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CHAPTER TWO

Statistical Analysis With Incomplete Data:
A Developmental Perspective

Scott M. Hofer
Ovregon State University

Lesa Hoffman
University of Nebraska

One of the thorniest problems that developmental researchers must face is that
of missing or incomplete deta. Incomplete data can take many forms, such
as item or scale nonresponse, participant atirition (i.e., study drop-out), and
mortality within the population of interest (i.e., lack of initial inclusion or in-
complete follow-up due to death). Statistical analysis in general is aimed at
providing inferences regarding level or state, subgroup differences, variability,
and construct relations within a population, and incomplete data complicate
this process. In order to make appropriate population inferences about develop-
ment and change, it is important not only to consider thoroughly the processes
leading to incomplete data, but also to obtain measurements of these selection
and attrition processes to the greatest extent possible. A developmental, eco-
logical perspective is useful in this regard by providing a framework in which to
consider the impact of many static and dynamic individual and contextual fac-
tors on selection and attrition processes in addition to the impact these factors
have on developmental processes of interest.

In this chapter, we outline some of the general issues for making statistical
inferences to populations when data are incomplete. We begin by briefly re-
viewing statistical theory as to the different types of incomplete data, as well
as their likely sources within a developmental context. An overview of common

.approaches for analysis with incomplete data is then provided, including two-
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stage multiple imputation and single-stage likelihood-based estimation proce-
dures. Current approaches for the analysis with incomplete data rely on the
statistical assumption that the data are at least Missing at Random (where the’
probability of missing information is related to covariates and previously mea-
-sured outcomes), and in the latter parts of this chapter we emphasize what this
means in terms of measurements and modeling approaches for developmental
studies. We describe several statistical methods through which the impact of
contextual variables on selection and attrition processes can be incorporated
properly. In the final section, we discuss complications that can result from
heterogeneity in the timing and sources of incomplete data when the goal is to
make inferences about developmental processes.

Methods for addressing incomplete data and their statistical complexities
remain a very active area of research. Thus, we aim to provide a conceptual
understanding of these methods, directing readers to current resources for anal-
ysis with incomplete data, rather than to provide a complete tutorial. Excel-
Yent overviews of current methods for addressing incomplete data can be found,
among others, in Allison (2002), Diggle, Liang, and Zeger (1994), Graham,
Cumsille, and Elek-Fisk (2003), and Schafer and Graham (2002), as well as the
larger works of Little and Rubin (1987, 2002) and Schafer (1997). Our emphasis
in this chapter i8 on the importance of considering multiple types of processes

" that may lead to incomplete data in order to achieve appropriate population
inferences about developmental processes. '

STATISTICAL THEORY FOR. THE ANALYSIS
OF INCOMPLETE DATA

We have seen large strides in recent decades in the development of methods with
which to address incomplete data in statistical analyses. However, while these
methods may ofler a ray of hope to the analyst faced with copious amounts
of missing data, in exchange one must be willing to make certain agsumptions
regarding the missing data mechanisms, or Yeasons why certain values are miss-
ing. If these assumptions are not plausible, one could end up making inferences
that are at best underpowered, and at worst, wrong. In this section we provide
a brief overview of the types of mechanisms that can lead to incomplete data,
as was first explicated by Rubin (1976) (see also Allison, 2002; Little & Rubin,
1987, 2002). Despite the somewhat nonintuitive nature of these terms, they are
standard among methodologists and users of missing data treatments, and as
such will be used here as well.
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Missing Completely at Random (MCAR)

The most restrictive assumption that can be made regarding the nature of the
missingness in one’s data is known as Missing Completely at Random (MCAR),
in which the probability of data being observed does not depend on the value of
the missing information or that of any other variables in the dataset. Despite
the use of the term random, systematic patterns of missing data can still qual-
ify as MCAR if the mechanism generating the missing data is unrelated to the
outcomes of interest. For example, items skipped accidentally on a question-
naire or data lost to equipment, computer, or experimenter error could likely be
considered MCAR. Similarly, missingness could also be considered MCAR if it
results from participants being absent from data collection for reasons unrelated
to the variables of interest.

