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Objective Aggregated N-of-1 randomized controlled trials (RCTs) combined with multilevel modeling repre-

sent a methodological advancement that may help bridge science and practice in pediatric psychology. The

purpose of this article is to offer a primer for pediatric psychologists interested in conducting aggregated

N-of-1 RCTs. Methods An overview of N-of-1 RCT methodology is provided and 2 simulated datasets are

analyzed to demonstrate the clinical and research potential of the methodology. Results The simulated

data example demonstrates the utility of aggregated N-of-1 RCTs for understanding the clinical impact of an

intervention for a given individual and the modeling of covariates to explain why an intervention worked for

one patient and not another. Conclusions Aggregated N-of-1 RCTs hold potential for improving the

science and practice of pediatric psychology.
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Introduction

Techniques for producing behavior change in pediatric psy-

chology include stimulus control (e.g., keeping pill bottles

on the kitchen counter), operant conditioning (e.g., labeled

praise for complying with treatment), and self-regulation

(e.g., self-monitoring, goal setting, and feedback). Each of

these interventions represents a discrete variable in a

child’s treatment that is believed to modify a behavior

when present and should also produce a behavior change

in the opposite direction when withdrawn (e.g., patients

who stop self-monitoring are less likely to adhere to a reg-

imen). Indeed, several meta-analytic studies in pediatric

psychology highlight the importance of behavioral self-reg-

ulation strategies for improving health behavior (Cushing

& Steele, 2010; Kahana, Drotar, & Frazier, 2008).

Moreover, behavioral intervention targets are likely to

change more quickly in the context of treatment than would

cognitions, and as such are a good fit for small-n research

designs that capitalize on within person variability. Consider

for a moment the aforementioned techniques necessary to

encourage a child to take a pill tomorrow. These are mark-

edly different than the techniques necessary to change the

child’s belief that taking a medication is not important (e.g.,

cognitive modification). For this reason, behavioral foci of

treatment may deserve special attention in the intervention

design and evaluation phases. By focusing on behavioral

targets early in the design phase, it may be possible to

streamline treatments by elucidating the strategies most

likely to promote behavioral compliance when cognitive fac-

tors are ideal and include only treatment components em-

pirically demonstrated to have an effect on the dependent

variable (DV) of interest in the final treatment package.

Relatedly, the relatively rapid modifiability of behav-

ioral targets in pediatric psychology interventions (e.g.,
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pill taking, physical activity, diet, treatment adherence) is

amenable to small-n research designs. Rigorous small-n

research methodologies create potential for establishing

the preliminary efficacy of behavioral intervention strategies

or for pursuing an innovation within an established ap-

proach. Most small-n research in pediatric psychology

relies on the behavioral research methodologies of the

1970s and 1980s (Rapoff & Stark, 2008). Such approaches

can determine the effect of a given intervention, but may

fail to provide meaningful information when an interven-

tion is not uniformly effective across participants. Herein

the question is no longer does the intervention work but

rather for whom did the intervention work and why (Kazdin,

1997).

Advancements in data analytic methods that allow

accurate modeling of nested sources of variability represent

a tremendous opportunity for the convergence of clinical

practice and rigorous research methods; they may also lead

the field to an approach that more closely ties science to

practice. The aims of the current article are to: (1) provide

an overview of N-of-1 randomized controlled trial (RCT)

methodology as a rigorous strategy for testing the efficacy

of an intervention within a given individual, (2) present a

clinically feasible method of analyzing the data yielded

from multiple N-of-1 RCTs to answer the question for

whom does the intervention work?, and (3) present statistical

models for answering the question why does the intervention

work for some participants and not others?

In the next section, we will discuss the methodological

requirements of an N-of-1 RCT, its strengths, and some

limitations. Following this discussion, we will present a

flexible and powerful method of conceptualizing and

modeling the information yielded by this methodology

using multilevel modeling, complete with a simulated

data example. Our aim with this presentation is to provide

sufficient explanation, data, and syntax so that a reader

experienced with multilevel modeling can practice con-

ducting data analysis of N-of-1 RCTs using the practice

case in the current article. For a reader less familiar with

multilevel modeling, we present the current article as a

primer to demonstrate the use of N-of-1 RCTs and a

corresponding data analytic procedure that might inspire

further analysis in collaboration with others.

