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Multilevel models (MLMs)—also known as hierarchical 
linear models or linear mixed-effects models—are a 
mainstay of many areas of research. Their defining fea-
ture is their capacity to quantify and predict the sources 
of random variance that arise from sampling over mul-
tiple dimensions, such as across occasions, persons, or 
groups. For example, in a longitudinal design, one 
might examine how outcomes at different occasions (at 
Level 1) that are nested in different persons (at Level 
2) can be predicted by time-varying or time-invariant 
characteristics (measured per occasion or per person, 
respectively). Likewise, in a clustered design, one might 
examine how outcomes for different persons (at Level 

1) who are nested in different groups (at Level 2) can 
be predicted by person or group characteristics. Out-
comes from even more complex designs can be ana-
lyzed by introducing additional random variances to 
reflect other sources of nested or crossed sampling. For 
ease of exposition (but without loss of generality), the 
focus in this article is limited to two-level models for 
nested samples.
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Abstract
The increasing availability of software with which to estimate multivariate multilevel models (also called multilevel 
structural equation models) makes it easier than ever before to leverage these powerful techniques to answer research 
questions at multiple levels of analysis simultaneously. However, interpretation can be tricky given that different 
choices for centering model predictors can lead to different versions of what appear to be the same parameters; this is 
especially the case when the predictors are latent variables created through model-estimated variance components. A 
further complication is a recent change to Mplus (Version 8.1), a popular software program for estimating multivariate 
multilevel models, in which the selection of Bayesian estimation instead of maximum likelihood results in different 
lower-level predictors when random slopes are requested. This article provides a detailed explication of how the 
parameters of multilevel models differ as a function of the analyst’s decisions regarding centering and the form of 
lower-level predictors (i.e., observed or latent), the method of estimation, and the variant of program syntax used. After 
explaining how different methods of centering lower-level observed predictor variables result in different higher-level 
effects within univariate multilevel models, this article uses simulated data to demonstrate how these same concepts 
apply in specifying multivariate multilevel models with latent lower-level predictor variables. Complete data, input, 
and output files for all of the example models have been made available online to further aid readers in accurately 
translating these central tenets of multivariate multilevel modeling into practice.
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The oldest (and still popular) MLM software pack-
ages estimate univariate multilevel models: They parti-
tion variance across levels of sampling for Level 1 
outcomes. Examples of such software include the 
MIXED routines in SAS (SAS Institute, 2017), SPSS (IBM 
Corp., 2017), and Stata (StataCorp, 2017); the dedicated 
programs HLM (Raudenbush, Bryk, Cheong, & Congdon, 
2011) and MLwiN (Charlton, Rasbash, Browne, Healy, 
& Cameron, 2019); and the R packages lme4 (Bates, 
Mächler, Bolker, & Walker, 2015) and nlme (Pinheiro, 
Bates, DebRoy, Sarkar, & R Core Team, 2019). As I 
elaborate later, the drawback of univariate MLMs is that 
an analogous model-based variance partitioning is not 
possible for Level 1 predictors (i.e., variables that relate 
to Level 1 outcomes via fixed effects instead of covari-
ances). Instead, variance partitioning for a Level 1 pre-
dictor requires creating a new observed variable (i.e., 
a Level 2 mean over Level 1 units) to distinguish the 
unique effects of its Level 1 source of variance from its 
Level 2 sources of variance.

Fortunately, recent software advances have made it 
easier than ever before to estimate multivariate MLMs, 
in which variance is partitioned in both Level 1 predic-
tors and Level 1 outcomes. Multivariate MLMs are esti-
mable as multilevel structural equation models (SEMs) 
in Mplus (Muthén & Muthén, 2018), in gsem within Stata, 
and in the R package xxM (Mehta, 2013). To a more 
limited extent, multivariate MLMs can also be estimated 
as single-level SEMs, such as in LISREL ( Jöreskog, 
Olsson, & Wallentin, 2016), Amos (Arbuckle, 2014), EQS 
(Bentler, 2008), sem within Stata, and lavaan (Rosseel, 
2012) within R. However, their advantages in flexibility 
may come at the cost of more frequent user misunder-
standings, given that the data transformations analysts 
use to create observed predictor variables in univariate 
MLMs may or may not be done behind the scenes 
through model-based variance partitioning (i.e., latent 
centering), depending on the multivariate MLM speci-
fication. Posing an additional challenge, the 2018 
releases of Mplus (8.1 in June, 8.2 in November; Muthén 
& Muthén, 2018) have altered how the same multivariate 
MLM syntax gets implemented in multilevel SEMs—and 
thus how the results should be interpreted—when 
Bayesian estimation is selected instead of maximum like-
lihood (ML). As a result, analysts now have new consid-
erations to address—and new sources of accidental error 
to avoid—in tackling the increasingly challenging inter-
section of research questions, models, and software.

My goal in this article is to help analysts avoid some 
common mistakes that can impede a meaningful multi-
level analysis. First, I reinforce the importance of distin-
guishing the effects of predictors at different levels of 
analysis when specifying MLMs. To that end, I next use 
text, equations, and diagrams to review the terminology 
involved in creating and interpreting level-specific effects 

of observed predictor variables in univariate MLMs. For-
tunately, this first section is applicable to univariate 
MLMs estimated using any software package; I have pro-
vided corresponding univariate MLM examples using 
Mplus in the Supplemental Material available online, but 
analogous examples can be found in many online 
sources (e.g., Hoffman, 2018; UCLA Institute for Digital 
Research & Education, 2019).

Second, I demonstrate how to interpret parameters 
from multivariate MLMs specifically, for which under-
standing the (ever-changing) ties between model speci-
fication and software implementation is even more 
critical. I provide examples of multivariate MLM results 
obtained through two different software frameworks: 
(a) multilevel structural equation modeling in Mplus 
specifically and (b) single-level structural equation mod-
eling (as implemented in any SEM software that allows 
random slopes, including Mplus). Using simulated data, 
equations, and figures, I show how the concepts pre-
sented for univariate MLMs still apply to specifying and 
estimating multivariate MLMs. To aid readers in translat-
ing these examples into analyses of real data, I have 
made available online all of the necessary Mplus files 
for following along and replicating these simulation 
results. I encourage readers who prefer other packages 
for estimating multivariate MLMs to replicate these anal-
yses and share their results with me and other interested 
readers as well.

Table 1 summarizes the model specifications I address 
in this article, including the model framework (univari-
ate MLM, multivariate MLM via a multilevel or single-
level SEM) and estimator (ML, Bayesian estimation), the 
type of predictor variable (observed, latent), the type 
of Level 1 effect (fixed, random), and the method of 
specifying Level 1 effects in multilevel MLM syntax in 
Mplus. With respect to the latter, Level 1 direct refers to 
syntax in which the fixed effects are requested directly 
in the Level 1 %WITHIN% model (e.g., y ON x;); this 
method does not allow corresponding random effects 
or cross-level interactions. For those additions, the Level 
1 placeholder syntax (e.g., s | y ON x;) must instead 
appear in the Level 1 model. When this placeholder 
syntax is used, the name given (e.g., s) is treated as a 
Level 2 latent variable. Its fixed and random effects are 
then requested in the Level 2 %BETWEEN% model—as 
the latent variable’s mean and variance, respectively 
(e.g., [s], s;)—along with any cross-level interactions 
(e.g., s ON w;). The last terms in the “Syntax” column, 
residual direct and structured residual, are relevant to 
SEM software specifically, as I explain in greater detail 
later. The final column in Table 1 lists the type of Level 
2 effect that results from each model specification. Note 
that the information presented in Table 1 will likely need 
to be updated as new versions of Mplus (and other 
programs for estimating MLMs) become available.
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Disclosures

The Supplemental Material for this article (http:// 
journals.sagepub.com/doi/suppl/10.1177/251524591 
9842770; also available at https://osf.io/mk73j/) includes 
three types of Mplus files. First, I have included all data, 
input, and output from the reported simulation. Second, 
I have included input and output for one replication 
using the univariate MLMs presented next. Third, I have 
included input and output for the same replication 
using the multivariate MLMs, including both multilevel 
SEM and single-level SEM variants, presented subse-
quently. For each model, separate files are provided for 
Bayesian and ML estimation. All materials were initially 
created in Mplus 8.1 but were subsequently verified to 
be identical in Mplus 8.2, as expected.

Univariate Multilevel Models

Variance partitioning

Univariate multilevel analyses typically begin with an 
empty-means (i.e., unconditional-means) model, whose 
purpose is to quantify how much outcome variance is 
attributable to each dimension (level) of sampling 
before predictors are included, as shown in Equation 1:
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In this equation, ywb is the outcome for Level 1 within 
unit w and Level 2 between unit b. At Level 1, the term 
β0b is the intercept for Level 2 unit b; β0b is created by 

Table 1.  Summary of Modeling Choices and Level 2 Results

Level 1 source of variance and type of effects
Mplus syntax for  
the Level 1 effect

Resulting  
Level 2 effect

Univariate MLM with ML or Bayesian estimation
Variable-centered observed variable  
  Fixed effects only Level 1 direct Betweena

  Fixed effects only Level 1 placeholder Betweena

  Fixed and random effects Level 1 placeholder Betweena

Constant-centered observed variable 
  Fixed effects only Level 1 direct Contextuala

  Fixed effects only Level 1 placeholder Contextuala

  Fixed and random effects Level 1 placeholder Contextuala

Multivariate MLM using Mplus multilevel structural equation modeling with ML estimation
Within-level latent variable  
  Fixed effects only Level 1 direct Betweenb

Uncentered observed variable  
  Fixed effects only Level 1 placeholder Contextualb

  Fixed and random effects Level 1 placeholder Contextualb

Multivariate MLM using Mplus 8.1+  multilevel structural equation modeling with Bayesian estimation
Within-level latent variable  
  Fixed effects only Level 1 direct Betweenb

  Fixed effects only Level 1 placeholder Betweenb

  Fixed and random effects Level 1 placeholder Betweenb

Multivariate MLM using general structural equation modeling with ML or Bayesian estimation
Latent residual of observed variable  
  Fixed effects only Residual direct Contextualb

  Fixed effects only Structured residual Betweenb

  Fixed and random effects Residual direct through 
placeholder

Contextualb

  Fixed and random effects Structured residual through 
placeholder

NA

Note: MLM = multilevel model; ML = maximum likelihood; NA = not available.
aThese Level 2 effects are fixed effects for observed Level 2 mean predictors (included in all univariate models). 
bThese Level 2 effects are effects for latent Level 2 intercept predictors (included in all multivariate models).

https://osf.io/mk73j/
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two terms in its Level 2 model. First is the fixed inter-
cept, γ00, which is the grand mean of the Level 2 unit 
means. Second is U0b, which is a random intercept that 
captures the deviation of the mean for Level 2 unit b 
from the grand mean. The model summarizes the vari-
ability across Level 2 units in their U0b values as Level 
2 random intercept variance, denoted as τU 0

2 , which 
captures variability between Level 2 units due to mean 
differences. At Level 1, ewb is a residual for the remain-
ing deviation of the observed ywb from the model-pre-
dicted ywb. Finally, the model summarizes the variability 
of the ewb values across the entire sample as the Level 
1 residual variance, denoted as σe

2, which captures the 
remaining variability within Level 2 units.

