cohort design, cohort sequential design; Bell, 1953;
McArdle & Bell, 2000). Accelerated designs are useful for studying human
development in a shorter time frame than that in which the development
actually occurs. That is, accelerated designs can be useful when one wishes
to do a longer-term longitudinal study, but just doesn’t have the time. An
example of an accelerated design is shown in Figure 10.1, in which the top
panel depicts the sampling of different age cohorts {every 5 years from
age b0 to 85), each of which is sampled for 10 years. The aim of such an
accelerated design would be to capture a general age curve by overlapping
the observed age cohorts, as shown in the bottom panel. If the overlapping
age cohorts converge onto the same age trajectory, one can then model the
developmental trajectory over a larger span of time {i.e., 45 years total in
Figure 10.1) than would be directly possible using only longitudinal infor-
mation (i.e., only 10 years within any person in Figure 10.1).

Choosing amongst Alternative Metrics of Time

The participants analyzed in the current example were selected because
they each had known dates of birth, known dates of death, and estimated
ages of onset of dementia (including Alzheimer’s disease, vascular demen-
tia, or dementia with a mixed or unknown etiology; type of dementia was
not distinguished for the purposes of this example). Thus, there are at least
three alternative metrics of time that could be used to index change (and
thus with which to align between-person variability in “time”) in these lon-
gitudinal data. Let us consider each in turn.

Age as Time
First, we could index change as a function of age, or time sinee birth, given
that participants ranged from age 79 to 100 years of age (M =84 years,
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Figure 10.1  Example of an age-accelerated longitudinal design,

SD=3 years) at the study beginning (baseline). This has been the most
common approach by far within the cognitive aging literature. In construct-
ing a model where age is time, individual differences would be organized
around the mean outcome at a particular age (e.g., the mean of 84 years),
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and change would be specified as a function of the distance from that age.
The use of age as time implies a theoretical model whereby cognition de-
clines as a function of time since birth, such that aligning individuals based
on their current age should be informative for describing individual differ-
ences in both the level and change in cognition over time {in which “time”
would be age here).

Althongh age is measured longitudinally, if persons differ in age at
baseline (i.e., they range from 79 to 100 years here), then age is also mea-
sured crosssectionally. Therefore, it is useful to index the relative amount
of cross-sectional versns longitudinal information available in the age pre-
dictor variable. We can do this by estimating an 1CC for age (using equa-
tion 10.2) as derived from specifying time-varying age as an outcome in
an empty model (nsing equation 10.1). In the example data, the ICC for
age was .47, indicating that 47% of the variance in age was cross-sectional
(i.e., dne to initial age differences), whereas 53% was longitudinal (i.e., due
to observed age changes during the study). Thus, although our theoretical
model is based on the idea of *aging,” only about half of the variance in age
will be directly informative about within-person age changes. The rest of
the age variance will be informative about preexisting differences between
persons of different ages instead.

Death as Time

An alternative approach that has become increasingly popular within
cognitive aging is to index change as a function of years to death instead
of age, or time to death, given that participants ranged from -16 to 0 years
to death (M= -6 years, SD'= 4 years) at baseline. In constructing a model
in which death is time, individnal differences would be organized around
the mean outcome at a particular distance from death (e.g., the mean of
-6 years), and change would be specified as a function of the distance from
that point. The use of death as time implies a theoretical model whereby
cognition declines as a function of impending death (i.c., terminal decline),
such that aligning individuals based on their current distance from death
should be informative for describing individual differences in level and
change in cognition over time, rather than based on their current age. In
other words, it matters how many years one has left, not how many vears
one has already had. The ICC for time to death was .24, indicating that 24%
of the information in death as time is between persons who enter the study
at different durations to death (i.e., cross-sectional variance), whereas 76%
is within-persons (i.e., longitudinal variance) as they grow closer to the end
of their lives during the study.
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Dementia as Time
A third option for “time” is based on a common important event: Gjy,
that everyone in the sample has been or will be diagnosed with demep '-en
we could also index change using proximity to the dementia diagnosis -
time to dementia. Participants ranged from -12 to 18 years from diagn;ﬁr
(M=10 years, SD=5 years) at bascline, indicating that some participa o
entered the study already having been diagnosed with dementia, wher: .
others received a diagnosis at some point during or after the study. The uas
of dementia as time implies a theoretical model whereby cognition declinse
as a function of dementia disease progression, such that aligning individua'iS
based on their current time with the disease (without regard to age or yey :
to death) should be informative for describing individual differences iFS
level and change in cognition over time. The ICC for time to dementia wan
.71, indicating that 71% of the information in dementia as time is betwee:;
persons who enter the study with different amounts of disease progression
(1.e.., cross-sectional variance), whereas 29% is within persons relative g
their own progression observed during the study (i.e., longitudinal var.
ance). One significant limitation in using dementia as time, however. is
that age of dementia onset can ouly be estimated, in contrast to observal,nle
events that have defined dates, such as birth or death. Thus, the variable for
time to dementia diagnosis will contain measurement error, whereas the
vartables for time since birth or time to death (that are known rather thap

estimated) should uot.

Each metric of time (time since birth, time to death, and time o de-
mentia} forms an accelerated design iu its own right, in that persons differ
at baseline in each measure, and they also differ in how much of their in-
formation is actually cross-sectional (24-71%), F urthermore, the baseline
values for these time dimensions are surprisingly uncorrelated. Age is only
correlated with time to death at r= .23 and with time to dementia at 7= A7
although time to death aud time to dementia are correlated more highly a;:

-=.52 (given that dementia can be a cause of death). Thus, these alterna-
tive metrics of time will align different persons in very different ways.