Overview of N-of-1 RCTs and Methodological
Considerations

N-of-1 RCTs differ from other randomized designs in that

randomization occurs at the level of measurement occa-

sions rather than participants (Keller, Guyatt, Roberts,

Adachi, & Rosenbloom, 1988). Presumably, the most log-

ical study interval within pediatric psychology would be to

randomize at the level of study days. However, the length

of measurement occasions can be set by the interventionist

based on the hypothesized length of treatment required to

detect an effect and could be as short as minutes or as long

as is reasonable given the context.

We note that readers familiar with the behavioral tra-

dition in pediatric psychology will be aware of the meth-

odological similarity between the N-of-1 design and a

reversal design (Rapoff & Stark, 2008). In fact, the reasons

that one would choose an N-of-1 RCT over other small-n

designs are the same as a reversal design: (1) it is safe to

withdraw treatment, (2) information about within subject

variability is of benefit to the research question, and (3)

clear benefit/feasibility of running a similar trial with a

large-n has not yet been established.

Methodological Considerations and Requirements
for N-of-1 RCTs

Requirement of Randomization

As noted previously, a key feature of N-of-1 RCTs is the use

of randomization. Random assignment of days to condi-

tions allows causal inferences to be drawn about the

efficacy of a treatment for a given individual. Here we rec-

ommend block randomization as is common in traditional

RCT protocols (see Altman & Bland, 1999). For example, if

a study period included 30 days, then 15 days would be

randomized to intervention and 15 to the control condi-

tion. By using block randomization, the number of inter-

vention days is held constant across individuals to ensure

an equal ‘‘dose’’ of the procedure. For additional reading

on this topic as well as a useful randomization tool, see the

R package (SCRT-R) developed by Bulté and Onghena

(2008). If randomization does not occur, it may introduce

systematic variability into the design that cannot be ex-

plained statistically due to time-based confounds. Such

threats to internal validity in N-of-1 RCTs are the same

as those in larger RCTs and include history and maturation

effects, as well as effects of particular treatment days (e.g., a

child attends an exercise group on Saturday).

Block randomization is not the only option in the con-

text of N-of-1 RCTs. Investigators may also choose Latin-

square or counterbalanced designs (see Brooks, 2012 for

review). For instance, a traditional counterbalanced design

involves two groups with different treatment orders such as

Group 1 order AB and Group 2 order BA. In the case of an

N-of-1 design the ‘‘grouping’’ variable is within persons,

such that an individual patient would receive two treat-

ment sequences back-to-back (e.g., ABBA). This technique

may be appropriate when practical limitations prohibit

block randomization. In contrast, a Latin-square design

may be more useful when a researcher needs to control
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for order effects across more than two conditions (Brooks,

2012). For example, a researcher may create a 3� 3 matrix

to represent two treatment conditions compared against

one control condition. The first row and column of the

3� 3 matrix would each be ordered ABC; the other cells

would be ordered such that each condition appears once

per row and once per column.

Requirement of Rapid Onset and Abrupt Reversibility

One of the first requirements for an N-of-1 RCT is that the

treatment must have an immediate and abrupt effect that will

be reversed when withdrawn (Guyatt et al., 1988). Here

reversibility applies to the quantitative effect on the DV,

but also implies that the treatment is being reversed/with-

drawn. This requirement means that N-of-1 RCTs are most

commonly used for pharmacological trials in medicine

(Tsapas & Matthews, 2008); however, many behavioral

interventions are also amenable to such techniques. For

example, Sniehotta, Presseau, Hobbs, and Araújo-Soares

(2012) hypothesized that access to a pedometer for self-

monitoring would increase physical activity in a group of

adult office workers. Participants were randomly assigned

to review self-monitoring data on treatment days and were

blind to the data on control days. Because exercise behav-

ior occurs in bouts and the experimenters chose a 24-h

period as their study interval, it was plausible that partic-

ipants would return to baseline when the intervention was

withdrawn.