These two variance estimates are often used to cal-
culate a useful descriptive statistic, the intraclass cor-
relation, or ICC, which is calculated as follows: ICC = 
τU 0
2 /(τU 0

2  + σe
2). The ICC is the proportion of total variance 

due to intercept (mean) differences between Level 2 
units; thus 1 – ICC is the proportion of variance within 
Level 2 units. For instance, in longitudinal data, the ICC 
quantifies the variance due to mean differences between 
persons (at Level 2) relative to the time-specific vari-
ance within persons (at Level 1). Likewise, in clustered 
data, the ICC quantifies the variance due to mean dif-
ferences between groups (at Level 2) relative to the 
person-specific variance within groups (at Level 1).

Fixed effects of predictors (i.e., fixed slopes) are then 
added to the model to explain the outcome variance at 
their corresponding level of measurement. The term 
fixed indicates that the slope coefficient will be held 
constant across Level 2 units (as opposed to random, 
which indicates that the slope coefficient will be allowed 
to vary across Level 2 units instead). In two-level models, 
Level 2 predictors can have only fixed effects. Further, 
because they have only one source of variance (between 
Level 2 units), their main effects or interactions can be 
included directly via their observed variables. To create 
a meaningful reference point for the intercept and for 
any simple main effects of interacting predictors, it is 
customary to center Level 2 predictors, that is, to rescale 
them so that zero is a meaningful value. Notably, when 
centering is accomplished by adding or subtracting the 
same constant in all cases, the fit and predictions of the 
model will not vary with the centering constant used. 
Thus, there is no centering constant that would be the 
wrong choice; different choices will just result in model 
fixed effects that are more or less useful for directly 
answering the researchers’ questions.

This is not the case for Level 1 predictors, whose 
centering can be tricky. This is because Level 1 predic-
tors usually contain both Level 1 and Level 2 sources 
of variation, just as Level 1 outcomes do (and the extent 
of each source of Level 1 predictor variance can be 
quantified by an ICC from an empty-means model, just 

as the extent of each source of Level 1 outcome variance 
can be). But when one uses univariate MLM software—
and thus the model estimates variance components only 
for Level 1 outcomes—an analogous variance partition-
ing for Level 1 predictors requires creating new observed 
predictor variables through different kinds of centering. 
As a result, the topic of how to properly specify and 
interpret the effects of Level 1 observed predictors has 
received much (needed) attention. The two main options 
for centering Level 1 predictors are usually referred to 
as grand-mean centering and group-mean (or person-
mean) centering. But given that the centering point is 
a constant in the former, whereas it is a Level 2 variable 
in the latter, these options can be thought of more gen-
erally as constant centering and variable centering, 
respectively. Because the results obtained using variable 
centering in univariate MLMs readily map onto the mul-
tivariate MLMs I describe later, I discuss the variable-
centering approach for Level 1 predictors first.

Variable centering of Level 1 predictors

Equation 2 provides an example in which variable center-
ing is used to create two new predictors with which to 
specify the overall main effect of a Level 1 variable, xwb:
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Two fixed slopes, γ01 and γ10, and a random slope, U1b, 
have been added to Equation 1. First, a new variable, xb, 
has been created to capture mean differences across 
Level 2 units; this variable is then centered at the con-
stant C2 to create a meaningful zero. The fixed slope γ01 
of this new Level 2 mean predictor, (xb – C2), carries the 
Level 2 between effect: the impact of having more of xwb 
on average than other Level 2 units. For instance, in 
longitudinal data, the between effect will be due to hav-
ing more of xb than other people; in clustered data, the 
between effect will be due to having more of xb than 
other groups.

Next, the slope β1b (for Level 2 unit b) in the Level 
1 model is defined in its Level 2 model by a fixed slope, 
γ10, and a random slope, U1b. It is important to note that 
β1b multiplies a new Level 1 observed predictor, which 
was created by variable-centering the original Level 1 
variable at the Level 2 mean, xb. Thus, in the new Level 
1 predictor, (xwb − xb), a zero value refers to Level 1 
units that are at the mean of their Level 2 unit. This 
variable-centering process removes all mean differences 
between Level 2 units and leaves only the Level 1 vari-
ability within Level 2 units. Consequently, the fixed 
slope γ10 for the variable-centered predictor (xwb − xb) 
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carries the Level 1 within effect: It reflects the impact 
of having more of xwb than other Level 1 units within 
the same Level 2 unit. For example, in longitudinal data, 
the within effect will be due to a time-varying predictor 
at a given occasion being greater than the individual’s 
own mean over time; in clustered data, the within effect 
will be due to having more of a person-level predictor 
than others in the group do. In addition, the Level 1 
within effect of (xwb − xb) is allowed to vary across 
Level 2 units via U1b, a random slope that captures the 
deviation of the Level 1 within slope for Level 2 unit b 
from the grand-mean within slope across Level 2 units 
(the fixed Level 1 within slope γ10). This means that 
each Level 2 unit gets its own Level 1 within slope for 
(xwb − xb). The estimated variance of U1b, the Level 2 
random slope variance, denoted as τU 1

2 , describes the 
amount of variability between Level 2 units in the Level 
1 within slope for (xwb − xb).

This model specification (variable-centered Level 1 
predictors; see Table 1) can be used in any univariate 
MLM software (and also applies to multilevel SEMs in 
Mplus). It is illustrated in Figure 1a. Note that the two 
observed predictors for xwb in Figure 1a have been cre-
ated to capture the same types of level-specific vari-
ability that were created by the model for the ywb 
outcome. That is, the Level 2 mean predictor (xb – C2) 
is intended to mimic the Level 2 outcome random inter-
cept U0b, and the Level 1 deviation predictor (xwb − xb) 
is intended to mimic the Level 1 outcome residual ewb. 
Because these new predictors contain only level-specific 
variability (and are thus uncorrelated), each of their fixed 
effects has a single possible interpretation and purpose: 
The between effect γ01 of the Level 2 mean predictor  
(xb – C2) will reduce the Level 2 random intercept vari-
ance (τU 0

2 ), and the within effect γ10 of the Level 1 devia-
tion predictor (xwb − xb) will reduce the Level 1 residual 
variance (σe

2). The model also includes a covariance 
between the Level 2 random intercept and slope, (τU 01), 
although this is not explicitly included in Equation 2.

Figure 1a suggests another role that the Level 2 mean 
predictor (xb – C2) could play: Just as it explains the 
Level 2 random intercept variance (τU 0

2 ), it might also 
explain the Level 2 random slope variance (τU 1

2 ) in the 
Level 1 within effect, as shown in Equation 3:
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Two new fixed effects (underlined for emphasis) have 
been added. One is γ11, the fixed slope for the Level 2 
mean predictor (x b – C2), which has been added to 
the Level 2 model for β1b. This creates a cross-level 

interaction between the Level 2 and Level 1 predictors: 
γ11 is the moderation of the Level 1 within effect by the 
Level 2 mean predictor. For instance, in longitudinal 
data, the within effect of having more xwb than usual 
(xwb − xb) may depend on how much xwb a person has 
on average (xb – C2); in clustered data, the within effect 
of having more xwb than other people in the group 
(xwb − xb) may depend on how much xwb the group 
has on average (x b – C2).

The other new term—γ02, the fixed effect of (x b – C2)
(xb – C2) predicting the Level 2 intercept—may seem 
odd at first glance, but it serves to keep the model 
moderation symmetric across levels (see Hoffman, 2015, 
for an elaboration of the present case, or Hofmann & 
Gavin, 1998, for a parallel example of dual-level mod-
eration by a pure Level 2 predictor). This is because 
any Level 2 predictor could moderate both the Level 1 
within and the Level 2 between effects of xwb. In the 
present case, if the Level 2 mean predictor (xb – C2) 
moderates the Level 1 within effect (through the cross-
level interaction γ11), then it could also moderate the 
Level 2 between effect. Equation 3 captures the latter 
effect by adding the Level 2 interaction γ02 for the 
squared effect of (x b – C2). The model from Equation 
3 is depicted in Figure 1b, in which γ02, the effect of 
the squared Level 2 (xb – C2), reduces the Level 2 ran-
dom intercept variance (τU 0

2 ), and γ11, the cross-level 
interaction of (xwb − xb) and (xb – C2), reduces the Level 
2 random slope variance (τU 1

2 ).
The use of variable centering (as just demonstrated) 

arguably provides for the most direct interpretation of 
the model effects: Because the Level 1 predictor has 
been partitioned a priori into two level-specific observed 
predictor variables, each clearly pertains to a Level 2 
between effect or a Level 1 within effect. And as in 
other linear models, omitting any fixed main effects or 
interaction effects of these level-specific predictors 
implies that the missing effects would be zero. This is 
not the case when Level 1 predictors are centered using 
a constant instead, as I describe next.

Constant centering of Level 1 predictors

Rather than center the Level 1 predictor using the Level 
2 mean x b, one might instead choose to center it at a 
constant: xwb – C1. With this choice, it may be less obvi-
ous why the Level 2 mean predictor (xb – C2) from the 
previous models is still necessary. To understand why 
it is indeed still needed, consider the impact of its omis-
sion, as in Equation 4:
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In this equation, one fixed effect, instead of two, is used 
to capture the overall effect of the Level 1 predictor. 
Although the use of the centering constant C1 does 
create a meaningful intercept, it does not solve a bigger, 
more critical problem: To the extent that the Level 1 
predictor xwb varies over both Level 1 and Level 2 units, 
it needs to be represented by two distinct model pre-
dictors, not one (just as the presence of two sources of 
variability in the ywb outcome signals the need for a 
multilevel model in the first place). Otherwise, both 
sources of predictor variability—Level 1 within and 
Level 2 between—are constrained to have the same 

fixed effect. This single effect is given in Equation 4 by 
γ10, a likely useless estimate known more formally as a 
conflated effect (Preacher, Zhang, & Zyphur, 2011), or 
less formally as a smushed effect (Hoffman, 2015).