Time as Time

Finally, a less obvious choice for organizing individual differences is sim-
ply “time” itself, or time in study, which ranges from 0 to 8 years with an
ICC of exactly 0, indicating that time in study represents solely longitudinal
information. The use of time in study as time makes no theoretical state-
ment whatsoever—individuals are simply organized around their baseline
level of performance and their change from baseline. Thus, when used by
itself, time in study ignores individual differences in tme since birth, time
to death, and time to dementia. As we will see later, however, such an unin-
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formative metric for time may actually be useful in empirically distinguish-
ing among those distinct temporal processes.
o

visualizing Alternative Metrics of Time

A useful descriptive exercise in evaluating alternative metrics of time
is to construct plots of individual trajectories with an overlaid trajectory
of the model-estimated means at each measurement occasion within that
rme metric. Figure 10.2 shows four such plots for the MMSE outcome: time
since birth (top left), time to death {top right}, time to dementia (bottom
left), and time in study (bottom right). Because MMSE is also used to assess
the presence of dementia, the time to dementia plot is somewhat circular,
put it nevertheless illustrates an idealized scenario in which the mean tra-
jectory (as shown by the heavy black line) is a good descriptor of the pat-
terns shown in the individual trajectories. That is, we can informally judge
the appropriateness of a given metric of time hy the similarity of the mean
and individual trajectories—time to dementia appears to be a useful way to
describe change in MMSE. An example ol a poor match between the mean
and individual trajectories can be seen for time since birth, which shows a
much shallower rate of decline across age on average than what is shown
by any individual. The same is true to a lesser extent for time to death. In
contrast, the mean slope across time in study seems to match the individual
trajectories fairly well, although there is noticeably greater heterogeneity
in mean level relative to that shown in the accelerated time metrics (age,
death, or dementia).

Figure 1.3 shows the same types of plots for the Object Recall memory
outcome. Here the “best” metric of time is not nearly as evident, although
the same general patterns appear: Time to dementia arguably seems to or-
ganize the individual trajectories around the mean trajectory mostly closely,
followed by time to death and time in study, followed by time since birth.

Modeling Alternative Metrics of Time

Age as Time

Those mean and individual trajectories can then be modeled via fixed
and random effects, in which fixed effects represent sample average effects
and random effects represent deviations from each of those sample aver-
age effects for a given individual. Given that age is a commonly used metric
of time, we can begin by constructing a model for change including fixed
and random effects of age. Furthermore, we can approximate the apparent
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nonlinearity in the pattern of change across age with a quadratic effec;
age, as shown in equation 10.3: ot

Level 11y, = Bo; +By;(Age,; ~ 84)+ Boi(Age, ~84) + ¢, (10.3)
Level 20 By, = yo +Uy;

Bui =910 +Uy;

Boi =Yoo +Uy

in which y, is again the outcome at time ¢ for individual 4 The level-1 mod
constructs an outcome at each occasion using an individual intercept li:;l
ear age slope, and quadratic age slope, as represented by the placeholjde .

o0 By and B,, as well as a time- and individual-specific residual e Thrs

subtraction of 84 from age moves the reference point for the modeirfro ;
that of a newborn (if using original age) to an B4yearold (if using am
centered at 84 instead). The level-2 model then constructs each persof’gJ
growth terms: as a function of the fixed (average) effect for the sample (y °
‘Ym,‘and Yy) and the individual random effect (U, U, and U,). Fach tergg;
varnes across persons in this example model (but in Ipractic';'the necessit

.Of cach fixed or random effect should be tested). The fixed intercept (7, ?
is the. expected outcome at age 84, and thus the intercept variance (1:20“)
describes individual differences in the outcome level at age 84. Given tb}?e
quadratic age slope, the fixed linear age slope (y,,) is the instantaneous
l?near rate of change per year of age as evaluated at age 84, and thus the
linear age slope variance (1%,) deseribes individual differences in the linear
age slopes also as evaluated at age 84. The fixed quadratic age slope (v,)
is half the rate of acceleration or deceleration; twice the quadratic slopez‘}s
how the linear age slope changes per year of age. The quadratic age slope
variance (1{,) describes individual differences in the quadratic age slop}:as
(which are constant across age). The U, U, and U, level-2 ra;dom ef-
fects are assumed to have a multivariate normal distriblftion ACross persons

whereas the ¢, level-1 residuals are assumed to have constant variance acros;
persons and occasions, with no covariance across occasions within persons
ar between persons,

Although not obvious, the age as time model in equation 10.3 makes
an important assumption of convergence that is, it assumes that persons of
Fhffqmg initial ages all converge onto the same trajectory (i.e., as shown
in Figure 10.1). More conceptually, this assumption of age coglvergence
means that the only reason that younger and older people differ is their
age, or that the crosssectional (BP) effects of age are equivalent to the
long.ltudinal (WP) effects of age (i.e., an assumption of ergodicity). More
succinctly, convergence means that it only matters what age you are; it does
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not matter when you were that age. Convergence is not likely to hold to
the extent that the initial age range is large or to the extent that cohort ef-
fects, selection eflects, or mortality effects are likely to be present. In these
example daia, 47% of the variation in age is cross-sectional, and thusitis an
open question whether the cross-sectional and longitudinal effects of age
are equivalent (i.e., whether the effects of age show convergence).