At first blush it may seem as though pediatric psychol-

ogy interventions are not well-suited to N-of-1 RCTs pre-

cisely because the goal of the field is to develop lasting

changes in health behavior that are not reversible (à la

the Society of Pediatric Psychology vision statement:

Healthier children, youth, and families). Indeed, this

might seem to be the case if one only considers entire

treatment packages within pediatric psychology. Herein

lies what we believe is the major contribution of N-of-1

RCTs in pediatric psychology. That is, they are not useful

for evaluating a treatment package (in which case a full-

scale RCTs would be needed); rather, they are most useful

for testing whether a treatment component has an effect on

a specific target behavior over a discrete time interval. The

difference is that a treatment package confers a lasting

effect (ideally) over a long period of time and cannot be

withdrawn. In contrast, a child who puts their medication

bottle on the kitchen counter on Monday can put it back

in the cupboard on Tuesday (i.e., application and with-

drawal of stimulus control) to demonstrate what effect

this change has.

The adjacent field of health psychology is becoming

more and more concerned with treatment components that

lead to outcomes at the level of systematic review

(Abraham & Michie, 2008). We believe that N-of-1 RCTs

may give the field of pediatric psychology a tool for inves-

tigating components in the stream of treatment rather than

waiting for a large and expensive body of literature to

review after treatment packages have been shown to be

effective for some but potentially ineffective for others.

In our view, behavioral self-regulation strategies (i.e.,

components) for adherence to medication or behavioral

recommendations (e.g., diet, exercise, sleep) are the types

of pediatric psychology interventions likely to meet the re-

quirement of rapid onset and reversibility. However, such

assumptions are in and of themselves testable. In a pilot

phase for an N-of-1 RCT, an investigator could easily use a

few participants in a traditional ABAB design to determine

the reversibility of an intervention component. Similarly, if

the initial pilot raised suspicions that a carryover effect

might exist in the data, then the pilot phase could

inform the specification of covariates to account for such

variability.

Carryover Effects

Related to the concepts of rapid onset and reversibility are

carryover effects. In some cases, the withdrawal of an in-

tervention may result in reduction in the DV that is lower

than the value observed in the intervention condition but

higher than baseline. In this case, it may be that the inter-

vention imparted a weak, but permanent, change to the

DV. In the pill-taking example in the introduction, the

child that takes the pill on Monday because the bottle is

on the counter may be more likely to take a dose on the

next control day than she was on the previous control day,

but less likely than on the next intervention day. This is a

positive finding from a clinical perspective, but it does pose

a problem within the N-of-1 context. In general, the N-of-1

RCT is simplest if the intervention under investigation does

not have carryover effects from the intervention to control

condition.

Carryover effects can lead to both Type I and Type II

errors if the effect is not included in the statistical model.

The potential for carryover effects can be minimized by

using a Latin-square or some other counterbalancing

design described in the research methods literature (e.g.,

crossover design with appropriate washout period between

treatments; see Shadish, Cook, & Campbell, 2002 for

review). However, following data collection, whether or

not a carryover effect occurred is a testable hypothesis by

including whether the day prior to a treatment day was a

treatment or control day as an additional predictor variable

in the analysis. The procedure for testing carryover effects

is presented for both simulated datasets.

Aggregated N-of-1 Randomized Controlled Trials 3
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Suitability of Outcome Measures

We expect that most interventionists interested in N-of-1

methodology will conduct studies with participants,

spending a relatively short time in each condition (e.g., 1

day). As such, we do not recommend the use of measures

that are likely to change slowly over time, such as quality of

life, self-efficacy, or measures of psychological symptoms

such as a narrow-band internalizing measure or broad-

band screener. Instead, the ideal measure is an objective

indicator that provides no feedback to the participant.

Common examples in pediatric psychology include accel-

erometers for sleep and physical activity (e.g., Meltzer,

Montgomery-Downs, Insana, & Walsh, 2012) or electronic

measures of medication adherence (Ingerski, Hente, Modi,

& Hommel, 2011). If information about a subjective state

or self-reported symptoms is desired, then daily diary

methods may be appropriate. For example, patients with

chronic pain might be asked to rate their daily pain and to

rate their mood.