Whether one fixed effect can do the work of two 
fixed effects is an empirical question, answerable by 
including the main effect of the Level 2 mean predictor, 
as in Equation 5:
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Fig. 1.  Depiction of univariate multilevel models with a variable-centered Level 1 predictor: (a) the model in Equa-
tion 2 and (b) the model in Equation 3. Rectangles indicate observed variables, ovals indicate estimated variables, 
single-headed arrows indicate fixed effects, two-headed arrows indicate covariances, and dotted lines link model 
variables to their original sources. Gray fill is used for Level 2 terms, and white fill is used for Level 1 terms (and 
thus a gradient of gray and white is used for the original predictor and outcome variables). L1W = Level 1 within 
effect; L2B = Level 2 between effect.
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The Level 2 mean predictor (x–b − C2) now has a sepa-
rate fixed main effect of γ01. This model specification  
(a constant-centered Level 1 predictor in a univariate MLM; 
see Table 1) is depicted in Figure 2a, which shows how 
the two fixed effects work together to create a different 
effect at Level 2 than at Level 1. As background for how 
this happens, consider how a bivariate correlation differs 
from a regression slope in a multiple-predictor regres-
sion model: The correlation reflects an unconditional 
association, whereas the regression slope reflects each 
predictor’s unique effect, controlling for the other predic-
tors in the model. Here, the Level 1 predictor (xwb – C1)  

still contains both Level 1 and Level 2 variability, whereas 
the Level 2 mean predictor (xb− C2) contains only Level 
2 variability. Consequently, the unique fixed effect of 
the Level 1 predictor (given by γ10) is now the Level 1 
within effect, just as it should be.

Correctly interpreting the fixed effect of the Level 2 
mean predictor in this model can be tricky. Because 
some of the outcome’s Level 2 random intercept vari-
ance has already been explained by the Level 2 vari-
ability still contained in the constant-centered Level 1 
predictor, the unique fixed effect of the Level 2 mean 
predictor becomes the Level 2 contextual effect, which 
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Fig. 2.  Depiction of univariate multilevel models with a constant-centered Level 1 predictor: (a) the model in 
Equation 5 and (b) the model in Equation 7. Rectangles indicate observed variables, ovals indicate estimated 
variables, two-headed arrows indicate covariances, and dotted lines link model variables to their original sources. 
Single-headed arrows indicate fixed effects; arrows originating from another arrow indicate that the Level 1 fixed 
effect is needed to get to the full between-level effect indicated by the box labeled “L2B” or “L2B*L2B” at the “Level 
2 Intercept” oval. Gray fill is used for Level 2 terms, and white fill is used for Level 1 terms (and thus a gradient 
of gray and white is used for the original predictor and outcome variables, as well as the Level 1 predictor).  
L2C = Level 2 contextual effect; L1W = Level 1 within effect; L2B = Level 2 between effect.
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can be understood from two complementary perspec-
tives. First, from a statistical point of view, the Level 2 
contextual effect is how the Level 2 between effect dif-
fers from the Level 1 within effect: contextual effect = 
between effect – within effect. Thus, whether a single 
fixed effect for a Level 1 predictor is sufficient is tested 
formally as the significance of the Level 2 contextual 
effect. Second, from a conceptual point of view, the 
Level 2 contextual effect is the incremental effect of the 
Level 2 mean predictor after controlling for the original 
Level 1 predictor. If a given Level 1 unit has a high xwb 
value, one might infer that its Level 2 unit also has a 
high mean (x b). The Level 2 contextual effect captures 
the additional effect of the Level 2 unit not inferable from 
the current Level 1 unit. A little later, I provide examples 
of when a Level 2 contextual effect might be more useful 
than a Level 2 between effect and vice versa.

Although the need for multilevel models to include 
contextual main effects is frequently recognized, the role 
of contextual effects in interactions has received less 
attention. Consider what happens when a cross-level 
interaction is added to the previous model, as in Equa-
tion 6:
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As before, γ11 is the fixed slope for the cross-level inter-
action between the Level 1 predictor (xwb – C1) and the 
Level 2 mean predictor (x b− C2). But because the Level 
1 predictor still contains both Level 1 and Level 2 vari-
ability, the moderation by the Level 2 mean predictor 
(x b – C2) is forced to be the same at within Level 1 and 
between Level 2. That is, γ11 is actually a conflated, or 
smushed, interaction (for elaboration, see Hoffman, 
2015; Hofmann & Gavin, 1998; or Preacher, Zhang, & 
Zyphur, 2016).

This problem can be solved analogously to the way 
it was solved for the main effect of Level 1 xwb: by add-
ing a second interaction term that allows separate mod-
eration by ( x b – C2) at each level, as shown in Figure 
2b and in Equation 7:
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In this model, γ02, the new fixed effect for (x b – C2) 
(x b – C2), allows for a difference in moderation across 
levels. As a result, γ11 is now a unique effect for how the 
Level 1 within effect of xwb is moderated by (xb – C2), 

and the new fixed effect γ02 is a Level 2 contextual inter-
action. It can be understood statistically as how the 
within-level moderation by the Level 2 mean predictor 
(xb – C2) differs from the between-level moderation by 
the Level 2 mean predictor (xb – C2), or conceptually as 
the Level 2 incremental moderation by the Level 2 mean 
predictor (xb – C2) after controlling for within-level mod-
eration by the Level 2 mean predictor (x b – C2).

Regardless of the ease of their interpretation or theo-
retical interest, contextual effects are very likely to be 
present in multilevel data and cannot be ignored, no 
matter what one’s research hypotheses or interests might 
be. This is because, in addition to theoretical reasons 
for distinct types of variation at each level of sampling, 
contextual effects are expected simply because fixed 
effects are unstandardized coefficients: Their values 
depend on the level-specific standard deviations of the 
predictor and outcome. So even if all variables are stan-
dardized to the same scale, their fixed effects will differ 
across levels whenever the predictors and outcomes 
have different ICCs (and thus different absolute amounts 
of variance they can share at each level).

Given that Level 1 samples are larger than Level 2 
samples (and often much larger), Level 1 within effects 
will be estimated with more precision than Level 2 
between effects. Consequently, conflated (or smushed) 
effects will more strongly resemble Level 1 within effects 
than Level 2 between effects, which causes a misspeci-
fied Level 2 model in which contextual effects are falsely 
assumed to be zero (Raudenbush & Bryk, 2002). Further, 
even if a Level 2 contextual effect were initially nonsig-
nificant, this might not be the case after the addition of 
other predictors, as the unique contributions of a predic-
tor may differ across levels (and thus require a contextual 
effect in subsequent models). Thus, the safest course of 
action is to always address the possibility of distinct fixed 
effects at every level at which a predictor has variability: 
at Level 2 only for Level 2 predictors, but at both levels 
for Level 1 predictors.

Equivalence across methods of centering

As first derived for main effects by Kreft, de Leeuw, and 
Aiken (1995), the mapping of the fixed effects of the 
variable-centered (VC) model in Equation 3 to those of 
the constant-centered (CC) model in Equation 7 is given 
in Table 2 (which extends the derivation beyond main 
effects to include cross-level interactions). In general, 
once a parallel effect of the Level 2 mean predictor  
(x b – C2) has been included for every Level 1 main effect 
or interaction, the Level 1 fixed effects become within 
effects as desired in both models, even though they apply 
to different Level 1 predictor variables: (xwb − x b) in the 
VC Level 1 model and (xwb – C1) in the CC Level 1 model. 
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Meanwhile, even though the same Level 2 mean predictor 
variable (xb – C2) is used in both models, its Level 2 fixed 
effects switch from between (total Level 2) effects in 
the VC model to contextual (incremental Level 2) effects 
in the CC model. That is, the effect of the exact same 
Level 2 predictor is interpreted differently depending 
on which type of the Level 1 predictor it is paired 
with—tricky!

So when is each type of Level 2 effect—between or 
contextual—likely to be more useful? Level 2 contextual 
effects are often of interest in clustered designs, in 
which they provide the unique effect of Level 2 group 
characteristics above and beyond Level 1 person char-
acteristics (see Hofmann & Gavin, 1998). For this case, 
constant centering Level 1 predictors will ensure that 
all corresponding Level 2 effects directly represent the 
contextual effects of interest. For example, consider 
free-lunch status (0 = no, 1 = yes) as a predictor of the 
achievement of Level 1 students nested in Level 2 
schools. A binary Level 1 predictor representing stu-
dents’ free-lunch status can be included directly in the 
model (which would be akin to constant centering this 
predictor at 0). But to the extent that schools differ in 
their free-lunch rates, and these school-level differences 
in turn matter for schools’ mean achievement, the Level 
1 effect of students’ free-lunch status will be the 
smushed (and therefore meaningless) effect without a 
corresponding school-level free-lunch predictor: the 
percentage of students who receive free lunch at each 
school (i.e., the mean across students in the sample or 

the percentage for each school as obtained from better 
sources). Once both predictors have been included, as 
in the main-effects model in Equation 5, the student-
level predictor carries the Level 1 within effect: γ10 is 
the gap in achievement between students at the same 
school who do and do not get free lunch. The school-
level free-lunch predictor carries the Level 2 contextual 
effect: γ01 is the incremental difference in school-level 
achievement per unit difference in this predictor (i.e., 
going from 0% to 100% free-lunch rate) after controlling 
for student-level free-lunch status; it conveys the extent 
to which schools with higher rates of poverty might see 
lower achievement in all of their students, even those 
who do not get free lunch. The Level 2 between effect 
would be given by γ10 + γ01, which would instead con-
vey the total school-level free-lunch effect not control-
ling for students’ free-lunch status.