As discussed by Sliwinski, Hoffman, and Hofer (2010), age convergence
can be tested empirically by using a variant of the grand-mean-centering
approach that is used to decompose effects across levels in other multilevel
contexts (i.e., distinguishing individual from group effects; distinguishing
time-specific from individual effects), as shown in equation 10.4:

Level I y; =PBoi+Bu(Ages —84) + Bai(Age, —84) +e, (10.4)
Level 2: Bo; = Yoo+ You(AgeTl, —84)+ Uy,

Bui = Yw +Yu{AgeTl; - 84)+ Uy

Be, = Yoo + Yo (AgeT1, —84)+ Uy,

in which the age at baseline (AgeT1,) has been added as a time-invariant
predictor to each level-2 equation. Although the decomposition of effects
across levels typically requires computation of the mean at the higher level
{(l.e., mean age across time rather than age at baseline), in this case the
mean age is likely to be biased by missing data—persons who dropped out
of the study earlier would have a lower mean age, eveu if they were born
in the same year. Thus, age at baseline is used as a more direct representa-
tion of age cohort (although birth year should be used in studies spanning
multiple years at the first occasion). If significant effects of age cohort are
found on the intercept (Y,,) or the linear or quadratic age slopes (y,, orv,,),
this implies age nonconvergence, or that age cohort has an incremental effect
(i.e., a contextual effect), even after controlling for current age. In other
words, it would matter when you were age 84. Estimated parameters from
the age as time models with age cohort are given in the second columns
of Tables 10.1 and 10.2 for MMSE and Object Recall, respectively, and the
corresponding model-predicted trajectories are depicted in the top panels
of Figure 10.4. The quadratic age slope variance was nonsignificant and was
thus not retained.

The parameters from the age as time model for MMSE can be under-
stood as follows. Because of their interactions with age cohort, the fixed
intercept, linear age slope, and quadratic age slope are interpreted condi-
tionally on age cohort; that is, they apply specifically to someone who be-
gins the study at age 84. Thus, for that individual, the expected MMSFE (in
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TABLE 10.1 Model Parameters across Alternative Metrics m

for Mini-Mental Status Exam {MMSE)

) Time to
Time since birth  Time to death dementig
Model parameters Est SE Est SE Est SE
Fixed effects:
Intercept (y,,) 5276 0.89 5589”087  52.83" 0.52
Linear slope (y,) =L70" 024 102" 081 -2 016
Quadratic slope (Y,,) -0.05 0,03 -019° 04 -0.09° 0.03
Cubic slope (1,,) 0.01" 009
Cohort on intercept (Y, Logs 0,87 0.62° 0.30 0.03 .13
Cohort on lincar slope () .08 0.08 0.05 0.08 0.07 0.04
Cohort on quadratic slope (y,,) -0.01" 0.01 —0.02"  0.01 0.00 0.00
Cohort on cubic slope (Yar} -0.00"  Doo
Variance componcents:
Residual vaviance (g?) 15.387 153 1361 133 206" |54
Intercept variance (t, ) 69.18" 000 63907 1001 1270 244
Linear slope variance (1:?,1) LOg™  0.29 0.97"  0.24
Intercept slope covariance (%y,,) 1.04 Lla 256 1.28
Deviance (—2LL) 3513 3428 3267
AIG 3533 3448 3287
BIC 3564 3480 3319

N.nte: *p< 05, ¥ p< 001, 1L, log likelihood; AIL, Akaike information criteria; BIC, Davesian
information criteria, Cohort represents the value of each time vardable at bascline,

I'score units) at age 84 is 52.76 (the fixed intercept v,,), the instantaneous
linear rate of decline as evaluated at age 84 is 1.70 per year (v,,), and that
rate of linear decline becomes {nonsignificantly) more negative by 0.10 per
year (twice the quadratic slope ¥,,, whose effect was fixed only). However,
significant effects of age cohort (age at baseline) were found, such that for
every year older one begins the study than age 84, the intercept at age 84
is expected to be 1.09 higher (y,,), the linear rate of decline at age 84 is ex-
pected to be 0.08 less negative (nounsignificant Y.)> and the quadratic rate
of decline is expected to be 0.01 more negative (v,,). Thus, for MMSE, even
after controlling for current age, persons who begin the study older have
an age (rajectory that begins higher than expected, but with more acceler-
ated decline. For Object Recall, a somewhat different pattern of results was
found: The expected value at age 84 was 51.60 for someone who began the
study at age 84 (y,)), and persons who begin the study at age 85 instead
of age 84 were expected to score .53 higher (y,)) at age 84. The form of
change in Object Recall was a decelerating negative function, such that the
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TABLE 10.2 Model Parameters across Alternative Metrics of Time for
object Recall Memory

Time to
Time since hirth  Time to death dementia
podel parameters Est SE Est SE Est SE
Fixed cflects:
Iatercept (Yoo) 51.60° 082 54237 087 49907  0.68
Lincar slope {Y,,} -1.76" 019 179 015 -1.82" (.22
Quadratic slope () 0.06° 0.03 0.t 0.05
Cabic slope (1,,) 0.02" 0.0l
Cohorton inlercept (¥,,) 0.5% 0.26 0.04 0.18
014" 0.05

Cohort on lincar slope (v}

Colort on quadratic slope (Y,,) -0.02"  0.01

Cohort on cubic slope (y,,) =000 000

Variance components:
28.27" 300 2078 327  3l12" 259

62.98" 955 63287 1265 15.05" 3.08
0.72" 031 0.67 0.35

Resiclual variance (s})
Intercept variance (1:?,”)
Linear slope variance {17,)
Intcreept slope covariance (tp,)  —4.02"7 1.33 =569 188

Deviance {(~21.1) 2851 2803 2719
AIC 2867 2815 2737
BIC 2892 2834 2765

Note: * fr< 08, #* < .001. LL, log likeliheod; AIC, Akatke information criteria; BIC, Bayesian
information criteria, Golort represents the value of cach time variable at baseline.

linear rate of decline at age 84 of 1.76 per year (y,,) became less negative
by 0.12 (twice the quadratic y,,) per year. For Object Recall, however, the
rates of linear and quadratic decline across age did not differ by age cohort
(i.e., novy,, or v, were needed).