Blinding to Condition

In the ideal RCT, both the participant and experimenter are

blind to condition. This is consistent with all experimental

work in which double blinding is best, single blinding is

second best, and unblinded is the worst with regard to

controlling the threats to internal validity. Although

double blinding may be difficult in many interventions

within pediatric psychology, at least single blinding may

be possible in many instances. Creative methodologists

can likely think of a way to incorporate single or double

blinding into a trial, and should do so if the knowledge

gains outweigh the risks to the participants. However, in

cases where blinding is not possible, the researcher should

be aware that failure to blind does open the study to a risk

of bias and problems with internal validity.

Ethical Considerations

Because treatment will be withdrawn and restarted in the

course of the N-of-1 RCT, it is critical that the experimenter

guard against any possible harm that could come to the

participant as a result. Perhaps of greater concern is

whether the treatment can be reasonably withdrawn if it

is suspected that the treatment had a significant effect for a

serious health behavior. For instance, adherence to medi-

cation is critical in many pediatric conditions. For a patient

highly sensitive to the effects of a medication, it may not be

acceptable to withdraw an intervention if a return to base-

line would represent a significant decrease in the partici-

pant’s overall health. In this case, the experimenter may set

an a priori criterion for determining that an effect of treat-

ment has occurred. That is, even a marked difference

between the first two conditions may constitute a treat-

ment effect that can be agreed on by the patient and pro-

vider (Guyatt et al., 1988). However, if the trial is

discontinued to allow the patient to continue the therapeu-

tic effect, then the multilevel modeling procedures

described in this manuscript will not be possible.

Data Analysis

Uncertainty about how to analyze data yielded by N-of-1

RCTs exists in the methodological literature. Bayesian sta-

tistics have been suggested as one method for using aggre-

gated data to understand a single case (Schluter & Ware,

2005). However, this approach may be relatively new to

most pediatric psychologists more familiar with linear re-

gression, and may be insufficient if the investigator is in-

terested in explaining sources of variability observed

between participants. For these reasons, a regression-

based technique such as multilevel modeling may be

both more approachable and more useful within pediatric

psychology. In the current primer, we use multilevel

modeling as a method of aggregating and analyzing N-of-

1 RCT data. We describe this approach in detail in the

context of the case example. While discussions of power

and sample size are beyond the scope of this article

Chapter 11 of Snijders and Bosker (2011) and the

Optimal Design freeware from Raudenbush, Spybrook,

Congdon, Liu, and Martinez (2011) are useful resources

for the interested reader.

Illustrative Case Example

For the purposes of illustration, imagine that a clinician

delivering empirically supported family-based behavioral

treatment for pediatric obesity is interested in using

mobile health (mHealth) technology to enhance an evi-

dence-based treatment protocol, such as the Positively Fit

program (Steele et al., 2012). This program involves 10

weeks of group-based sessions, with content tailored to

both parents and their child or adolescent. One of the

program goals is to increase the amount of physical activity

performed by children, adolescents, and their families. The

protocol has previously been enhanced with mHealth tech-

nologies on a small scale (Cushing, Jensen, & Steele,

2011), suggesting that adolescents are willing to use

these technologies in the context of their clinical care.

One weakness of Positively Fit and other weight-man-

agement protocols is the lack of intervention content de-

livered in vivo for individual families. In this hypothetical

example, imagine that a provider is interested in delivering

a brief standardized text messaging intervention to eight

adolescents enrolled in their hospital-based iteration of

the Positively Fit program (which would typically constitute

4 Cushing, Walters, and Hoffman
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a maximally full group for Positively Fit). A strength of an

N-of-1 approach is its ability to yield clinically meaningful

results in the course of treatment rather than requiring that

the interventionist wait until termination to evaluate the

effectiveness of the intervention. As a consequence, the

provider can make additional adjustments or perhaps

even conduct another N-of-1 RCT if the first trial is inef-

fective for a given patient. For example, in the text message

adjunct to the Positively Fit program, a 30-day study

period—in which the eight patients each participate on

half of the study days—could yield a great deal of informa-

tion about the utility of the intervention, and constitutes

less than half of the overall treatment period.