In contrast, contextual effects may be less useful in 
longitudinal designs, in which the Level 1 occasions are 
not unique entities (the way that Level 1 students are). 
For this case, it can be more helpful to variable-center 
Level 1 predictors so that all Level 2 effects will directly 
represent between effects (Hoffman & Stawski, 2009). 
For example, consider stress and health measured at 
multiple Level 1 occasions nested in Level 2 persons. 
In a main-effects model as in Equation 2, the variable-
centered Level 1 predictor (xwb − xb) carries the Level 
1 within effect: γ10 is the change in health at a given 
occasion associated with a 1-unit change in stress 
within the same person at that occasion. The Level 2 

Table 2.  Relationship Between Model Fixed Effects Obtained With the Two Level 1 Centering Methods

Fixed effect
Variable-centered Level 1 

model in Equation 3
Constant-centered Level 1 

model in Equation 7

Intercept γ00 γ00

Level 1 within main effect γ10 γ10

Level 2 contextual main effect γ01 – γ10 γ01

Level 2 between main effect γ01 γ01 + γ10

Level 1 Within Effect × Level 2 Between Effect or 
Level 1 Within Effect × Level 2 Contextual Effect

γ11 γ11

Level 2 Contextual Effect × Level 2 Contextual Effect γ02 – γ11 γ02

Level 2 Between Effect × Level 2 Between Effect γ02 γ02 + γ11

Note: The two equations are specified as follows:

Level

Level C

1

2
0 1

0 00 01 2 0

: ( )

: ( )

y x x e

x
wb b b wb b wb

b b

= + − +
= + − +
β β

β γ γ γ 22 2 2 0

1 10 11 2 1

( ) ( )

( )

x x U

x U
b b b

b b b

− − +
= + − +

C C

Cβ γ γ
	 (3)

Level C

Level C

1

2
0 1 1

0 00 01 2 0

: ( )

: ( )

y x e

x
wb b b wb wb

b b

= + − +
= + − +
β β

β γ γ γ 22 2 2 0

1 10 11 2 1

( ) ( )

( )

x x U

x U
b b b

b b b

− − +
= + − +

C C

Cβ γ γ
	 (7)



Interpretation of Multivariate Multilevel Models	 297

predictor (created from the person’s mean stress across 
occasions, x b) carries the Level 2 between effect: γ01 is 
the difference in average health per unit difference 
in person-level stress, not controlling for stress at that 
occasion. Said more simply, the Level 1 within effect 
is the effect of more stress than usual, whereas the 
Level 2 between effect is the effect of more stress than 
other people. The Level 2 contextual effect, γ01 – γ10, 
instead conveys the incremental effect of the per-
son’s mean stress after controlling for stress at that 
occasion.

Although Table 2 indicates how to find the model-
implied Level 2 effects not directly provided by the 
estimated fixed effects, these conversions will hold 
exactly only if the Level 1 effect does not have a random 
slope (see Kreft et al., 1995, for a derivation). Otherwise, 
they will only be approximate, as in the case of the 
example models here that have included a random 
slope for the Level 1 predictor. This is because the 
random slope will apply to a different Level 1 predictor 
depending on the model: to (xwb − x b) in the VC Level 1 
model and to (xwb – C1) in the CC Level 1 model. So, 
given that the variance in the Level 2 mean xb has been 
removed from the predictor in the VC Level 1 model, 
the estimated Level 2 random slope variances will differ 
between the VC and CC models. In addition, given that 
the model intercept is defined as the expected outcome 
when all predictors are zero, the variance of the Level 2 
random intercept will differ between these models 
because they differ in when each Level 1 predictor has 
a zero value: when xwb equals x b in the VC model, but 
when xwb equals C1 in the CC model.

These differences in the definition of the random 
intercept variance can result in differences in the covari-
ance between the random intercept and the random 
slope, as well as differences in the random slope vari-
ance, as described by Raudenbush and Bryk (2002). 
Whereas every Level 2 unit is likely to have Level 1 
values at or near the Level 2 mean x b, every Level 2 
unit may not have Level 1 values observed near the 
constant C1, and this becomes even more likely as the 
ICC for the Level 1 predictor increases. As a result, the 
greater the extrapolation required for the predicted 
random intercepts to get to where xwb equals C1 in the 
CC Level 1 model, the more shrinkage those random 
intercepts may have: They will be biased toward the 
fixed intercept. This shrinkage can then propagate to 
the random slopes, which may then be flattened by the 
less extreme intercepts. As a result, the random slope 
variance may be downwardly biased (too small) in the 
CC Level 1 model relative to the VC Level 1 model. For 
this reason, Raudenbush and Bryk recommended the 
VC Level 1 model over the CC Level 1 model for esti-
mating random slopes. As I show later, the same pattern 

of discrepancy arises in multivariate MLMs with model-
estimated predictor variables.

Multivariate Multilevel Models

Although Figures 1 and 2 were designed to illustrate 
differences between models using different centering 
methods for Level 1 predictors, they also highlight an 
odd asymmetry in how variables with level-specific vari-
ability are addressed in univariate MLMs. That is, why 
is it that level-specific latent variables (variance compo-
nents) for Level 1 outcomes are estimated by the model, 
but an analogous variance partitioning for Level 1 pre-
dictors must instead be accomplished using observed 
variables? Why not treat Level 1 predictors and Level 1 
outcomes similarly instead? This is the rationale for mul-
tivariate MLMs, which provide model-based variance 
partitioning for all Level 1 variables—predictors and 
outcomes. How univariate and multivariate MLMs differ 
can be illustrated by visualizing new versions of Figures 
1 and 2 in which the rectangles for the observed predic-
tor variables (in univariate MLM) are replaced with ovals 
for model-estimated latent predictor variables (i.e., Level 
2 intercepts and Level 1 residuals in multivariate MLM).

Why use multivariate MLMs instead of 
univariate MLMs?

Because of the recent availability of software for estimat-
ing multivariate MLMs, comparisons between approaches 
have become increasingly of interest. In their seminal 
work, Lüdtke et al. (2008) examined differences between 
univariate and multivariate MLMs (using ML estimation) 
as a function of sample size and predictor ICC. They 
found that Level 2 contextual fixed effects were down-
wardly biased in univariate relative to multivariate 
MLMs, and to a greater extent with smaller Level 1 
samples and smaller predictor ICCs. But they also found 
greater variability in the multivariate MLM results when 
less information was available for estimating the Level 
2 random intercept variance for the predictor (i.e., when 
Level 2 samples were smaller and ICCs were lower). 
Preacher et  al. (2011) replicated these findings and 
extended them to a mediation framework.

In addition to the benefits found in those studies, 
multivariate MLMs have a critical advantage whenever 
both a Level 1 predictor and a Level 1 outcome contain 
Level 2 variability in the random slope of another predic-
tor. Consider a longitudinal example of Level 1 occasions 
nested in Level 2 persons, in which a time-varying Level 
1 predictor and a time-varying Level 1 outcome both 
contain Level 2 random variability in change over time 
(i.e., the extent of change over time differs across per-
sons in both Level 1 variables). In this case, univariate 
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MLMs are even less preferred: Whereas an observed 
Level 2 mean predictor can mimic its model-estimated 
random intercept variability to some extent, no analo-
gous observed variable can adequately capture the vari-
ability in the predictor’s random time slope. So a 
multivariate MLM is needed to distinguish the effects of 
two kinds of Level 2 predictor variability: variability in 
the predictor’s intercept and in its time slope. Otherwise, 
if the predictor’s Level 2 random time slope cannot be 
included (as in univariate MLMs), the predictor’s Level 1 
within fixed effect will be biased toward the missing 
Level 2 random slope effect (Hoffman, 2015).

Challenges in specifying and 
interpreting multivariate MLMs

To summarize, relative to univariate MLMs, multivariate 
MLMs offer greater flexibility for examining complex 
relationships across multiple sources of sampling simul-
taneously, in some instances with less bias, but with 
greater complexity of estimation. Yet it is important to 
keep in mind that properly specifying multivariate MLMs 
still requires careful attention to levels of analysis: It is 
essential to distinguish Level 2 between effects and Level 
1 within effects via Level 2 contextual effects. But which 
centering method has been used for Level 1 predictors 
is often far less transparent in multivariate MLMs than 
in univariate MLMs, and thus it can be unclear exactly 
which type of Level 2 effect—between or contextual—
the multivariate MLM output is providing. As I noted 
earlier, multivariate MLMs can currently be estimated in 
two primary frameworks: as multilevel SEMs or as single-
level SEMs. Although many different software packages 
are commonly used for single-level SEMs, multilevel 
SEMs are most frequently estimated using Mplus. 
Accordingly, I have based the examples that follow on 
Mplus, but the multivariate MLM concepts I discuss 
should readily apply to other software programs.

Mplus (up to Version 8.2 as of this writing) is a flex-
ible and comprehensive program for estimating latent-
variable models, including MLMs, SEMs, and their 
intersections. Mplus first began with ML estimation, and 
more recently has expanded its offerings to Bayesian 
estimation as well. Despite this software’s popularity, 
what is not often recognized is how different variants 
of its syntax for specifying multivariate MLMs will result 
in different Level 2 model effects. The consequences 
of these syntax variants, when each kind of estimation 
is used, are summarized in Table 1 and elaborated in 
the next section.

First, let us consider what happens when a Level 1 fixed 
effect (e.g., slope of Level 1 x predicting Level 1 y) is 
requested directly in the Level 1 %WITHIN% model (e.g., 
y ON x;). In this case, the same model specification is 

used in ML and Bayesian estimation. The Level 1 x predic-
tor is partitioned—via a process Asparouhov and Muthén 
(2019) called latent centering—into two level-specific 
unobserved (latent) variables: a Level 2 intercept formed 
from fixed and random effects, and a Level 1 residual; this 
is the same process that already occurs for any Level 1 y 
outcome. So the Level 1 fixed effect refers to the regression 
of the Level 1 residual for y on the Level 1 residual for x, 
and this slope must be the Level 1 within effect, because 
neither Level 1 latent variable contains Level 2 mean vari-
ability. That is, the Level 1 fixed effect of a latent-centered 
Level 1 predictor is the model-based analogue of the Level 
1 fixed effect provided by a variable-centered Level 1 
observed predictor (xwb − xb). As a result, the correspond-
ing Level 2 fixed effect in the %BETWEEN% model  
(y ON x;)—the regression slope of the Level 2 intercept 
for y on the Level 2 intercept for x—must be the Level 2 
between effect. That is, the Level 2 fixed effect of a latent-
centered Level 1 predictor is the model-based analogue of 
the Level 2 fixed effect obtained from the Level 2 observed 
mean predictor (xb) when paired with a variable-centered 
Level 1 observed predictor (xwb − xb). Fortunately, because 
a latent-centered Level 1 predictor contains only Level 1 
variability, its Level 1 fixed effect is the within effect regard-
less of whether the corresponding Level 2 between effect 
has been included.

Less transparent is what happens when a Level 1 
fixed effect is instead requested via latent-variable 
placeholder syntax in the Level 1 %WITHIN% model 
(e.g., s | y ON x;). When this syntax variant is used, 
the Level 1 fixed effect appears in the Level 2 model 
output as the mean or intercept of the s latent variable 
([s];); its random-effect variance is the latent vari-
able’s variance or residual variance (s;). Notably, 
although this latent-variable placeholder syntax is 
required to estimate random effects or cross-level inter-
actions involving the x predictor, the consequences of 
using it (which I describe next) are the same even when 
these additional parameters are not estimated.