The positive effect of age cohort on the intercept shown hy both out-
comes could potentially reflect a selection effect, given that the participants
who are still alive and capable of agreeing to participate at older ages arc
not a random subsample of all participants who could have begun the study
earliecr—they are likely to have comparatively greater cognitive and physical
function (butmay be more likely to experience greater subscquent decline,
at least in MMSE). It is important to note, however, that the cohort elfect
on the model intercept (at age 84) is necessarily an extrapolation for the
older age cohorts, who did not contribute data at age 84. The cohort effect
on the intercept reflects the difference predicted by the model that should
have been observed had the data been complete. Although such an cxtrapolation
may seem somewhat strange, that is exactly what is implied by any acceler-

g
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Fig?lre 10.4 Predicted rajectorics for Mini-Mental Status Fxam (MMSE; left) and
Object Recall memory (right) using age as time {top), death as uime (middle), and
dementia diagnosis as lime (botom).

ated time model—it tries to predict the overall trajectory, even though the
resulting trajectory describes no actual ohserved individnal.

Death as Time

Although time since birth is commonly nsed, an increasingly popular
choice is to index change relative to the end of life, rather than relative to
t.he beginning. But becanse time to death varies across participants at base-
line (i.e., its ICC indicated that 24% of its variance was hetween persons},
the same concerns about testing convergence apply to time to death as
applied to age. Thus, we can modify the model in equation 10.4 to include
time to death as the level-1 time variable (centered at 6 years prior to death)
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and time to death at baseline as the level-2 cohort variable. Estimated pa-
rameters from the death as time models accounting for death cohort are
given in the third columns of Tables 10.1 and 10.2 for MMSE and Object
Recall, respectively, and the corresponding model-predicted trajectories
are depicted in the middle panels of Figure 10.4. The quadratic slope vari-
ance was again not included for either outcome.

The parameters from the death as time model for MMSE followed a very
similar pattern as the age as time model. The trajectory toward death for
someone who hegins the stidy at 6 years to death (the new reference point)
includes an intercept of 55.99, an instantaneous linear rate of decline at
that point of 1.02 per year closer to death, and that linear rate of decline be-
comes more negative by 0.38 per year closer to death (i.e., an accelerating
negative function). There were again effects of cohort, such that for every
year closer to death one enters the study, the intercept at 6 years prior to
death is greater by 0.62, the linear rate of change at 6 years prior to death
is less negative by 0.05 (nonsignificant), and the quadratic rate of change is
more negative by 0.02. Thus, for MMSE, persons who begin the study closer
to death start out higher but have more accelerated decline (even after
controlling for current years to death). For Object Recall, however, a sig-
nificant linear rate of decline of 1.79 per year was predicted across all death
cohorts—there was no incremental effect of beginning the study closer to
death. Thus, for Object Recall, convergence of the between- and within-
person effects of time to death did indeed hold (as shown by the perfectly
overlapping lines in the middle right panel of Figure 10.4).

Dementia as Time

Finally, a third potential metric of time (although measured with error)
is time to dementia, wherehy participants are aligned using their age at
diagnosis. Because 71% of its variance was between persons, the same con-
cerns about testing convergence also apply to the effects of time to demen-
tia. Furthermore, the model in equation 10.4 was extended to include a
cubic trend as indicated in initial examinations (i.e., it included a B,; place-
holder at level 1, defined by just a fixed effect v,, at level 2). Thus, the
model included linear, quadratic, and cubic effects of time to dementia as
the level-1 time variable (centered at the point of diagnosis}, and effects
of time to dementia at baseline as the level-2 cohort variable. Estimated
parameters from the time to dementia models accounting for dementia
cohort are given in the fourth columns of Tables 10.1 and 10.2 for MMSE
and Object Recall, respectively, and the corresponding model-predicted
trajectories are depicted in the bottom panels of Figure 10.4. None of the
slope variances were significant, and so only residual and random intercept
variances were retained.

]
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The parameters from the time to dementia model for MMSE indicateq an
accelerating negative trajectory that eventually began o decelerate {i.e, neg.
ative linear and quadratic effects paired with a positive cubic effect), which
could reflect range restriction for those scoring very low (i.e., who scoreq
near the floor of MMSE). A significant effect of time to dementia at base.
line (dementia cohort) was found only on the cubic trend, such that a lessey
amount of reversal of the accelerating negative trend was found for those
who began the study further along in the disease progression. For Object
Recall, a very similar pattern was observed: an overall accelerating negative
trend that abated further into the trajectory, although persons who began the
study further along in their dementia progression showed a less NEgative rage
of decline that accelerated more but abated less. As shown in the bottom pan-
els of Figure 10.4, however, these dementia cohort effects do not substantjally
alter the overall dementia trajectories (i.e., unlike the age cohort effects thy
do substantially alter the age trajectories in the top panels of Figure 10.4)

Choosing amongst Alternative Metrics of Time

Model Fit

Thus far we have examined three competing variables by which change
over time can be indexed: tme since hirth {age), time o dearh, and rfime to
dementia. Each of these time metrics implies a different theoretical mode]
and a different means by which different persons can be aligned (or not)
onto a single trajectory. The next logical question is, how might one select
among these alternative metrics of time? One way to compare alternative
models is by using information criteria, such as the Akaike information cri-
teria (AIC) and Bayesian information criteria (BIC) (as estimated under
maximum likelihood, given that the models 1o be compared differ in both
their fixed and random efTects). Both the AIC and the BIC evaluate the fit
of a model relative to the number of parameters estimated, but the BIC also
includes a correction based on sample size that rewards greater parsimony.
In comparing the AIC and BIC valnes across models for MMSE (Table 10.1)
and Object Recall (Table 10.2), the most preferred model uses dementia as
time, followed by death as time, and followed by age as time. This closely
matches our earlier intuitions from comparing the mean and individual
trajectories across alternative metrics of time (Figures 10.2 and 10.3); in
those plots, the mean trajectory through dementia as time seemed 1O more
closely match the individual trajectories,