In contrast to unintentional missingness, incomplete data may be intention-
ally introduced by design in order to minimize response burden or fatigue effects
yet maximize statistical power and breadih of measurement. In this approach,
often referred to as planned missingness (e.g., Graham, Hofer, & MacKinnon,
1096; Graham, Hofer, & Piccinin, 1994; Graham, Taylor, & Cumsille, 2001;
MecArdle, 1994), different items or variables are collected purposively across
separate subsets of the same sample, and missing data methods are used to an-
alyze data across the subsets as if it were complete in the full sample. Planned
missingness is a superior aiternative to unintentional missingness, in that the
causes of niissingness are known and unrelated to participant characteristics in,
the former case, but may be due to unmeasured characteristics of the partici-
pant in the latter. Any data that are missing due to planned non-administration
(e.g., raindom assignment of different forms) would be considered Missing Gom-
pletely at Random, provided that data were indeed collected from everyomne as
intended.

Missing at Random (MAR)

A less-restrictive assumption is that of Missing at Rendom (MAR), also known
as Ignorable, Accessible, or Non-Informative Missingness. Simply put, in this
scenario the probability of having missing information on a given variable is
unrelated to the missing values themselves after controlling for other variables
that are related to the missingness on that variable. The assumption of MAR
is often realistic provided that individual or contextual covariates are collected
that predict the probability of missingness. For example, consider nonresponse
to a survey question about annual income. It is possible that the question was
skipped accidentally, but it is also possible that persons with lower or higher in-
comes would be less likely to answer guestions regarding their annual incomes.
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If the researchers have collected other variables from the participants that are
likely to be related o annual income, such as educational attainment or type
of employment, they could make use of those “proxy” variables in order to con-
tioue to make appropriate inferences regarding the distribution of the anmual
income variable or the relationship of annual income with other variables in
the sample. Within a Jongitudinal context, missingness at a given occasion of
measurement could be considered MAR if the values of the missing variable
could be predicted from those obtained on previous occasions.

Not Missing at Random (NMAR)

Finally, the least restrictive assumption regarding possible mechanisms of miss-
ingness is that of Not Missing at Random (NMAR,; also referred to as Missing
Not at Random), also known as Non-Ignorable, Non-Accessible, or Informative
Missingness. NMAR represents the worst-case scenario for a data analyst, in
that the probability of missingness on a given variable is related to the missing
values themselves after controlling for other relevant variables. Let us recon-
sider the earlier examples, If the probability of skipping a given item on a
questionnaire was related to the response of that item (e.g., persons with lower
‘ncomes were less likely to report their incomes) and no other information was
available that was related to this nonresponse, the missingness would be con-
sidered NMAR. Similarly, in computer-administered timed tasks, if computer
error was more likely on trials with longer response times, and no other data
was available that was related to response time for that task, the missingness
would be considered NMAR. Finally, if the probability of missing a measure-
ment occasion is related to the values that would have been obtained at that
oceasion or in the future (i.e., unobserved variables), but was not predictable
from previous observations, the missingness would again be considered NMAR.,
When incoraplete data arise from NMAR processes, the estimation of parame-
ters will be biased in unknown ways when analyzed using methods that assume
the data are at least MAR.

SOURCES OF INCOMPLETE DATA:
TYPES OF ATTRITION PROCESSES

In evaluating which mechanism ox mechanisms might be responsible for incom-
plete data within a given study, one must consider the substantive processes
that could be involved. An important first step is to distinguish developmen-
tal processes of substantive interest (i.e., as measured in study outcomes) from
other developmental processes that may be related to item nonresponse {e.g.,
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fatigue, lack of motivation, embarrassment) and unit nonresponse (e.g., study
attrition, mortality). We next consider the case of unit nonresponse or study
attrition from a developmental orientation and the extent to which such incom-
plete data can be considered as mere nuisance, ag a natural process, or as a
problem of threshold or censoring.