Critically, beginning in Mplus 8.1, which model spec-
ification is invoked by the latent-variable placeholder 
syntax depends on the choice of estimator. So the onus 
is on the user to realize that even if the exact same 
syntax is used, a difference in which estimator is used 
will result in a difference in the interpretation of param-
eters as a result of concomitant differences in model 
specification. The more straightforward case is when 
Bayesian estimation is used, as the placeholder syntax 
in combination with Bayesian estimation invokes latent 
centering for the Level 1 predictor, as just described for 
the Level 1 direct syntax (e.g., y ON x;). So even 
though the Level 1 effect defined by the placeholder 
syntax is reported in the output for Level 2 instead of 
Level 1, it is still the Level 1 within effect, regardless of 
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whether a corresponding Level 2 between fixed effect 
has been estimated.

In contrast, coupling the latent-variable placeholder 
syntax with ML estimation invokes the hybrid method 
of model specification: A new Level 2 latent predictor 
variable is created through model-based variance par-
titioning, but the original Level 1 predictor is used in 
estimating its fixed and random effects (Asparouhov & 
Muthén, 2019). Thus, the hybrid method’s Level 1 fixed 
effect refers to the regression of the Level 1 residual for 
y on the Level 1 observed x predictor, which still con-
tains its Level 2 variability. As a result, if the correspond-
ing Level 2 fixed effect is not included in the %BETWEEN% 
model, the Level 1 fixed effect will not be the within 
effect. Instead, it will be the useless smushed effect, 
because the hybrid method provides the same Level 1 
fixed effect as a constant-centered Level 1 observed 
predictor variable.

As we saw before for univariate MLMs, converting 
the smushed effect into the Level 1 within effect requires 
estimating the corresponding Level 2 fixed effect in the 
%BETWEEN% model. Given the hybrid method’s cre-
ation of a latent Level 2 x predictor (in parallel with a 
latent Level 2 y outcome), the Level 2 fixed effect refers 
to the regression of the Level 2 intercept for y on the 
Level 2 intercept for x. But given its pairing with an 
observed Level 1 x predictor, this Level 2 regression 
will not provide the Level 2 between effect. Instead, it 
will provide the Level 2 contextual effect: the incre-
mental effect of the Level 2 x variable after controlling 
for the effect of the observed Level 1 x variable. That 
is, the Level 2 fixed effect of a latent Level 2 predictor 
provided by the hybrid method is the model-based 
analogue of the Level 2 fixed effect created when an 
observed Level 2 mean predictor xb is paired with a 
constant-centered Level 1 observed predictor (xwb).

So of the two possible model specifications—latent 
centering and the hybrid method—which should be 
preferred? To “demonstrate the advantages of latent 
centering,” Asparouhov and Muthén (2019, p. 132) 
reported a simulation comparing the results of multi-
variate MLMs using Bayesian estimation (and latent 
centering) with the results of multivariate MLMs using 
ML estimation (and the hybrid method). On the basis 
of the simulation data they reported in their Table 1, 
they concluded that the “hybrid method does not per-
form well” but also that “a complex model transforma-
tion is needed to obtain the [ML] results in the original 
latent centered metric” (p. 126). Readers might infer 
from their presentation that multivariate MLMs esti-
mated using ML are somehow inferior to those obtained 
using Bayesian estimation because of differences in 
estimation, when in fact the differences in these results 
are expected consequences of the different Level 1 
predictors used in the two model specifications.

To better illustrate these differences and their con-
sequences for model interpretation, I next describe the 
results of a brief simulation study designed as a partial 
replication of the data in Table 1 of Asparouhov and 
Muthén (2019). Note that in providing these example 
models, my goal is not to advocate for one method of 
estimation over another. Instead, given their choice of 
estimation method, I want to help analysts (a) ensure 
that they correctly differentiate their effects at multiple 
levels of analysis and (b) understand the meaning of 
their resulting multivariate MLM parameters.

Demonstration via Simulation

Method

Following Asparouhov and Muthén (2019), who used 
large samples to limit the effect of sampling error, for 
the current simulation I also generated 1,000 Level 2 
samples of 15 Level 1 units each (for a total sample size 
of 15,000 in each of the 100 replications). The simula-
tion was conducted via the Mplus MONTECARLO rou-
tine, which takes user input in the form of variable 
names and their model parameters, and then generates 
data consistent with the model specified.

The population model was a multivariate MLM speci-
fied as a multilevel SEM. The model’s parameter values 
are shown in the top panel of Table 3. The Level 1 
model related xwb to ywb using a fixed effect, and so the 
matrix for their Level 1 residuals (denoted as R) 
included a separate variance for each variable, with no 
covariance between them. Instead of using fixed effects, 
the model specified the Level 2 relationships (among 
the Level 2 random slope for Level 1 xwb and the Level 
2 random intercepts for Level 1 xwb and Level 1 ywb) in 
the matrix for the Level 2 random-effect variances and 
covariances (denoted as G). My reason for doing so 
was to replicate the population model from Asparouhov 
and Muthén (2019), but it appears that their motivation 
may in part have been to speed their Bayesian estima-
tion. That is, whereas their population model could be 
estimated using their more efficient PX1 Gibbs sampler, 
multivariate MLMs that instead specify the Level 2 rela-
tions using fixed effects and covariances in the same 
model require their more intensive random-walk (RW) 
Gibbs sampler.

Because the Level 1 effect of xwb in predicting ywb in 
the population model also included a Level 2 random 
slope, that Level 1 effect had to be specified using 
latent-variable placeholder syntax in the Level 1 
%WITHIN% model (s | y ON x;). The population 
model that generated the data used Bayesian estima-
tion, and thus the Level 1 predictor was latent centered. 
Although the population model had the same param-
eters as used by Asparouhov and Muthén (2019),  
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I changed their parameter values to make my results 
easier to follow. In my simulations, both Level 1 vari-
ables had means of 0, their Level 1 and Level 2 relations 
were made opposite in sign, and the Level 2 random-
effect covariances were varied in size (but all remained 
positive).

The second through fourth panels of Table 3 provide 
the three analysis models used. To illustrate changes in 
parameter interpretation, they mimic the sequence of 
the univariate MLMs I presented earlier, such that one 

of the three Level 2 covariances is replaced with a fixed 
effect in each successive model. Using the population 
values as start values, I estimated each model twice, 
once using ML estimation and once using Bayesian 
estimation, to show how the results from their different 
model specifications can be made equivalent to the 
greatest extent possible. For Bayesian estimation, I 
retained all program defaults for convergence and non-
informative prior distributions, such that the only rea-
son for a difference in the results obtained with the two 
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Note: All terms are defined as in the text, and superscripts are used to distinguish which terms apply to each 
Level 1 variable (i.e., predictor xwb or outcome ywb). Models that required the random-walk Gibbs option in 
Bayesian estimation are marked with an asterisk.
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kinds of estimation should be model specification, and 
not the kind of estimation. The Mplus default PX1 Gibbs 
sampler could be used only for the cross-level interac-
tion models; the other analysis models required RW 
Gibbs sampling instead and are marked with an asterisk 
in Table 3.

Results

Population model.  Results from fitting the population 
model are given in Table 4. As expected, all population 
values were recovered in the Bayesian solution, which 
used the same method of latent centering by which the 
data were generated. In contrast, discrepancies arose for 
several parameters in the ML solution because this model 

was not actually equivalent given its use of the hybrid 
method instead.

The first discrepancy is the slight difference in the fixed 
intercept for ywb (γ00

y ), which resulted from different defini-
tions of the conditional model intercept. With latent center-
ing and Bayesian estimation, the intercept is specific to 
when the within part of the Level 1 predictor is 0 (xwb –  
β0b
x  = 0, or ewb

x  = 0 in the present case), whereas with the 
hybrid method and ML estimation, the intercept is specific 
to when the observed xwb is 0 (in the present case, when 
the centering constant C1 = 0). This difference in γ00

y  
between the Bayesian and ML solutions will recur across 
models for the same reason: differing Level 1 predictors.

A bigger discrepancy was found in the covariance 
between the random intercepts for xwb and ywb (τU0x,U0y), 

Table 4.  Simulation Results for the Population Model

Parameter (Level 2 between model specification)

Level 2 between effect  
(latent centering with  
Bayesian estimation)

Level 2 contextual effect 
(hybrid method with  
maximum likelihood 

estimation)

True 
value

Mean 
(estimate)

SD 
(estimate)

Mean  
SE

Mean 
(estimate)

SD 
(estimate)

Mean  
SE

Fixed effects  

  γ00
x

         x-intercept 0 0.00 0.03 0.03 0.00 0.03 0.03

  γ00
y
         y-intercept 0 0.00 0.03 0.03 −0.28 0.06 0.06

  γ10
y
         Level 1 within effect x → y −1 −1.00 0.03 0.03 −1.00 0.03 0.03

Variances of Level 2 random effects  

  τU x0
2

       x-intercept 1 1.01 0.05 0.05 1.00 0.05 0.05

  τU y0
2

       y-intercept 1 1.02 0.05 0.06 3.81 0.22 0.18

  τU y1
2

       Level 1 within effect x → y 1 1.00 0.05 0.05 0.91 0.05 0.04

Covariances of Level 2 random effects  

  τU x U y0 0,   x-intercept, y-intercept 0.50 0.50 0.04 0.04 1.50 0.08 0.08

  τU x U y0 1,   x-intercept, Level 1 within effect x → y 0.30 0.31 0.04 0.03 0.28 0.03 0.03

  τU y U y0 1,   y-intercept, Level 1 within effect x → y 0.20 0.21 0.04 0.04 0.48 0.08 0.07

Correlations of Level 2 random effects  

  rU x U y0 0,   x-intercept, y-intercept 0.50 0.49 0.03 0.03 0.77 0.02 0.02

  rU x U y0 1,   x-intercept, Level 1 within effect x → y 0.30 0.30 0.03 0.03 0.29 0.03 0.03

  rU y U y0 1,   y-intercept, Level 1 within effect x → y 0.20 0.21 0.03 0.04 0.25 0.04 0.03

Level 1 residual variances  

  σex
2

       x 1 1.00 0.01 0.01 1.00 0.01 0.01

  σey
2

       y 1 1.00 0.01 0.01 1.01 0.01 0.01

Note: Notable departures from expected results are highlighted in boldface. The → symbol indicates a slope for the term to its left predicting 
the term to its right.
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which, as expected, was much more positive with the 
hybrid method in the ML solution (1.50) than with latent 
centering in the Bayesian solution (0.50). This discrep-
ancy arose because this intercept covariance provides 
a different Level 2 relationship in each model: a between 
relation when latent centering is used (with Bayesian 
estimation), but a contextual relation when the hybrid 
method is used (with ML estimation). Given that the 
Level 1 fixed effect of xwb in predicting ywb (γ10

y ) was 
−1.00, and the Level 2 between intercept covariance 
was 0.50 (as estimated in the latent-centered Bayesian 
solution), the covariance of 1.50 (as estimated using 
the hybrid method with ML) formed the Level 2 con-
textual effect: the Level 2 between effect minus the 
Level 1 within effect. However, without a Level 2 fixed 
effect linking the two Level 2 intercepts, the Level 1 
effect obtained using the hybrid method with ML was 
actually a smushed effect that constrained the Level 1 
within and Level 2 between effects to each be −1.00. 
Because the missing Level 2 between fixed effect should 
have been 0.50 instead, the ywb random intercept vari-
ance (τ

U y0
2 ) obtained using the hybrid method with ML 

was 3.81, much larger than the 1.00 it should have been. 
Also affected was the covariance of the ywb intercept 
with the Level 2 random slope. Finally, the Level 2 
random slope variance (τ U y1

2
) was smaller than expected 

when the hybrid method with ML was used, perhaps 
because of shrinkage-related downward bias, as was 
anticipated by Raudenbush and Bryk (2002).