Simulation Description

For the current example, we imagine a group of adolescent

females enrolled in the Positively Fit program. Minutes

spent in moderate to vigorous physical activity (MVPA)

as measured by accelerometry will be the DV. For demon-

stration purposes, two simulated datasets were created to

evaluate participants’ physical activity for 30 days. One

dataset includes eight simulated participants to demon-

strate simple individual-level effects while a 30-person

dataset was simulated to demonstrate multilevel interac-

tions. Study days were block randomized within partici-

pants such that each participant received 15 intervention

and 15 control days. Data were generated using a

multilevel linear model; associated SAS and SPSS syntax

for all analyses are provided in the online Supplementary

Materials.

Fixed or Random Effects?

Individual differences in a treatment effect can be evaluated

using fixed-effects models or random-effects models. Fixed-

effects models are most useful to practitioners wanting to

know for whom did the intervention work. In a fixed-effects

model, the N individual participants are distinguished by

creating N� 1 dummy-coded variables that are included as

main effects and in interactions with the treatment

variable.

The primary limitation of using a fixed-effects model is

that it is then impossible to explain why some participants

respond better than others. By contrast, in a random effects

model, the individual variability in the treatment effect is

partitioned explicitly so that it can be explained by predic-

tors at the level of the individual (e.g., self-efficacy, social

support). Thus, a random-effects model is most useful to

researchers who are interested not only in for whom did

the intervention work but also why it worked for some per-

sons but not others, thereby making the answers to both of

Kazdin’s questions (that have characterized most of the

past 2 decades of large-sample multi-site research) available

to clinicians with few participants. Here we are simply

echoing the previous examples in the pediatric psychology

literature (e.g., Nelson, Aylward, & Rausch, 2011), which

demonstrate convincingly that answering complex research

questions may not always require large samples.

Study I: Evaluating for Whom the
Intervention Worked
Examining the Treatment Effect for Each
Participant

The simulated data for Study I involve eight participants

measured across 30 days, in which 15 treatment days and

15 control days are randomly assigned within each partic-

ipant. This treatment effect is a binary variable in which 0

indicated a control day and 1 indicated a treatment day.

The response to the intervention within each of our eight

participants was examined using a fixed-effects model.

Accordingly, in creating N� 1 dummy-coded variables to

represent the N participants, one participant must serve as

the reference (i.e., as the model intercept). We arbitrarily

chose participant 8, such that the dummy-coded variables

then represent the difference between participant 8 and

each other participant. In actual clinical care, the choice

of a reference participant should be tied to program goals.

For instance, a clinician could choose the patient that was

closest to meeting a program goal (e.g., 60 min of physical

activity). Alternatively, the reference participant could be

the patient who performed the most or least of a given

variable. In any case, all other patient’s values will be rel-

ative to the reference participant, but it is important to note

that the choice of reference participant will not change

model predictions or model fit.

The overall differences across participants in fixed ef-

fects can be evaluated with multiple degree-of-freedom F-

tests, as routinely provided by many software programs.

For our simulated data, there were significant differences

across participants in their average minutes of physical ac-

tivity across days, F(7,224)¼ 25.95, p < .05, as well as in

their intervention effects (i.e., differences between control

and treatment days), F(7,224)¼ 2.92, p < .05. As an effect

size estimate, the intervention effect explained 25.62% of

the variability in minutes of physical activity.

The regression effects—as given by default in any sta-

tistical package—are presented in the first set of columns

of Table I. Given the dummy coding for participant, the

intercept estimate of 54.80 represents the average minutes

of physical activity specifically for participant 8 on control

days. The intervention main effect indicates that participant

8 had a nonsignificant 9.60-min increase in physical

Aggregated N-of-1 Randomized Controlled Trials 5

 by guest on D
ecem

ber 2, 2013
http://jpepsy.oxfordjournals.org/

D
ow

nloaded from
 

a 
8 
8 
30 
http://jpepsy.oxfordjournals.org/lookup/suppl/doi:10.1093/jpepsy/jst083/-/DC1
http://jpepsy.oxfordjournals.org/lookup/suppl/doi:10.1093/jpepsy/jst083/-/DC1
fixed 
random 
Fixed 
fixed 
.
.
--
dummy 
two 
very 
8 
8 
.
--
dummy 
.
dummy 
utes
.
.
ute
http://jpepsy.oxfordjournals.org/
http://jpepsy.oxfordjournals.org/