Attrition as a Nuisance

In many cases, the processes leading to nonresponse or attrition may not be of
direct interest. For example, the moving away of participants from a longitudi-
nal data collection project is an unfortunate event, but may not be substantively
noteworthy, assuming the move was due to reasons unrelated to the areas under
investigation. Similarly, computer or equipment malfunction is a process one
typically wishes to minimize, not explore further. Incomplete data is assumed
to arise from nuisance processes such as these in many substantive analyses.
In these cases, the emphasis is on the best use of all available data in order to
achieve appropriate population inferences in the presence of missing data. Co-
variates for missingness (i.e., variables related to the probability of missingness)
may not be available or relevant, and as a result may not be incorporated into
the method of addressing the missingness. The statistical analysis procedures
reviewed in the next section are well-suited for this scenario, and permit esti-
mation of unbiased and efficient population parameters when data are Missing
Completely at Random (i.e., when the probability of missingness is unrelated to
the process under study) or Missing at Random (i.e., unrelated after accounting
for covariates related that can predict the probability of missingness).

Attrition as a Natural Process

In contrast to the previous examples in which missing data are largely seen as
a hurdle to overcome, incomplete data can also be the natural result of devel-
opmental and population aging processes. For example, attrition in studies of
aging is often nonrandom, or selective, in that it is likely to result from mor-
tality or declining- physical and mental functioning of the participants over the
period of observation {Cooney, Schaie, & Willis, 1988; Rabbitt, Watson, Don-
lan, Bent, & McInnes, 1994; Riegel, Riegel, & Meyer, 1967; Siegler & Botwinick,
1979; Streib, 1966). In diary studies of daily experiences, participants may vary
in compliance as a function of individual characteristics as well as the types of
experiences they are recording (Bolger, Davis, & Rafaeli, 2003). In studies of
adolescent substance abuse, high levels of alcohol or drug use at the previous
time point may be related to attrition at the next time point {Graham, Hofer,
Donaldson, MacKinnon, & Schafer, 1997). In long-term intervention studies,
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participants who do not feel they are benefiting from the treatment (i.e., those
in the placebo group) as well as those who feel they have already improved
‘enough’ may opt to discontinue participation (Hedeker & Qibbons, 1997). In
these examples the fact that the values are missing is likely to be informative
of the value that would have been obtained (Diggle & Kenward, 1994).

These scenarios can present an important inferential problem for the anal-
ysis of longitudinal studies, in that at each new wave of assessment the sample
becomes less and less representative of the population from which it originated.
As such, generalizations from the sample of continuing participants to the ini-
tial population may become difficult to justify (e.g., Nesselroade, 1988; Vaupel
& Yashin, 1985). It is important to note, however, that the problem of nonran-
dom attrition is not unique to longitudinal studies. In cross-sectional studies,

nonrandom population attrition (i.e., mortality; morbidity) manifests itself as
nonrandom initial sample selection. Particularly pertinent to research on aging,
cross-sectional samples of individuals of different ages are necessarily comprised
of individuals who are the surviving members of the population, making infer-
ences to a single population of “aging” individuals difficult to justify. Such
differential population selection (mortality, morbidity) is often related to the
processes of interest and cannot be evaluated in cross-sectional studies, given
that data are typically not collected on nonparticipants. In longitudinal studies,
however, information about the nonreturning participants prior to their depar-
ture may be available and the relationship with the probability of missingness
can be carefully considered (e.g., Graham, Hofer, Donaldson, MacKinnon, &
Schafer, 1997). Inferences to population subgroups or parameters conditional
on both age and survival are possible in such cases.

In scenarios of selective nonresponse or attrition such as these, it is critically
important to consider possible sources of missing data during the early design
stages of a study in order to obtain measurements on individual and contextual
covariates that are likely to be related to the probability of missingness. It
is only through the appropriate inclusion of such covariates in the subsequent
models that the assumption on which most statistical methods of addressing
missing data are based, that of Missing at Random (MAR), can possibly be

satisfied.
Problems of Threshold or Censoring

In addition to missing data arising from nuisance or substantive processes, in-
complete data can also be the result of problems of range restriction within
» measurement instrument. Sometimes measyrement instruments may not be
appropriate for all individuals within a defined population, or the phenomenon
of interest may not apply to all individuals. For example, the Mini-Mental Sta-
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+us Exam (Folstein, Folstein, & McHugh, 1975) is often given as a measure of
general cognitive status in older adults, but most healthy adults will score at
ceiling {i.e., will be right-censored), with deficits observed only for those with
severely declining abilities, such as in advancing dementia. Thus, the measure
may only be useful within certain subsets of the sample. Similarly, in studies of
substance abuse, adolescents who do not smoke or drink will necessarily score at
the foor of a measure of amount or intensity of use (i.c., will be left-censored),
resulting in a zero-inflated distribution of substance use, given that only those
who engage in the activity can logically vary in amount or intensity (Brown,
Catalano, Fleming, Haggerty, & Abbot, 2005).