Variance Components
Another criterion we can utilize to choose between models could be the
amount of estimated variance in each model. Up to this point we have fo-
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cused on the fixed effects from the different tifne .n.loclels, but the el-xte;t
to which the model is a good descriptor of the individual data can also ;
evaluated by examining the variance left over bf)th between persons ?ESS
within persons. To facilitate comparison of variance components.act *
models, the models reported in Tables 10‘1. and 10.? were reesnm; cm
with only residual and random intercep't vanan.ces {(given that a ran ;; "
slope implies the random intercept variance will change over tlmcizr,lt nd
thus each intercept variance would only .apply to the rcfer_enci poi

its time metric). As shown in the top of Figure 10.5, the residual variances

= Age ® Death N Dementia

[2.2]
(=)

~J
(=]

[423
fa)

Residual Variance

MMSE Object Recall

= Age #® Death m Dementia

20 -+

intercept Variance
8 5
A 3

[= B =
1 i

MMSE Object Recall

Figure 10.5 Esimated residual variance (top) and rapc!om intercept varlanctl:‘n
{(bounom) for MMSE (Mini-Mental Siatus Exam} and Object Recall memory using
age as time, death as time, and dementia diagnosis as time.
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difTer little between models. This is to be expected given that residual vqy
an?e represents remaining within-person variation around the prediciu -
trajectory, and within persons, these alternative time metrics are equivale o
Thus greater residual variance could be created by systematic misfit of Lr}llt.
form of the trajectory, but these models were selected so as to maximize Lhe
fit o the data (i.e., by including higher-order polynomial functions wh )
needed), and thus residual variance should be minimized. ere

I.n comntrast, as shown in the bottom of Figure 10.5, the random interce
variances did differ markedly between models {even after controlling fpt
cohort) due to differences in how the models aligned different persoor
onto the same trajectory. Thus, the intercept variance represents remai.nS
ing individual differences among persons at the same pointin “time” (t'mil :
since birth, time to death, or time to dementia). The intercept variance ie
greatest for the age model, {ollowed by the death model, followed by thz
dementia model, for which differences between persons are relatively mini-
mal. Such elimination of individual differences could potentially indicate
a well-fitting time metric—for instance, if dementia progression is the rel-
evant causal process, then between-person variability should be minimized
once accounting for dementia as time. The substantial age cohort effects
can be taken as further evidence that age simply doesn’t fit—if it did, age of
entry into the study should not matter after controlling for current age (as
was more the case in the tiine to death or time to dementia models in which
cohort effects were minimal).

It is also noteworthy that no significant linear or higher-order slope vari-
ance was observed in the time to dementia models, indicating that the fixed
effects were sulficient to explain the individual variation in change, too.
This implies that the individual differences in change that were observed
when using time since birth or time to death could have partially resulted
from the misalignment of individuals with respect to time. If so, subsequent
exploration of those individual differcnces in change would be misguided
at best and misleading at worst.

What about Just Time as “Time”?

Fixed Effects of Time

Thus far we have considered the fit of three alternative metrics of time,
and decided that time to dementia appears to have the best relative fit.
But what about the fourth possible time metric, simply “time” itself? As
discussed earlier, using time in study as time makes no theoretical stale-
ment whatsoever about what is responsible for observed change—change i
'sunply specified relative to the baseline observation. Within persons, time
is just time. In addition, because time in study contains only longitudinal
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iﬂformation, concerns of testing OT assuming convergence do not apply.
rhus, using kime in study is analogous to group-mean-centering (or person-
mean—centering) in multilevel modeling, but here the level-1 effect for time
s specified relative to each person’s first occasion (rather than to the per-
;oI’s mean time),

To illustrate, consider two equivalent models of linear change across age,
in which the first model is specified in terms of time and the second model
is specified in terms of age, as shown in equation 10.5.

Time Level 1: 3, = Boi + Br:(Ages — AgeTl) + e, (10.5)

Time Level 2: Boi = Yoo + Yo (AgeT L)+ Uo
Bui="vuw
Age Level 1t y, = Bo: + Bri(Agen) teu
Age Level 2: By; = Yoo + Yo (AgeT1i) + Uo;
B =710

in which the level-1 variable for current age has been replaced by current
age relative to age at bascline, or simply, “time” in the time-based level-1
model. Age cohort has a main effect on the intercept only in both the time-
based and age-based models. The equivalence of these two models can be
shown by substituting for the § level-1 placeholders and rearranging com-
mon terms into a single-level equation, as shown in equation 10.6:

Time-Based: y; = Yoo + Yio{Ages — AgeT1 )+ Y (AgeTl) + Uyit+e; (10.6)
Time as Age: yi = Yoo + Yio(Ages )+ (Yo — Vo) (AgeT1)+Up; + e
Age-Based: 3; =Y + Vio(Age, )+ “{Bl(AgeTls 1+l tey

i1 which the fixed intercept (Y,,), the fixed linear within-person effect of
agce (Y.}, the random intercept (U,), and the level-l residual (e} are the
same across models. The effect of age cohort differs predictably across
models, in that the incremental between-person effect of age cohort esti-
mated in the age-based model of Yo1 (i.e., after controlling for current age)
will be produced in the time-based model by subtracting the within-person
effect of age from the between-person effect of age cohort (Y, —Y,,)- This
is because the between-person effect of age cohort in the time-based model
does not control for current age (i.€., it is the total between-person effect
rather than the incremental or contextual between-person effect, as in the

age-based model).
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Equation 10.6 describes a well-known result in the multilevel modeg;
Clin

literature (Snijders & Bosker, 1999): If the level-1 effect is fixed, the . g
’ le.