Level 2 main-effect model.  To examine what happens 
when the hybrid method with ML estimation is used and 
the smushed main effect is corrected into a Level 1 within 
effect, I replaced the Level 2 intercept covariance with a 
fixed main effect of the Level 2 intercept for xwb (β0b

x ), as 
shown in the model in the second panel of Table 3. 
Results are given in Table 5. First, consider the ywb Level 
2 random intercept variance, τU y0

2 , which had a popula-
tion value of 0.75 given the new Level 2 fixed effect. The 
difference between the Bayesian and ML solutions (0.77 
vs. 1.55, respectively) resulted primarily from different 
definitions of the conditional intercept: With latent cen-
tering and Bayesian estimation, τ U y0

2  is the intercept vari-
ance when Level 1 ewb

x  is 0, but with the hybrid method 
and ML estimation, τ U y0

2  is the intercept variance when 
observed Level 1 xwb is 0. The Level 2 random slope vari-
ance (τ U y1

2 ) obtained using the hybrid method with ML 
(0.91) remained smaller than was expected (1.00), 
whereas the expected value was found with latent cen-
tering and Bayesian estimation (1.01).

At this point, the predictor fixed main effects were 
correctly estimated in each model. Notably, each model 
directly provided the correct Level 1 within effect 
(−1.00), but the models’ use of different versions of the 

Level 1 predictor resulted in different types of Level 2 
fixed effects. That is, with latent centering and Bayesian 
estimation, the Level 2 fixed effect for β0b

x  directly pro-
vided the Level 2 between main effect (0.50), whereas 
with the hybrid method and ML estimation, the same 
parameter became the Level 2 contextual main effect 
(1.50; Level 2 between effect – Level 1 within effect = 
0.50 + 1.00 = 1.50).

These three fixed main effects—within, between, and 
contextual—are depicted in Figure 3a, in which the 
solid lines show predicted ywb outcomes for three dis-
tinct Level 2 units (Level 2 predictor β0b

x  values = −1, 0, 
or 1), each with three Level 1 units (Level 1 xwb values = 
±1 unit of their Level 2 β0b

x ). First, the Level 1 within 
effect (−1.00) is given by the slope of the solid lines. 
The correct Level 1 within effect will always be pro-
vided by latent centering (because the Level 1 predictor 
is the xwb residual, ewb

x , and thus contains only within-
level variability); it can also be provided by the hybrid 
method (using the observed Level 1 predictor xwb), but 
only after controlling for the Level 2 fixed effect. Sec-
ond, the Level 2 between effect (0.50, as provided 
directly by latent centering) is given by the slope of the 
diagonal dashed line through the plots for the Level 2 
units. Third, the Level 2 contextual effect (1.50) is the 
vertical distance associated with a 1-unit difference in 
Level 2 β0b

x  (as provided directly by the hybrid method), 
holding constant the Level 1 xwb value.

Cross-level interaction model.  To demonstrate how 
these two multivariate MLMs again lose their equivalence 
when a cross-level interaction is added, I added the Level 
2 intercept for xwb (β0b

x ) as a moderator of the Level 1 
within effect of xwb on ywb, as shown in the model in the 
third panel of Table 3. Results are reported in Table 6. 
The new cross-level interaction, γ 11

y , had a slight down-
ward bias relative to the population value (0.30) when 
the hybrid method and ML estimation were used (0.28), 
whereas the population value was recovered with latent 
centering and Bayesian estimation. The bias in the ML 
solution is actually a hint that this solution reflects a non-
equivalent, misspecified model. That is, the cross-level 
interaction for the Level 2 latent predictor β0b

x  was esti-
mated with the latent Level 1 predictor ewb

x  in the Bayes-
ian solution, and thus provided the intended moderation 
of the within effect by β0b

x . But in the solution using the 
hybrid method with ML, the same cross-level interaction 
was instead estimated with the observed Level 1 predic-
tor xwb, and so the solution provided a smushed interac-
tion: It assigned the same amount of moderation by β0b

x  
to both the Level 1 within and the Level 2 between effects 
of xwb. Yet in the population model, the within-level 
moderation was 0.30, and the between-level moderation 
was 0 (given that it was not included in the generating 
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model). The consequences of this smushed moderation 
(found only in the model using the hybrid method and ML 
estimation) are a too-small cross-level interaction (γ

11
y  = 0.28 

instead of 0.30) and an inflated ywb random intercept vari-
ance (τU y0

2 ) relative to the corrected model, as discussed next.

Level 2 interaction model.  In the last analysis model, 
I added a new Level 2 interaction to repair the previously 
misspecified cross-level interaction caused by using the 
hybrid method with ML estimation. As shown in the bot-
tom panel of Table 3, a new observed Level 1 variable for 
squared xwb (denoted xxwb) was calculated in the data 
and included in the model. To unsmush the cross-level 
interaction, a fixed effect of the Level 2 intercept for xxwb 
(denoted β 0b

xx ) was then added to predict the Level 2 inter-
cept for ywb, and covariances with U b

xx
0  were estimated 

with all the other random effects. Given that xxwb was not 
needed as a predictor in the Level 1 model, covariances 
were estimated between its Level 1 residual and the resid-
uals of the other Level 1 variables.

Results from this model are given in Table 7 and 
depicted in Figure 3b. First, let us consider the fixed 
main effects for the Level 1 and Level 2 xwb predictors, 
which are now simple (conditional) effects given their 
interactions. Accordingly, the Level 1 within main effect 
(−1.00) is the slope across Level 1 units specifically 
when Level 2 β0b

x  is 0, the Level 2 between main effect 
(0.50) is the slope of the line through the means of the 
Level 2 units, and the Level 2 contextual main effect 
(1.50) is the vertical distance associated with a 1-unit 
higher value of Level 2 β0b

x  (as provided directly with 
the hybrid method) when Level 1 xwb is 0.

Table 5.  Simulation Results for the Level 2 Main-Effect Model

Parameter (Level 2 between model specification)
True  
value

Level 2 between effect  
(latent centering with 
Bayesian estimation)

Level 2 contextual effect 
(hybrid method with 
maximum likelihood 

estimation)

Mean 
(estimate)

SD 
(estimate)

Mean 
SE

Mean 
(estimate)

SD 
(estimate)

Mean 
SE

Fixed effects  

  γ
00
x        x-intercept 0 0.00 0.03 0.03 0.00 0.03 0.03

  γ
00
y        y-intercept 0 0.00 0.03 0.03 −0.28 0.05 0.04

  γ
10
y         Level 1 within effect x → y −1 −1.00 0.03 0.03 −1.00 0.03 0.03

  γ 10
y  + γ 01

y
 Level 2 contextual effect x → y 1.50 1.50 0.05 0.05 1.50 0.06 0.05

  γ
01
y        Level 2 between effect x → y 0.50 0.50 0.04 0.03 0.50 0.05 0.05

Variances of Level 2 random effects  

  τU x0
2      x-intercept   1 1.01 0.05 0.05 1.00 0.05 0.05

  τ
U 0
2

y
      y-intercept 0.75 0.77 0.05 0.04 1.55 0.11 0.09

  τ
U 1
2

y      Level 1 within effect x → y   1 1.01 0.05 0.05 0.91 0.05 0.04

Covariances of Level 2 random effects  

  τU x U y0 1,   x-intercept, Level 1 within effect x → y 0.30 0.31 0.04 0.03 0.28 0.03 0.03

  τU y U y0 1,   y-intercept, Level 1 within effect x → y 0.05 0.06 0.03 0.03 0.05 0.05 0.04

Correlations of Level 2 random effects  

  rU x U y0 1,    x-intercept, Level 1 within effect x → y 0.30 0.31 0.03 0.03 0.29 0.03 0.03

  rU y U y0 1,    y-intercept, Level 1 within effect x → y 0.06 0.06 0.03 0.04 0.04 0.05 0.04

Level 1 residual variances  

  σex
2

      x 1 1.00 0.01 0.01 1.00 0.01 0.01

  σey
2       y 1 1.00 0.01 0.01 1.01 0.01 0.01

Note: Notable departures from expected results are highlighted in boldface. Fixed effects formed as a linear combination of model fixed effects 
are underlined. The → symbol indicates a slope for the term to its left predicting the term to its right.
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Now let us consider the impact of the new Level 2 
interaction of β0b

xx (γ02
y ), which served to allow the mod-

eration by β0b
x  to differ across levels when the hybrid 

method with ML estimation was used. As expected, 
unsmushing the cross-level interaction reduced the too-
high Level 2 random intercept variance (τ U y0

2
), and the 

Level 1 within moderation by β0b
x  was recovered accu-

rately by the cross-level interaction (γ11
y ). This modera-

tion is shown in Figure 3b by the change in the Level 
1 within slope across Level 2 units: The Level 1 within 
slope was less positive by 0.30 for every 1-unit higher 
Level 2 β0b

x .
As we saw with the Level 2 main effects, the inter-

pretation of the Level 2 interaction (γ02
y ) differs between 

the Bayesian and ML solutions as a result of their dif-
fering Level 1 predictors. When latent centering with 
Bayesian estimation is used, γ02

y
 is the Level 2 between 

moderation, which was 0 in the population. This is 
shown in Figure 3b by the equal distance between Level 
2 units at their means; the linear slope of the diagonal 
dashed line as β0b

x  increases indicates that there is no 
between-level interaction. In contrast, when the hybrid 
method with ML estimation is used, γ02

y  is the Level 2 
contextual moderation (−0.30 in the present case) 
instead. In Figure 3b, this contextual moderation is 
shown by the unequal distance between Level 2 units 
along the vertical dotted line. That is, holding Level 1 
xwb constant, the vertical distance between Level 2 units 
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Level 2 interaction. Solid black lines indicate Level 1 within effects, gray dashed diagonal lines indicate Level 
2 between effects, and gray dotted vertical lines indicate Level 2 contextual effects.
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becomes smaller by 0.30 for each 1-unit higher value 
of Level 2 β 0b

x . Said differently, the Level 2 between 
moderation (γ02

y  = 0, given by latent centering with 
Bayesian estimation) is less positive by the Level 2 
contextual moderation (γ 02

y  = −0.30, given by the hybrid 
method with ML estimation) than the Level 1 within 
moderation (γ11

y  = 0.30, given in both solutions after 
allowing level-specific moderation).