activity on intervention days, in which his or her expected

physical activity would be 54.80þ 9.60¼ 64.40 min. The

Control Day main effects for participants 1–7 indicate the

difference in physical activity on control days between each

participant and participant 8. For example, on control

days, participant 1 averaged 28.93 more minutes of phys-

ical activity than participant 8; thus, participant 1 was ex-

pected to have 54.80þ 28.93¼ 83.73 min of physical

activity on control days (i.e., 83.73–64.40¼ 28.93). The

Intervention Day effects for participants 1–7 are interven-

tion-by-participant interactions and indicate the difference

in the treatment effect between each participant and par-

ticipant 8. For example, the average increase in simulated

physical activity on treatment days for participant 1 was

6.07 min larger than participant 8, such that the simulated

intervention day increase for participant 1 would be

9.60þ 6.07¼ 15.67 min. Taken together, participant 1

would be expected to have 99.40 min of physical activity

on treatment days (i.e., 54.80þ 28.93þ 9.60þ 6.07).

Although perhaps useful for didactic purposes, these

regression results do not indicate for whom the interven-

tion worked directly. However, this information can be

found by requesting the necessary linear combinations of

the model effects using the post-estimation commands

available in most software packages (e.g., ESTIMATE in

SAS, TEST in SPSS, LINCOM in STATA, or NEW in

Mplus). Critically, these commands provide not only the

requested linear combinations of model effects, but also

the appropriate standard errors with which to assess their

significance. The model-implied results for the current ex-

ample are presented in the second set of columns of Table I

and reveal that only five of the eight participants had a

statistically significant increase in physical activity on

their treatment days relative to control days.

Examining for Carryover Effects

To evaluate for carryover effects, a new binary predictor

variable was created that represents whether or not the

previous day was a treatment day. The main effect of this

new carryover predictor is added to the previous model, as

well as all two-way interactions between the carryover

predictor and the participant dummy codes, and all the

three-way interactions among the dummy codes, treatment

predictor, and the carryover predictor. Carryover effects are

indicated by any three-way interaction being statistically

significant. Alternatively, an omnibus F-test for the three-

way interactions can be requested using CONTRAST in

SAS, SPSS, or STATA. In our data, the omnibus F-test

Table I. Final Results Using Fixed-Effects Model With Constant (Homogeneous) Variance

Fixed effects

Differences relative to participant 8 Unique effects for each participant

Estimatea SE t p Estimateb SE t p

Intercept 54.80 3.60 – – – – – –

Intervention day 9.60 5.09 1.89 .06 – – – –

Control day

Participant 1 28.93 5.09 5.68 <.05 83.73 3.60 23.26 <.05

Participant 2 .40 5.09 .08 .94 55.20 3.60 15.33 <.05

Participant 3 10.60 5.09 2.08 <.05 65.40 3.60 18.17 <.05

Participant 4 �12.73 5.09 �2.50 <.05 42.07 3.60 11.69 <.05

Participant 5 41.13 5.09 8.08 <.05 95.93 3.60 26.65 <.05

Participant 6 �6.60 5.09 �1.30 .20 48.20 3.60 13.39 <.05

Participant 7 16.47 5.09 3.23 <.05 71.27 3.60 19.80 <.05

Participant 8 – – – – 54.80 3.60 15.22 <.05

Intervention day increase

Participant 1 6.07 7.20 .84 .40 15.67 5.09 3.08 <.05

Participant 2 16.13 7.20 2.24 <.05 25.73 5.09 5.05 <.05

Participant 3 �1.53 7.20 �.21 .83 8.07 5.09 1.58 .12

Participant 4 5.80 7.20 .81 .42 15.40 5.09 3.02 <.05

Participant 5 19.07 7.20 2.65 <.05 28.67 5.09 5.63 <.05

Participant 6 2.47 7.20 .34 .73 12.07 5.09 2.37 <.05

Participant 7 �6.53 7.20 �.91 .37 3.07 5.09 .60 .55

Participant 8 – – – – 9.60 5.09 1.89 .06

Model fit

�2LL 1859.5 1859.5
aDefault output given by SPSS or SAS.
bResults requested by either ESTIMATE or TEST statements.
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was not statistically significant, F(7,200)¼ 0.41, p¼ .90,

indicating the absence of carryover effects across partici-

pants in the current simulated data.