based model can be made equivalent to the age-based maodel, in that
generate the same predictions and model fit (but with rearr;mge(l o
eters at level 2). The same is true for any other accelerated time paraxln,
such a§ time to death or time to dementia. For instance, to include :fletnc_
dfzath instead, time at level 1 would be the current time to death mj e o
distance from death at baseline, and distance from death at baselin(z1 o
be the level-2 cohort variable. The same could be done to include th0111(1
dementia instead. Furthermore, although the level-1 age variable wlme o
centered in equation 10.6, centering on any other constant will not C?IS s
the model fit (it will only change its scale). “ige
A]th{?ngh the equality in equatiou 10.6 is well known, what is less
known is that the fixed-effects model can also be extended to include N,
c‘omplex patterns of change, and yet a time-based version and an ac«:eler[zrx1 o
time version (such as age) can still be made equivalent. Equation 10.7 '1tled-
trates this point by adding an interaction of age cohort with the age sl'OpIe-us-

Time-Based: y; = Yoo +Y10(Age,; — AgeTL )+ Yo (AgeT1)+ (10.7)
Yoo (AgeT1)? +411 (Age, — AgeT1L) (AgeT1,) + Uy, + ¢,
Time as Age: 3 = Yoo +Vio{Age, )+ (Yor — Y10) (AgeT1 )+
(Yoo —Yu ) (AgeT1,)* + Y {Age,) (AgeT L)+ Ug; + e
Age-Based: y; = Yoo + Vio(Ages )+ Yo (AgeT 1)+
Yoa(AgeT 1) +¥11(Ages) (AgeTl,)+ Ugi +eq

in w‘hich a quadratic effect of age cohortis also added in order to maintain
equivalency. In equation 10.7 the fixed intercept (¥,,), linear within-person
effect of age (v,,), age cohort by age interaction (7,,), random intercept
(U, ar{d level-1 residual (e} are the same across modcls. The linear and
quadratic age cohort effects differ across models in the same predictable
way as before, in that the age-based model provides direct estimates of
the incremental effects of age cohort (after controlling for current age)

whereas the time-based model provides direct estimates of the total effect;
of age cohort instead (not controlling for current age). Finally, these mod-
F—:ls with a quadratic effect of age at level 1 will also be equivale;lt as shown
in equation 10.8: ’
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Time-Based: yi = Yoo +Y1w(Age: — AgeT1,)+ Vu(Ages; — AgeTl, ¥+ (10.8)
Yor{ AgeTL;) + Yoo (AgeTl1,)" +
Y (Age,; — AgeTl;) (AgeTl1)+
Uy, +ey

Time as Age: 3 = Yoo +Yio{Ages) + Yoo(Ageg)? +(Yor — Tio) (AgeTL)+
{(Yo2 + Vo — Y1)} (AgeTl, ¥+ (Y11 — 2Y20) (Ages) (AgeTl;)+
Ui +ey

Age-Based: y; = Yoo +ViolAges )+ Yool Ages ¥+ v (AgeTl)+

Voa(AgeT1)Y +yn{Ages) (AgeTl)+

Ui te;

in which the fixed intercept (Y,,), linear within-person effect of age (¥},
quadratic within-person effect of age (Yy)> random intercept (U}, and lev-
el-1 residual (g,) are the same across models. The age by age cohort interac-
tion and the linear and quadratic age cohort effects differ across models in
the same predictable way as before (i.e., incremental vs. total effects).

Random Effects of Time
The point of showing both the time-based and accelerated-time versions

of the same model is this: So long as the level-1 effects are fixed, using time
in study (i.e., rather than using direct age in an accelerated-time version)
can nevertheless result in equivalent (just slightly rearranged) models. But
what if the level-1 effects are ranndom? In this case, we need only examine a
simple model to see that the time-based and accelerated-time models can-
not be made equivalent, as demonstrated using age as accelerated time in

equation 10.9:
Time-Based: v, = Yo + Vil Age, — AgeT1)+ Yo (AgeT1)+ (10.9)
Uy +U ) (Ages - AgeTl;)+e;
Time as Agc: ¥ = Yoo +Yw(Ageq)+ (Yo — Yw ) {AgeT1)+
Ui +U],-(Age“)—U“(AgeTl,-)+e,,-
Age-Based: y; = Yoo + YwlAges)+ Yo (AgeTl)+
Ugi + UL (Agey )+ ey
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in which a random linear slope for level-1 time/age has been added (o al-
low individuals to differ in their linear rates of change. As shown, in the
time-based model, the random slope does not include any baseline vy
ance in time/age, whereas in the age-based model, the random slope does
include baseline variance in time/age. Thus, if the level-l effect of time
age is random, the time-based and accelerated-time models cannot e
made equivalent.

So, given the need for a random slope for change over time, whicy
model should be used—a time-based model or an accelerated-time mode]
(e.g., age, time to death, time to dementia)? Previously we used inform,.
tion criteria (ML AIC and BIC) to select amongst the accelerated mod.
els (age, death, dementia}, and we could do the same to select between
the time-bascd and accelerated-time versions of each index. In this Case,
though, the AIC and BIC values of the time-based models were largely com-
parable to their accelerated-time corollaries, which seems to suggest thag
either version within a given metric {time or accelerated time) would be
adequate (although the models for time to dementia fit relatively betier
than those using age or death).