In these instances, although the censored data are not truly missing, they
are also offen not informative about individual characteristics for portions of
the sample or for certain time points (i.e., for which measurements away from
ceiling or floor could not be obtained). Under such conditions, analyses may
be performed for the subsample of individuals with noncensored responses, an
approach that is less than optimal. An alternative approach has been recently
developed by Olsen and Schafer (2001); (see also Brown, Catalano, Fleming,
Haggerty, & Abbot, 2005), that of two-part latent growth curve models. In this
approach, responses on a single censored outcome are modeled as two distinct
variables: A dichotomous indicator for whether or not each case is censored
{e.g., whether or not the participant smokes), and a continuous indicator of the
value if not censored (e.g., number of cigarettes smoked per day). Predictors
of each outcome can then be evaluated simultaneously. Although use of the
two-part latent growth curve models thus far has largely been limited to sub-
stance use research, they are likely to have many other applications as well.

STATISTICAL APPROACHES FOR ANALYSIS
WITH INCOMPLETT DATA

The options for addressing incomplete data within a statistical analysis de-
pend largely on the hypothetical reasons for missingness. If the source of the
missingness for a given variable can be considered Missing Completely at Ran-
dom {MCAR), then many options exist for addressing this missingness. These
include listwise deletion (i.e., complete cases analysis), the old standby and de-
fault in many statistical analysis packages, as well as newer methods based on
maximizing likelihoods or multiple imputation, as presented in the next section.
In the case of MCAR, regardless of which method is used, model parameters
{e.g., means, variances, correlations, or regression weights) from analyses in-
cluding the variable with missingness are likely to be unbiased, which means
that the obtained parameter estimate will be a close match to the value that
would have been obtained had the data been complete. Parameter estimates
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may vary across missing data metbods in their efficiency, the extent to which
the standard error around the parameter estimate is as small as it would have
been if the data were complete (Graham, Hofer, & MacKinnon, 1996; Schafer
& Graham, 2002). This lack of efficiency translates directly into a loss of sta-
tistical power and a greater likelihood of a Type II error (i.e., failing to reject
the null hypothesis when it should be rejected). Thus, in the case of MCAR,
maximum likelihood and multiple imputation methods can offer considerable
improvements over listwise deletion.

If the missingness on a given variable is not Missing Completely at Ran-
dom (MCAR), then the use of listwise deletion wili likely lead to biased as well
as inefficient estimates, and is generally not recommended. It is important to
note that single imputation methods, such as mean-based or regression-based
imputation, are not recommended. These procedures are known to result in
biased estimates if the data are not MCAR although with very low proportions
of missing values the bias may be negligible (but the magnitude of bias re-
mains unknown unless more appropriate procedures are used for comparison).
A major problem with these approaches is that there is no appropriate sta-
tistical basis with which to obtain standard errors of the parameter estimates
(Graham, Hofer, Donaldson, MacKinnon, & Schafer, 1997; Graham, 2003).

When it appears that either Missing at Random (MAR) or Not Missing at
Random (NMAR) is applicable, then the analyst must carefully consider the
various mechanisms behind the probability of missingness and incorporate all
individual or contextual covariates that could be related to the probability of
missingness for each variable within the missingness model {as discussed in the
next section). Maximum likelihood and multiple imputation methods for treat-
ing missing data carry with them the assumption that the missingness is at least
Missing at Random (MAR). Unfortunately, unlike other statistical asgsurnptions
such as multivariate normality, one cannot empirically evaluate the extent to
which the missingness in the to-be-analyzed data can be congidered ignorable
(MAR) or nonignorable (NMAR). Thus, the appropriateness of missing data
treatments with regard to the inferences that can be made to the target popu-
lation depends largely on principled argument and the availability of measured
covarates at the individual and contextual levels that can presumably capture
the missingness processes. We return to this point later in the chapter.