Multivariate MLMs as Single-Level SEMs

In addition to phrasing multivariate MLMs as multilevel 
SEMs, as just demonstrated, it is possible (to some 
extent) to estimate them using standard software for 
single-level structural equation modeling. The key to 
doing so lies in understanding the data structure used 
by each type of model. As in univariate MLMs, each 

Level 1 unit in a multilevel SEM has its own data row. 
For instance, in my simulation of 15 Level 1 units within 
each of 1,000 Level 2 units, a multilevel SEM data struc-
ture required 15,000 rows of three variables: Level 2 
unit ID, Level 1 xwb, and Level 1 ywb. In contrast, in 
single-level SEMs, all data for each Level 2 unit are 
contained in a single row, in which the Level 1 observa-
tions are stored as separate variables. Given a maximum 
of 15 Level 1 units per Level 2 unit, the data structure 
required for a single-level SEM would have 1,000 rows 
of 31 variables: Level 2 unit ID, 15 variables for Level 
1 xwb (as x1–x15), and 15 variables for Level 1 ywb  
(as y1–y15). (Level 2 units with fewer than 15 Level 1 
units would thus have missing data for some of their 
observed variables.)

In a single-level SEM, the Level 2 model is defined 
through latent factors that predict the Level 1 observed 

Table 6.  Simulation Results for the Cross-Level Interaction Model

Parameter (Level 2 between model specification) 

Level 2 between effect 
(latent centering with 
Bayesian estimation)

Level 2 contextual effect 
(hybrid method with 
maximum likelihood 

estimation)

True  
value

Mean 
(estimate)

SD 
(estimate)

Mean 
SE

Mean 
(estimate)

SD 
(estimate)

Mean 
SE

Fixed effects  

  γ
00
x         x-intercept 0 0.01 0.03 0.03 0.00 0.03 0.03

  γ
00
y          y-intercept 0 0.00 0.03 0.03 −0.28 0.05 0.04

  γ
10
y         Level 1 within effect x → y −1 −1.00 0.03 0.03 –1.00 0.03 0.03

  γ 10
y  + γ 01

y
  Level 2 contextual effect x → y 1.50 1.50 0.05 0.04 1.50 0.06 0.05

  γ
01
y         Level 2 between effect x → y 0.50 0.50 0.04 0.03 0.50 0.05 0.05

  γ
11
y         � Level 1 Within Effect × Level 2  

  Between or Contextual Effect x → y 0.30 0.30 0.03 0.03 0.28 0.03 0.03

Variances of Level 2 random effects  

  τ
U x0
2       x-intercept 1 1.01 0.05 0.04 1.00 0.05 0.05

  τ
U y0
2       y-intercept 0.75 0.77 0.05 0.05 1.55 0.11 0.09

  τ
U y1
2        Level 1 within effect x → y 0.91 0.91 0.05 0.05 0.83 0.04 0.04

Covariance of Level 2 random effects  

  τU y U y0 1,     y-intercept, Level 1 within effect x → y 0.05 0.05 0.03 0.03 0.05 0.05 0.04

Correlation of Level 2 random effects  

  rU y U y0 1,      y-intercept, Level 1 within effect x → y 0.06 0.06 0.03 0.04 0.05 0.05 0.04

Level 1 residual variances  

  σ
ex
2         x 1 1.00 0.01 0.01 1.00 0.01 0.01

  σ ey
2         y 1 1.00 0.01 0.01 1.01 0.01 0.01

Note: Notable departures from expected results are highlighted in boldface. Fixed effects formed as a linear combination of model fixed effects 
are underlined. The → symbol indicates a slope for the term to its left predicting the term to its right.
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Table 7.  Simulation Results for the Level 2 Interaction Model

Parameter (Level 2 between model specification) 

Level 2 between effect  
(latent centering with 
Bayesian estimation)

Level 2 contextual effect 
(hybrid method with 
maximum likelihood 

estimation)

True  
value

Mean 
(estimate)

SD 
(estimate)

Mean 
SE

Mean 
(estimate)

SD 
(estimate)

Mean 
SE

Fixed effects  

  γ
00
x         x-intercept 0 0.00 0.03 0.03 0.00 0.03 0.03

  γ
00
xx        x*x-intercept 2 2.00 0.05 0.05 2.00 0.05 0.05

  γ
00
y        y-intercept 0 0.00 0.06 0.06 0.31 0.10 0.08

  γ
10
y        Level 1 within effect x → y −1 −1.00 0.03 0.03 −1.00 0.03 0.03

  γ
10
y  + γ

01
y   Level 2 contextual effect x → y 1.50 1.50 0.05 0.05 1.51 0.06 0.05

  γ
01
y        Level 2 between effect x → y 0.50 0.50 0.04 0.03 0.51 0.05 0.05

  γ
11
y  �      �Level 1 Within Effect × Level 2 Between or  

  Contextual Effect x → y
0.30 0.30 0.04 0.04 0.30 0.04 0.03

  γ
02
y  – γ

11
y   Level 2 contextual effect x*x → y −0.30 −0.30 0.05 0.04 −0.30 0.05 0.04

  γ
02
y        Level 2 between effect x*x → y 0 0.00 0.02 0.03 0.00 0.04 0.05

Variances of Level 2 random effects  

  τ
U x0
2       x-intercept 1 1.00 0.05 0.05 1.00 0.05 0.05

  τ
U xx0
2      x*x-intercept 2 2.00 0.25 0.11 2.01 0.25 0.11

  τ
U y0
2       y-intercept 0.75 0.77 0.05 0.05 1.39 0.09 0.08

  τ
U y1
2        Level 1 within effect x → y 0.91 0.92 0.05 0.05 0.83 0.04 0.04

Covariances of Level 2 random effects  

  τU y U y0 1,   y-intercept, Level 1 within effect x → y 0.05 0.06 0.03 0.03 0.05 0.05 0.04

  τU x U xx0 0,    x-intercept, x*x-intercept 0 0.01 0.12 0.05 0.01 0.12 0.05

  τU xx U y0 1,   x*x-intercept, Level 1 within effect x → y 0 −0.01 0.05 0.05 0.00 0.04 0.05

Correlations of Level 2 random effects  

  rU y U y0 1,   y-intercept, Level 1 within effect x → y 0.06 0.07 0.03 0.04 0.05 0.05 0.04

  rU x U xx0 0,   x-intercept, x*x-intercept 0 0.01 0.08 0.04 0.01 0.08 0.04

  rU xx U y0 1,   x*x-intercept, Level 1 within effect x → y 0 −0.01 0.03 0.04 0.00 0.03 0.04

Level 1 residual variances  

  σ
ex
2       x 1 1.00 0.01 0.01 1.00 0.01 0.01

  σ
exx
2        x*x 6 6.02 0.24 0.07 6.01 0.24 0.07

  σ
ey
2       y 1 1.00 0.01 0.01 1.01 0.01 0.01

Covariances of Level 1 residuals  

  σ
exx ex,
2      x*x, x 0 0.01 0.08 0.02 0.01 0.08 0.02

  σ
exx ey,
2      x*x, y 0 0.01 0.05 0.04 0.00 0.04 0.04

Note: Notable departures from expected results are highlighted in boldface. Fixed effects formed as a linear combination of model fixed effects 
are underlined. The → symbol indicates a slope for the term to its left predicting the term to its right.
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variables. To mimic the multivariate MLMs estimated 
for my simulated data, one latent “intercept” factor is 
defined for x1 through x15, a second is defined for 
y1 through y15, all factor loadings are fixed to 1, all 
intercepts for the observed variables are fixed to 0, and 
the residual variances of the observed variables are held 
equal. The latent factor means are the fixed intercepts, 
and the latent factor variances are the Level 2 random 
intercept variances. The Level 1 model in a single-level 
SEM is defined using the residuals of the Level 1 
observed variables, which contain only within-level 
variability after controlling for the latent factors. This 
specification, referred to in Table 1 as residual direct, 
is equivalent to the hybrid method of multilevel struc-
tural equation modeling with ML estimation in Mplus. 
A Level 1 fixed effect can be estimated by specifying 
direct paths (all constrained to be equal) between the 
corresponding residuals of the Level 1 observed vari-
ables using the latent placeholder syntax, in which the 
PON command creates pairwise regressions (e.g.,  
s | y1-y15 PON x1-x15;). A direct path between 
the latent factors then provides the Level 2 contextual 
fixed effect.

To illustrate this method, I estimated the same popu-
lation and analysis models just described as multilevel 
SEMs using the same simulated data, but this time I 
used single-level SEM syntax with ML estimation. The 
results are provided in the Supplemental Material. As 
expected, the results were exactly the same as those 
for the multilevel SEMs with ML estimation (as reported 
in Tables 4–7). It was not possible to estimate the same 
single-level SEMs using Bayesian estimation given the 
Level 2 random slope for the Level 1 effect.

Another variant of model specification using single-
level SEMs uses structured residuals (see Table 1). In 
this approach, as described by Curran, Howard, Bainter, 
Lane, and McGinley (2014), the residuals of the Level 
1 observed variables are first transferred to new latent 
variables, between which Level 1 fixed effects are then 
specified. When a Level 1 effect is specified through 
the new residual latent variables (which each contain 
only Level 1 within-level variability), a direct path 
between the latent variables provides the Level 2 
between effect instead of the Level 2 contextual effect. 
However, it currently is not possible to use structured 
residuals to estimate random slope variances for Level 
1 effects (through the Level 1 placeholder syntax).