In discussing this issue for multilevel models more generally, Rauden-
bush and Bryk (2002, pp.143-149) present their recommendation to
group-mean-center level-1 effects with random slopes, which is analogous
to recommending the time-based model variants here. To place their ratio-
nale in this context, they note that when substantial variation is observed
between persons in the accelerated time metric at baseline, the random
intercept variance will likely be estimated with differential precision in the
time-based and accelerated-time variants of the same model because of
its different interpretation in each. In the time-based model variant, the
intercept variance represents individual differences at baseline (or when
time = 0), whereas in the accelerated-time model variant, the intercept
variance represents individual differences when the accelerated-time met-
ric is 0 (c.g., age B4 or 6 years prior to death). Thus, the intercept in the
accelerated-time model variant will require greater extrapolation for those
cases in which 0 is not actually observed, resulting in lower reliability and
greater shrinkage of the intercept toward the mean. That intercept shrink-
age can cause the individual slopes to become homogenized, with the result
that the slope variance for the level-1 random effect will be smaller than it
should be in the accelerated-time model variants, but accurately estimated
in the time-based model variants.

This conjecture was tested in the example data by comparing the slope
variance estimates from equation 10.8, in which the time-based versions
and accelerated-time versions of the age and death models werc specified
equivalently in terms of fixed effects, and differed only in their random
slopes. The dementia models were notincluded given that no slope variance
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was found. As shown in Figure 10.6, the random slope variance was indeed

33-77% larger in the time-based model variants than in the correspond-
jng accelerated-time variants for both the age and death models, suggest-
ing that the downward bias described by Raudenbush and Bryk (2002) was
found in these example data as well. Unless the true model parameters are
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Figure 10.6 Estimated stope variance for MMSE (Mini-Memnal Status Exam). and
Object Recall memory across the Lime-based and accclerated-lime models using
age as lime and death as time.
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known, however, we cannot be certain if the slope variance in the acceleryy,
ed-time models was in fact underestimated, or if the greater slope varianc,
reported in the time-based models was actually overestimated instead,
However, these two alternative explanations have also been examined y,

the author via simutation (Hoffman & Templin, 2008). These simulatioy,
results (available upon request) indicated that when data were simulageq
using a time-based model but analyzed using an accelerated-time model iy.
stead, the slope variance was indeed underestimated by up to 50% acrogg
conditions, with larger bias found for the conditions with fewer occasions of
measurement and with greater variance in the accelerated-time variable ¢
baseline. Given that downward bias in the slope variance should generalty
limit the power to detect significant predicitors of change, this suggests thg
the time-based versions of the accelerated-time models should be preferred,

Alternative Metrics of Time as Competing Theories

Let us summarize what we have learned so far about using time as
“time™: if used by itself, time in study is an uninformative time metric, in
that change is specified relative to the baseline value (and not relative to a
given distance from birth, death, or diagnosis}. To make time in study in-
formative for representing differential processes or cause of change, equa-
tions 10.5-10.9 paired time in study (at level 1) with age at baseline (age
cohort at level 2) in order to reproduce the parameters from the age as
time models. Time to death at baseline or time to dementia at bascline
could have similarly been included instead at level 2 in order to reproduce
those alternaltive time models. Furthermore, although the time-based and
accelerated-time model variants can be made equivalent in their fixed el
fects, they cannot be made equivalent in their random effects, and it is
in accurately quantifying the random slope variance that the time-based
madel variants seem to have an edge.

But perhaps the most compelling argument for using time as “time”
comes from the potential to ailow different time metrics {(representing dif-
ferent causes of change) to directly compete (orinteract) with one another.
For instance, why do some people begin the study with lower levels of cog-
nition? Is it their age, distance from death, or their amount of dementia
progression? Each time metric’s baseline value could be included at level
2 as a competing main effect in order to predict the individual intercepts.
Similarly, why do some people decline more rapidly than others? Each time
metric’s baseline value could also be included as a competing interaction
with time in study to also predict the individual slopes. Thus, by using just
time as “time” we can obtain a clear and direct estimate of the unique con-
tribution of each alternative temporal process, and we can do so withont
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making any assumptions about (or conducting tests for) convergence
e ithi son effects.
s between- and within-per . . -
0{1;5 illustrate, a final {ime-as-time model was estimated, as shown in equa
O k)

ol 10.10:

. (10.10)
Level 1 v = Bo; + B“(Tlme,,-)+ 7

Level 2: Boj =Yoo + Yot (AgeTl,) + Va2 (DEH.[th;) +Yos (DemTlJ+ U()j
Bu=Yw+T {AgeT1)+ Y (DeathT1;)+ ¥is(DemT1;)+1h;

. which time in study was included at level 1 aqd in which ei’fects of (elabe
e native time metric (age, death, and dementia} were also inchuded for
a::ee rintcrcept and linear time slope (the quadratic F’lme 'slopes w;:gesng
t nificant and were thus not included). Results are g}V@n in Tall)le 0.3, -
:lfown in the second column for MMSE, only dementia }zirogxieszm)'n atc Ilajss;
i s significantly related to a lower initial score, and only being "
ltlonfh:::h a%baselineywas significantly related Lo a gre'ater rat(,;a oit' t:le;lxlxeu nf:;
shown in the third column for Object Recall, age, time to death,

TABLE 10.3 Model parameters Using Multiple Metrics of Time
Mini-Mental Status Exam Object Recall
Mini-iviental statts = 2