In the pext section, we describe briefly the available statistical approaches
for the analysis of incomplete data, assuming data are Missing at Random.
These include two-stage approaches, the ezpectation-mazimization (EM) algo-
rithm and multiple imputation, in which the missing data model is generated
separately from the substantive model, such that a complete analysis requires
both steps. In contrast, in single-stage models that make use of full informa-
tion mazimum likelihood (FIML) procedures, the missing data model and the
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substantive model can be estimated simultaneously (i.e., in one step). We also
briefly describe alternative approaches that do not assume Missing at Random.

Expectation-Maximization (EM) Algorithm

Dermpster, Laird, and Rubin (1977)(see also Little & Rubin, 1987, 2002) de-
scribed the utility of the expectation-mazimization (EM) algorithm for analysis
with incomplete data. A general form of the EM algorithm is used to obtain
gufficient statistics, such as covariances and means, on which other forms of
statistical analysis can be performed. In a typical EM algorithrn, one begins
with user-specified starting values for the variances, covariances, and means of
the variables in the dataset or rely on listwise deletion to provide starting val-
ues. In the ezpectation step, the “best guess” is filled in for any missing value
based on regression equations in which each variable with missing values serves
as an outcome and all other variables serve as predictors. In the moximization
step, means for the newly completed data are calculated in the typical manner,
but the variances and covariances are calculated with additional components of
variance added to them in order to correct for underestimation. The variances,
covariances, and means are then compared to those given as starting values.
The new estimates of these parameters are then used to update the regression
equations for use in a second expectation step, followed by a second maxi-
mization step, and the updated estimates are again compared to those from the
previous run. The EM algorithm continues to repeat until the estimates change
a negligible amount between iterations.

The most typical implementation of the EM algorithm is the generation of
maximum likelihood estimates of variances, covariances, and means for continu-
ous variables that may then be analyzed with other statistical analysis programs
(e.g., general linear models, structural equation models). The estimates pro-
duced using the EM algorithm are nnbiased and efficient under the assumption
of MAR (Graham et al., 1994; Graham et al., 1997). However, standard errors
for the estimates must be penerated separately, such as with a bootstrap proce-
dure (Efron & Tibshirani, 1998), given the different sample sizes on which each
of the parameters (e.g., covariances) are based. Nevertheless, this approach is
useful for providing maximum likelihood estimates of variances, covariances,
and means for reporting summary descriptive statistics even when single-stage
methods of model estimation are used (as described shortly). Several software
programs are available that use this method, including EMCOV (Graham &
Hofer, 1993), NORM (Schafer, 1997), S-PLUS, SAS Proc MI, and SPS3 Missing
Value Analysis.
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Multiple Imputation (MI)

Multiple imputation (MI; Rubin, 1987) permits the analysis of “complete” data
sets within standard statistical models (e.g., general linear models), with the
additional strength that standard errors for model parameters can be obtained
that properly account for both between-imputation and within-madel variabil-
ity., 'The MI procedure accounts for missing data in an initial step, referred
t0 as the missing data model. The missing data model need not be the same
as the substantive model of interest, and should contain all covariates believed
to relate to the probability of missingness across variables. Missing values are
“filled in” or #mputed based on regression-predicted values (in which all other
variables in the missing data model serve as predictors) along with a random
error term. A series of data imputations is performed, in which multiple “com-
plete” data sets are generated from the missing data model., Usually between 5
and 10 imputations are sufficient, but up to 20 imputations may be necessary
when large proportions of data are missing (see Schafer, 1997). These MI mod-
¢ls can be performed on mixtures of contimious and categorical outcomes and
covariates.