Examining the Variability in Physical Activity
Within Each Participant

Up until this point, our model has assumed that each

person has the same error variance (i.e., homogeneity) on

minutes of physical activity across treatment or control

days. The advantage of using a common error variance is

the gain in statistical power that results from estimating

fewer parameters. In reality, however, some participants

will have more (or less) variability in their minutes of phys-

ical activity within treatment or control days compared

with other participants. Fortunately, whether or not a par-

ticipant needs his or her own error variance is a testable

hypothesis by estimating a heterogeneous variance model,

which estimates a separate error variance for each partici-

pant (see Bryk & Raudenbush, 1988; Hoffman, 2007).

Heterogeneous variance models produce results in a

single analysis akin to the estimates provided by conduct-

ing individual regression analyses using each participant’s

data (e.g., Sniehotta et al., 2012). The fit of the heteroge-

neous variance model is then compared with the fit of the

homogeneous variance model via likelihood ratio test

(�2�LL), with degrees of freedom equal to the difference

in the number of estimated parameters. In our simulated

data, this test was not statistically significant, indicating the

heterogeneous variance model did not fit better than the

homogeneous variance model, �2�LL(7)¼ 1859.5�

1849.1¼ 10.4, p¼ .17, and that using a common error

variance across participants was sufficient for these data.

Study IIa: Evaluating Individual Differences
in the Treatment Effect
From Fixed to Random Effects

As noted previously, the purpose of random-effects models

(otherwise known as multilevel or hierarchical linear

models) is to answer the question of why the intervention

works for some participants and not others. We note that the

text that follows is intended to be only a primer; readers

interested in more detail can consult Hoffman and Stawski

(2009) for more detail.

To understand random effects, we first distinguish the

two sides of any linear model. First, the model for the means

considers how minutes of physical activity vary as a func-

tion of predictor variables and includes a fixed intercept,

fixed main effects, and fixed interaction effects between

predictors used to predict the average minutes of physical

activity for each participant on each day. Second, the model

for the variance considers how the model residuals are re-

lated across observations. In a single-level linear regression

model for cross-sectional data, there is only one residual

for each participant (i.e., the participant-specific difference

between the outcome predicted by the model and the par-

ticipant’s actual outcome value), and thus all residuals are

assumed uncorrelated. In contrast, a multilevel model as-

sumes a nested data structure (noted using the term levels),

which for longitudinal data indicates that the repeated ob-

servations across days at level 1 are nested within individ-

ual participants at level 2. This nested structure creates

correlation (or dependency) that we will quantify using

random effects. More specifically, random intercepts will

be used to describe mean outcome differences across par-

ticipants, and random slopes will be used to describe dif-

ferences between participants in the effects of longitudinal

predictors, such as the difference between control and

treatment days.

Decomposing Variability via Intraclass
Correlation

The extent to which residuals from the same person are

correlated on average over time can be quantified explicitly

using an intraclass correlation once a random intercept is

included in the model for the variance (i.e., in moving from

a single-level model to a two-level model). The average

correlation across occasions from the same person is

known as the intraclass correlation (ICC), which is formed

as a ratio of between-person variability to total variability

(i.e., in which total variability¼ between-personþwithin-

person variability) and thus indicates the proportion of

variance between participants at level 2. The ICC from

our simulated data was .35, indicating that �35% of the

variance in physical activity was due to individual mean

differences between participants, and 65% was due to

within-person variation over time. To further quantify the

extent of these individual mean differences, we used the

random intercept variance to calculate a 95% random ef-

fects confidence interval (see Snijders & Bosker, 2011 and

the Excel spreadsheet provided in the online

Supplementary Materials) around the fixed intercept

value of 64.97 min. We found that 95% of our simulated

sample was expected to average between 15.99 and

113.94 min physical activity across days.