Summary and Recommendations

In this article, I have aimed to explain and illustrate 
how effects in MLMs should be interpreted, depending 
on the analyst’s choices (as summarized in Table 1). 
Given the many nuances involved in this intersection 
of model specification and software implementation, it 

can be easy to lose sight of the bigger picture. To that 
end, I conclude with some practical strategies that can 
help analysts avoid two primary mistakes that could 
mar an otherwise meaningful multilevel analysis.

Mistake #1: failing to differentiate fixed 
effects at different levels of analysis

The first mistake, referred to here and elsewhere as the 
problem of smushing (Hoffman, 2015), is failing to dif-
ferentiate the effects of a predictor at different levels 
of analysis. Although in the current context of two-level 
models only Level 1 predictors are at risk, smushing 
can happen to any predictor measured below the top 
level of the model (e.g., Level 2 predictors in three-level 
models). In this article’s examples, smushing referred 
to the problem of fitting a single fixed effect of a Level 
1 predictor that had variability at both Level 1 and Level 
2, such that the single fixed effect constrained the Level 
1 within and Level 2 between effects to be the same. 
Although this problem has most often been described 
with respect to lower-level main effects, smushing can 
also occur when interactions with lower-level predic-
tors are estimated. Fortunately, avoiding the mistake of 
smushing can become more straightforward by follow-
ing two steps.

The first step is the easier one: Ascertain the levels 
at which each lower-level predictor contains variability. 
For predictors with plausibly normal distributions, this 
can be done using the empty-means model in Equation 
1; for other types of predictors (e.g., ordinal or count 
variables), a more appropriate generalized MLM variant 
should be used to fit an empty-means model. Such 
inspection of variability is an important first step 
because the presence of level-specific variance is a 
logical precursor to finding level-specific effects (and 
thus possible differences between effects at different 
levels). In addition to level-specific intercept variability, 
possible level-specific slope variability should be con-
sidered. That is, in longitudinal designs, one should test 
whether time-varying predictors also have between-
level variation in the effects of time; between-level 
variation in the slope of important lower-level predic-
tors can also be relevant in some clustered designs. The 
bottom line is that a full consideration of how a predic-
tor relates to an outcome includes considering the 
potential effect of each source of variation in the 
predictor.

The second step is to ensure that each predictor’s 
effect is included at every level of the model at which 
it contains at least some variability. This step can be 
much more complicated, because one must decide how 
to represent these level-specific sources of variability 
as predictors in the model. In this article, I have 
described the two primary approaches for representing 
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predictor variables: using univariate MLMs and using 
multivariate MLMs.

When higher-level variability in lower-level predic-
tors is found only in the intercept, one could represent 
that intercept variability with an observed predictor 
variable—the mean across lower-level units (e.g., a 
Level 2 mean xb  across its Level 1 xwb values). Vari-
ability at each lower level could then be represented 
by observed predictor variables as well. This is the 
univariate MLM approach, which has the advantage of 
lending itself to many available software options (the 
Supplemental Material provides Mplus code mapping 
onto the univariate MLM examples from Equations 1 
through 7). But univariate MLMs also have potential 
disadvantages, most notably with respect to the dele-
tion of cases that have missing model predictors (i.e., 
variables that are not included in the model likelihood), 
as well as potential introduction of bias in the higher-
level fixed effects (see Lüdtke et  al., 2008; Preacher 
et al., 2011, 2016).

Alternatively, one can treat the lower-level predictor 
as an outcome (i.e., include it as part of the model likeli-
hood), which then allows its model-estimated variance 
components to become level-specific latent predictor 
variables. This is the multivariate MLM approach, which 
is preferred whenever there is higher-level variability in 
both lower-level slopes and intercepts (such as when a 
time-varying predictor shows between-level differences 
in both the intercept and change over time). As illus-
trated in the Supplemental Material, multivariate MLMs 
can be estimated using software for multilevel SEMs and, 
to a lesser extent, software for single-level SEMs. 
Although multivariate MLMs can overcome the limita-
tions inherent in univariate MLMs (cases that are missing 
predictors are not deleted when those predictors are 
treated as outcomes; bias in higher-level fixed effects is 
reduced through the use of latent higher-level variables), 
treating predictors as outcomes means that distributional 
assumptions for them are invoked. If the typical default 
distribution—multivariate normal at each level of the 
model—is not appropriate, then fitting a generalized 
version of a multivariate MLM (i.e., using nonlinear link 
functions and nonnormal conditional distributions to 
predict model outcomes) is possible but can result in 
even more complexity in estimation (which is already 
higher in multivariate than in univariate MLMs).

Mistake #2: failing to differentiate 
types of higher-level effects

Once your model results are generated, it is time to 
avoid the second mistake: incorrectly interpreting Level 
2 contextual effects as Level 2 between effects (or vice 
versa). To avoid this confusion, it is imperative to deter-
mine whether the lower-level predictor variables in 

your model are level-specific or not, as this distinction 
dictates which kind of higher-level effects necessarily 
result. Distinguishing level-specific from non-level-
specific predictors should be easy in the case of a 
univariate MLM, given that you will know exactly which 
observed predictors you have included. In the case of 
a multivariate MLM, you should thoroughly consult the 
software documentation to ensure that you understand 
the approach invoked by your choices for model speci-
fication and estimation (see Table 1 for information on 
the effects provided when Mplus 8.1+ is used). This 
article’s Supplemental Material can also aid diagnosis: 
By estimating the same models using a single simulated 
data set (as provided in the Supplemental Material), 
you can check your understanding of the procedures 
invoked in other software by verifying whether your 
results match those of the higher-level contextual or 
between effects (as found in the Mplus output also 
provided in the Supplemental Material). Table 2 shows 
how either higher-level fixed effect can be approxi-
mated from the other (given that contextual effect = 
between effect – within effect; for an extension to other 
interaction models, see Hoffman, 2015).

The first type of lower-level predictors retain their 
variation at higher levels. This is the case for constant-
centered observed predictors in univariate MLMs, as well 
as for observed predictors in multivariate MLMs when 
the Mplus hybrid method (or an analogous method) is 
used. In such cases, the lower-level predictor will have 
its correct, level-specific, unsmushed effects only after 
inclusion of its effects at the higher levels of the model 
at which it also contains variance. Those higher-level 
effects will then be contextual, indicating the impact on 
the outcome of a 1-unit difference in the higher-level 
predictor after controlling for the absolute value of the 
corresponding lower-level predictor.

The second type of lower-level predictors contain 
variation at a single level only. These level-specific pre-
dictors result when observed predictors are variable 
centered in univariate MLMs or when they are latent 
centered in multivariate MLMs (or when a multivariate 
MLM uses analogous model-based variance partition-
ing). In addition, predictors at the highest level of the 
model are level-specific by definition. The effects aris-
ing from level-specific predictors are often easier to 
understand: If a variable has variance at only one level, 
then its effect can pertain only to that specific level. 
Consequently, there is no need to worry that a lower-
level effect has been smushed, and the predictor’s 
higher-level effect will be a between effect—the impact 
on the outcome of a 1-unit difference in the predictor, 
not controlling for the absolute value of the corre-
sponding lower-level predictor.

The consequences of confusing higher-level contex-
tual and between effects will depend on the exact 
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configuration of these fixed effects, but let us consider 
two example scenarios involving two-level models. Fig-
ure 4 illustrates each scenario.

As depicted in Figure 4a, the Level 1 within and Level 
2 between effects in the first scenario are each signifi-
cantly positive, such that having more of the predictor 
than others in the same Level 2 unit (Level 1 within 
effect of 1.0) and belonging to a Level 2 unit with more 
of the predictor than other units on average (Level 2 
between effect of 1.2) both result in higher outcomes. 

Given Level 1 within and Level 2 between effects of 
similar magnitudes, the Level 2 contextual effect (which 
tests their difference, which is 0.2 in the present case) 
may not be significant. In this kind of scenario, if an 
analyst thinks that a nonsignificant Level 2 contextual 
effect is the Level 2 between effect, the analyst would 
conclude that belonging to a Level 2 unit with more of 
the predictor than other units on average does not mat-
ter, which is not true. Instead, the correct conclusion 
is that the advantage afforded by this Level 2 unit’s 
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Fig. 4.  Depiction of hypothetical scenarios in which confusing higher-level contextual and 
between effects will result in misinterpretation: (a) a scenario with positive Level 1 within 
and Level 2 between effects and (b) a scenario with a positive Level 1 within effect and a 
zero Level 2 between effect. In each panel, the Level 1 within effects are the slopes of the 
solid lines (one for each of the three Level 2 units), the Level 2 between effect is the slope 
of the diagonal dashed line through the means of the Level 2 units, and the Level 2 con-
textual effect is shown by the distance between Level 2 units along the vertical dotted line.
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higher mean does not matter incrementally after con-
sidering that its Level 1 units had more of the predictor 
to begin with. In other words, at the same absolute 
level of the Level 1 predictor, there is no difference in 
the outcome between Level 2 units (as shown by the 
vertical distance between the lines in Fig. 4a).

Alternatively, consider the pairing of the same sig-
nificantly positive Level 1 within effect with a zero Level 
2 between effect, as depicted in Figure 4b. Now the 
Level 2 contextual effect must be negative, given that 
the contextual effect is equal to the between effect 
minus the within effect. In this case, an analyst who 
mistakes the obtained Level 2 contextual effect for a 
Level 2 between effect would conclude that belonging 
to a Level 2 unit with more of the predictor than other 
units on average results in lower outcomes, whereas in 
reality it makes no difference (i.e., the slope through 
the Level 2 unit means in Fig. 4b is flat). Instead, a 
comparison of Level 1 units with the same absolute 
amount of the Level 1 predictor (i.e., Level 1 units at 
the same point on the x-axis) shows that outcomes are 
lower for Level 1 units from Level 2 units that have more 
of the predictor on average (but have low levels of the 
predictor relative to their Level 2 unit) than for Level 1 
units from Level 2 units that have less of the predictor 
on average (but have high levels of the predictor rela-
tive to their Level 2 unit). Situations in which Level 2 
contextual and between effects differ can be tricky to 
summarize, but it should always be helpful to start by 
clarifying the direction, magnitude, and significance for 
each type of effect.

Conclusion

The power of univariate and multivariate multilevel 
modeling for addressing complex questions at multiple 
levels of sampling offers great potential for facilitating 
empirical research in many areas. But with great power 
comes great responsibility, and I hope the present work 
will help multilevel analysts feel more comfortable in 
understanding how the choices they make will translate 
into different model interpretations and real-world 
explanations.
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