The next step is to estimate the atatistical model of interest within each
jmputed or “complete” data set. Bocause the issue of informativeness (ie.,
nonrandom missingness) has already been addressed by the covariates within
the missing data model, only covariates of substantive interest need to be in-
cluded in the substantive model. Finally, the parameter estimates and their
standard errors from each of the substantive models need to be combined ap-
propriately. Although the parameter estimates can simply be averaged across
models, the aggregation of their standard errors requires the application of Ru-
bin's (1987) rules, which include both between-imputation and within-model
variability in arriving at the final standard ervors. Several software programs
make data imputation and the combining of results with Rubin’s rules quite
easy, mcluding NORM (Schafer, 1997), the SAS programs of Proc M1 and Proc
MI Analyze, SPLUS, and LISREL. Detailed examptles for multiple imputation
with NORM are provided by Graham and Hofer {2000) and Graham, Cumsille,
and Elek-Fisk (2003). Allison (2002) provides detailed examples using the SAS
MI procedures. :

Full Information Maximum Likelihood (FTML)

In contrast to the two-stage approaches in which missing data and substantive
statistical models are considered in separate stages, in full information moxi-
mum likelihood (FIML; also known as Lirect ML) methods, substantive model
parameters can be estimated from incomplete data in a single step without any




ANALYSIS WITH INCOMPLETE DATA 23

additional iterations or calculations (Little & Rubin, 1987, 2002). Maximum
likelihood estimates of the variances, covariances, and means can be generated
for reporting purposes as well. Although much more convenient than multiple
imputation, the use of FIML carries with it the assumption of Migsing at Ran-
dom (MAR), or that the probability of missingness is unrelated to what the
missing values would have been. Thus, all covariates related to the probability
of miséingness (e.g., previous observations, individual or contextual character-
istics) need to be included in the substantive model, which can be difficult to
accomplish in practice. In particular, cases with any missing covariates will not
be included in the substantive model within certain types of multilevel modeling
programs (e.g., HLM, SAS Proc Mixed, MLwin), although this requirement can
be relaxed to include cases with partially observed covariates in other general
programs for multilevel and/or structural modeling that also use FIML (e.g.,
Mplus, Mx, AMOS, LISREL, EQS).

Within the context of general structural equation modeling, Graham (2003)
discussed the issue of how to properly include covariates for missingness that
are not of substantive interest. He presented two FIMI-based structural mod-
els, the extra dependent varisble model and the saturated correlates model,
through which one can include covariates for missingness in such a way so as
not to distort the substantive model. In the extra dependent variable model, co-
variates for missingness are specified as dependent variables (i.e., as endogenous
variables predicted by the exogenous variables), and their residual variances are
correlated with those of other endogenous variables. In the saturated correlales
model, covariates for missingness are specified as independent variables that are
correlated directly with other exogenous variables, and correlated with the resid-
ual variances of endogenous variables, Covariates for missingness are allowed to
correlate with each other in both models. Simulation results revealed that both
models performed as well as two-stage approaches (e.g., multiple imputation,
EM algorithm) in terms of recovering parameter estimates and standard errors.
With regard to assessing model fit, however, the saturated correlates model re-
sulted in model fit statistics equivalent to the substantive model (i.e., without
covariates for missingness), and was to be preferred over the extra dependent
variable model, for which discrepancies were found.

An older, related method is that of multiple group structural equation mod-
eling (see Allison, 1987; Graham, Hofer, & Piccinin, 1994; Muthén, Kaplan,
& Hollis, 1987). Essentially, each missing data pattern represents a different
group in the model, and equality constraints on the model parameters are placed
across groups for variables that are present. The main limitation of the multiple
group approach is that each pattern of missingness must be defined as a separ-
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ate group, which quickly becomies unwieldy in complex models and can result
in a loss of information because sample sizes for particular patterns may be
insufficient.

Esxtensions of the multiple group structural equation modeling approach for
incomplete data have been used for cohort sequential analyses {e.g., Duncan,
Duncan, & Hops, 1996, McArdle & Hamagami, 1992, Miyazaki & Raudenbush,
2000}, in which. longitudinal trajectories of participants who began the study at
different ages are pieced together to form a single aggregate trajectory under the
assumaption of Missing at Random (i.e., that observations for the ages before and
after the time of study are simply Missing at Random). This approach, how-
ever, requires the agsumption of age convergence, OT that estimates of between-
person differences will converge onto estimates of within-person changes. in
other words, age convergence models assume that the only characteristics that
separate individuals are chronological age, with no additional processes oper-
ating that create differences across birth cohorts that would lead to lack of age
convergence, such as nonrandorm selection, attrition, or mortality. As such, age
convergence models may not be tenable in many longitudinal applications, par-
ticular with samples from the latter parts of the lifespan.