Est SE
Model parameters Est SE
fi}ie?czgf z: :) 5307 0.50 51.81" g;:
nle - - .
— " 0.14 -1.80
Linear ume slope (Y, 2.}7 o Py o
Age cohort on intercept (Yo} -0.26 .O.O.:) o -
Age cohorton slope (Tu) *0.0?3 0.116 o o
Death cohort on intercept (Yoot —0.0b" 0.0% e o
beath cohort on slope (T2) —0.21“ 0.1} o o
Dementia cohort on intercept (Yol -1.48 0.03 o -
Dementia cohort on slope (Y3) 0.03 :
Variance components: . .
' 1.57 25.96 .
Residual variance (o?) 111.?{())" L e e
Intercept variance (1g,) 22.9 i (}28 o o
Linear slope variance (1) 1-1.3" n-q] o e
Intercepl stope covariance {Ty ) -2.84 k! L7 .
272
Deviance (—2L1) 3280 i
AlC 3304 i
BIC 3342 2790

Note: * < 05, % p< 001. 1.4, log likelihood; AIC, Akaike informnation criteria; BIG, Bayestan
e * .05, 001, 1L,

ach U artable ai bascline.
information criteria. Cohori tepresents the value of each time variable at ba
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to demel}tla at baseline were each uniquely related to lower initia] m
scores, with the largest effect (in difference per year) found for de

Althougl age significantl i i
y predicted rate of decline, old
actually predicted to decline less. P perso

elnol
mentj,
I1§ Were

CONCLUSIONS

The f(.)cus of this chapter was to identify and describe the degisi
r9und1ng the use of multiple potential ways of clocking time .151';)115 o
dinal studies; that is, alternative metrics of time, Although the clin s
?vhat “time” should be is likely to be made on theoretical grroundse n
mstances multiple processes may potentially be responsible for ’ b.
change, and thus multiple time metrics may need to be consid o
resxlllt. chus, in addition to theoretically motivated choices for tim i~ " N
cal indices such as differential model fit (ML AIC and BIC) and Z’ G:m})ln-
of he.tween-person heterogeneity may also be useful in comparin : otes
multiple plausible metrics of time. In particular, one needs to be gw ot
greater heterogeneity between persons can be partiaily due to a ma're fhat
ment of different individuals with respect Lo time and, if so, expl _lsahgn-
dictors of_this heterogeneity may not be informative. ’ PO pre
Cornl.)hc'ating matters, however, is that persons may differ in “time”
t.he begmnmg of a study (i.e., if time is accelerated so that the rane o
Ume covered is greater than that observed for any one individual). | geh(‘)f
case, one needs to attend to the possibility that the crosssectional a (Ill lt N
gitudinal effects of accelerated time may differ, and thus to test fo? [hOIl-
convergence accordingly. Although models were presented in this ch: ,
ter to ‘do so (e.g., equation 10.4), these models test for nonconvergence P;
a particular form (e.g., only a linear effect of age cohort on eachg rowg
term),_and thus do not preclude the necessity of more complex mo?:l Is i \
fully. disentangle the between- and within-person effects of time ( de eic
possible interactions). e thelr
. 'I“‘h‘ese issues led us to consider a simpler but potentially more useful met-
ric: “ume™ itself. Although at face value it is the most uninformative choi
specifying time as a function of study duration (i.e., time from basel(‘)ncf)’
seems to have several advantages. First, because the pattern of change t; be
approximated by the fixed effects in a time-based model is based sglel on
w1th1n—pferson variance (and the number of occasions per person), the gver—
alll func'tlonal form of change can likely be described more pars‘ir;loniousl
(i.e., alinear model may be sufficient given only three or four oécasions e)rJ
pers.on). But when used in combination with person-level predictors re pre-
ts:ientmg .initial Status on other informative metrics of time (e.g., age Liml; to
eath, time to dementia), even highly complex trajectories can be repre-

ngin,.
10N Of
n many
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sented by a time-based model, given that time-based and accelerated-time
versions of the same model can be made equivalent in terms of their fixed
effects. In addition, because the random slope variance can he downwardly
biased in accelerated-time models, using tine-based model variants instead
may better recover the true amount of individual differences in change.
Furthermore, using time as “time” also permits the inclusion of partici-
ants who have not experienced a target event upon which a time metric
would otherwise be constructed. For instance, persons without a dementia
diagnosis could not be included in a time to dementia model, although
they could be included in a time in study model (in which dementia pres-
ence and timing could still be included via level-2 predictors).
Finally, perhaps the most compelling support for the use of time as
“tme” i8 the fact that it can never be wrong! The use of ume in study as
time makes no assumptions about why individuals differ a priori, which can
be a good thing in ahsence of strong theory (or when that theory is incor-
rect). In addition, because time is based solely on longitudinal information,
one need not worry about convergence. For instance, in the example data,
the between- and within-person effects of age did not converge (i.e., there
were effects of age cohort in addition to current age), and the use of age as
time produced a pattern of fixed effects that ultimately described the indi-
vidual data very poorly. This is because using age as time aligned different
individuals along a time metric with questionable relevance. In contrast, by
using time in study we can instead frame the fit of alternative time metrics as
a series of testable hypotheses and easily compare the relative contributions
of each. Although the other time metrics could also be added as level-2
predictors in the accelerated time models (e.g., one could estimate an age
as time model with time to death as a level-2 predictor}, the results would
ultimately be less straightforward to interpret, given that the level-2 effects
of the accelerated time metric are incremental (i.e., age cohort effects after
controlling for current age) whereas the level-2 effects of the other metrics
would be total (i.e., total death cohort effects, not after conwrolling for cur-
rent years to death}, and that age nonconvergence could still be a problem,
In closing, the issues surrounding what time should be and how time
should be specified in statistical models for change can be quite complicat-
ed. Nevertheless, such deliberations are an important precursor to drawing
useful conclusions from longitudinal data, and I hope this chapter will be
helpful for those contemplating what time (it) is in their own work.
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