Alternatives to Missing at Random

Despite our best efforts to predict probability of missingness with observed. co-
variates, the pattern of missingness may still be informative about the outcomes
of interest, a scenario that falls within the category of nonignorable missing-
ness (i.e., Not Missing at Random or NMAR, Little, 1995). Two approaches
may be used within this scenario: Pattern-mixture models and selection mod-
els. In puottern-mizture models (Hedeker & Gibbons, 1997; Little, 1993, 1995},
subgroups are identified based on patterns of missing data, and the analysis
includes indicators of the subgroup membership. Thus, results are conditional
on missing data patterns, although the mechanisms thought to be responsible
for the different patterns are not considered explicitly. Selectiorn models (Diggle
& Kenward, 1994; Verbeke & Molenberghs, 2000} require one to first specify a
distribution for the outcomes (e.g., multivariate normal), and then to specify
the manner in which the probability of missingness is related to the outcomes.
Details about these statistically complex models go beyond the scope of this
chapter, but they are an important area of continuing development.
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INFERENTIAL ISSUES FOR THE ANALYSIS
OF INCOMPLETE DATA

Single Versus Conditional Populations

As reviewed in the last section, great strides have been made in the options for
addressing incomplete data in terms of the quality of the parameters that can
be obtained from statistical models. Yet the resulting population inferences
from those parameters remain problematic conceptually within developmental
studies. Most notably, these methods and their corresponding assumptions are
based on the notion of a single, accessible population of individuals. That is,
they assume that model parameters from the aggregate sample can be used to
infer about an “average” individual across time. Some forms of nonparticipation
do logically permit inference to a single population, such as with substance
abuse in adolescence (i.e., in most cases, drop-outs are still members of the
general population of adolescents even if they are not in school or available for
measurerent).

Vet in other forms of nonparticipation, such as that of mortality in aged
populations, inference to individuals within a single, stationary population over
time is logically impossible because deceased individuals have left the popula-
tion of interest, and thus the population is continually being redefined. In
cross-sectional studies, sample-level means across age are comprised of distinct
groups of individuals (i.e., those who were available to be measured when the
study was conducted out of everyone who was originally could have lived to
that age), and as such, initial sample selection is already confounded with pop-
wlation mortality. Thus, aggregate-level model parameters cannot be used to
make inferences to individual-level change processes in cross-sectional studies.
In longitudinal studies, however, individual-level change processes can be eval-
uated directly. As discussed in the following sections, however, aggregate-level
model parameters in longitudinal studies with selective morality must be de-
fined as conditional on the probability of surviving or remaining in the study
at a given time poing, and not in reference to an immortal pbpuia.tion (e.g., “all
older adults”) that has no real-world counterpart (DuFouil, Brayne, & Clay-
tom, 2004; Harel, 2003; Kurland & Heagerty, 2004, 2005; Ribaudo, Thompson,
& Allen-Mersh, 2000). ‘

Temporal Spacing of Observations in Measuring
Sources of Missingness

As discussed previously, multiple imputation (M1} and full information maxi-
mum likelihood (FIML) approaches require the assumption of Missing at Ran-
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dom (MAR). The extent to which MAR is satisfied depends largely on the
availability of covariates that adequately capture the missingness process. It is
important to note that results obtained from using either MI or FIML will be
agymptotically equivalent provided that the missing data model is the same in
each, or if the same covariates of missingness used in the imputation model are
also included in the analysis model estimated with FIML (i.e., as saturated cor-
relates in a structural model or as predictors in a multilevel model}. Thus, the
choice of one method over another may be based on practical considerations.
It is generally easier to include covariates for missingness within an imputation
model than as extra variables in a substantive model, but this advantage may
be offset by the additional effort needed to conduct substantive analyses on
each imputed dataset and then combine the results appropriately within MI, a
process unnecessary within FIML.

Simulation research has repeatedly shown that the inclusion of covariates re-
lated to missingness within MI and FIML will result in parameter estimates and
standard errors comparable te what would have been observed with complete
data (e.g., Graham, 2003; Graham, Hofer, & Piccinin, 1994; Graham, Hofer, &
MacKinnon, 1996; Graham & Schafer, 1999). Further, it appears there is no
downside to also including covariates not related to missingness in the hope of
satisfying MAR (Collins, Schafer, & Kam, 2001). Although the assumption of
MAR is not testable, many scholars have expressed optimism about the utility
of MAR-based methods in real-world data, noting that, “ ..In many psycho-
logical research settings the departures from MAR are probably not serious”
{Schafer & Graham, 2002, p. 154), and that, “ .. With MAR missingness, al-
though there is bias when the causes of missingness are not included in the
model, the bias is much less of a problem than previously thought (Graham,
Cumsille, & Elek-Fisk, 2003), even preferring MAR-based methods to alterna-
tives for non-ignorable missingness: “ .. The MAR assumption has been found
to yield more accurate predictions of the missing values than methods based on
the more natural NMAR mechanism” (Little & Rubin, 2002, p. 19).

Within longitudinal research, however, one must consider not only which
events or processes related may be related to nonresponse but more specifically,
the timing and spacing of the measurements of those processes. Although it is
often stated that the inclusion of covariates in the missingness model can ren-
der the assumption of MAR tenable, the measurement time frame of dynamic
covariates is not often explicitly considered. Probabilities, general patterns,
and sources of missingness may change over time as a result of other changes
occurring during the observation period. At issue, then, is how best to ob-
tain measures of the dynamic and heterogeneous nature of these missing data
processes.
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Cohen (1991) and Gollob and Reichardt (1987, 1991) consider the issue of
temporal spacing within the context of the measurement of time-varying co-
variates. Essentially, causal mechanisms need time for their influences to be
exerted, and the size of the effect will vary with the time interval between the
causal influenice and the outcome. Thus, if one statistically controls for a co-
variate measured at a time before it exerts it causal influence, resultant model
parameters may still be biased by the covariate. Time-varying covariates must
be measured within the time {rame in which they are exerting their influence
in order to provide adequate representations of the causal, time-dependent pro-
cesses that result in participant nonresponse in a viable missing data model.
However, deciding on what an appropriate time frame might be is not an easy
task, and may not be informed by previous longitudinal studies, given that
the data collection intervals from many studies are determined by logistical
and financial factors, rather than theoretical expectations about the timing of
developmental processes (Cohen, 1991).

The model for missing data must be at least as rich as the substantive model
of interest. For group comparison and interaction, effects can be maintained
in the imputation model by imputing within group or modeling the group by
outcome interaction effect within the imputation model. When researchers are
interested in nonlinear influences of context and the moderated effects at dif-
ferent levels of contextual variables, such interaction and higher order effects
must be included in the imputation model as well.

Heterogeneity in the Timing and Causes of Nonresponse

Given the importance of covariates that relate to the probability of missingness
in satisfying the assumption of Missing at Random (MAR) that is implicit in
most of the current approaches to analysis with incomplete data, how might
covariates be included that capture changing probabilities of missingness over
time as a function of different mechanisms? One way in which attrition can
be considered as a dynamic process is in the context of an important event
that may lead to or increase the likelihood of nonresponse over time. When
time to or from a significant event is an important predictor of an attrition
process, a covariate of time-to-event may also be included within the statistical
model. For example, in studies in which differential mortality is an issue, a
covariate of time-to-death could be included, such that population inference
would then be conditional on not only chronological age but also on remaining
age, permitting further examination of the observed selection process over time
{e.g., Johansson et al., 2004). Similarly, when selective attrition is thought
to be related to a disease process, a covariate of time-since-diagnosis could be
included (e.g., Sliwinski, Hofer, Hall, Buschke, & Lipton, 2003). In separating
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are performed, or whether the results must instead be considered conditional
(i.e., nonignorable) on the processes leading to incomplete data. This is pri-
marily a problem of whether one can make inferences to a single, accessible
population of developing individuals, or whether the population itself is under-
going dynamic changes (i.e., mortality), such that individuals comprising the
population are different across age strata or different developmental periods. In
the latter case, population inference may instead need to refer to multiple or
conditional populations (e.g., of individuals who remain in the population at a
given developmental period) rather than to a single, stationary, and nonexistent

population.
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