Evaluating Individual Differences in the
Intervention Effect

To evaluate individual differences in the treatment effect,

we first estimated a model with only a fixed effect for treat-

ment, in which the average difference in physical activity

between control and treatment days is assumed to be the

Aggregated N-of-1 Randomized Controlled Trials 7
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same for all participants. Our results indicated that partic-

ipants engaged in significantly more physical activity—an

average of 26.38 min more—on treatment days compared

with control days. However, given that the simulated re-

sults in Study I suggested varying increases in simulated

physical activity on treatment days across participants, we

estimated a second model that also included a random

treatment slope for the participant-specific deviation from

the fixed treatment effect. As with the random intercept, a

random treatment slope variance is estimated to represent

all individual differences in the treatment effect, rather than

the individual-specific deviations. A covariance between

the random intercept and treatment slopes is also esti-

mated to allow a relationship between the amount of phys-

ical activity on control days and the treatment effect across

persons.

In using a likelihood ratio test to compare these fixed

and random treatment slope models, we found that allow-

ing individual differences in the treatment effect (i.e.,

random slope variance and intercept variance) resulted in

a significant improvement in model fit, �2�LL(2)¼

8845.1� 8795.4¼ 49.7, p < .05. To quantify these indi-

vidual slope differences, we calculated a 95% random ef-

fects confidence interval around the treatment effect that

indicated 95% of our simulated sample was expected to

have a treatment slope between �9.96 and 62.71 min (see

Excel spreadsheet provided in the online Supplementary

Materials). Clearly, the intervention was not predicted to

be effective for every participant in the simulated data—

some participants were actually predicted to decrease their

physical activity on treatment days! The next step is to

include additional predictors to explain why the interven-

tion worked for some participants but not others. This is

the focus of Study IIb.

Study IIb: Evaluating why the Intervention
Worked
Effect Size as Variance Explained

In a single-level regression model, residual variance is the

only variance component and effect size describes the pro-

portion of residual variability explained by the predictors

(i.e., R2). An analog to a single R2 can be created in

multilevel models by squaring the Pearson correlation be-

tween the model-predicted outcome and the actual out-

come for each participant, which then provides the total

outcome variability explained by predictors at all levels of

analysis. Alternatively, effect size estimates for the specific

variance components estimated are called pseudo-R2, which

can be calculated as the proportion reduction in the vari-

ance component before and after inclusion of predictors.

An Excel spreadsheet provided in the online

Supplementary Materials shows the calculation of all

pseudo-R2 values for the multilevel linear model.

Time-Invariant Predictors

Given the presence of significant individual differences in

treatment effect, the final step is to attempt to identify why

the intervention was more effective for some participants

than for others. To do so we will examine two variables that

are commonly related to physical activity: self-efficacy and

social support (Motl, Dishman, Saunders, Dowda, & Pate,

2007). Self-efficacy was simulated to be a continuous time-

invariant predictor. In clinical practice, time-invariant pre-

dictors are likely to be collected at baseline before initiating

treatment. In our study, the time-invariant predictor of self-

efficacy can contribute to the level-2 model by potentially

explaining both between-person differences in mean phys-

ical activity on control days (i.e., random intercept variance

through its main effect) and between-person differences in

the treatment effect (i.e., random treatment slope variance

through its cross-level interaction with treatment). To

maintain a meaningful intercept and treatment main

effect, self-efficacy was centered near the grand mean at

25, such that a value of 0 on the new variable indicated

a self-efficacy of 25. As with any regression model, center-

ing is a method of improving the ability to interpret inter-

cept and main effects by providing a meaningful zero point,

but will not change model fit or model predictions.

Time-Varying Predictors

The treatment variable and social support were simulated

as measured daily and are thus considered time-varying

predictors. In clinical practice, time-varying predictors

would likely be recorded as daily diary data, which could

be reviewed in session and inform statistical models such

as the one presented here. An important caveat to note is

that even though they are often thought of as level-1 (time-

level) variables, time-varying predictors generally contain

both within-person (WP) and between-person (BP) vari-

ability. Because we used block randomization in our sim-

ulated data, all participants received exactly 15 treatment

days. As such, the treatment variable had no BP variability.

However, social support, measured as a continuous vari-

able, contained both WP and BP variability. That is, while a

participant’s level of social support may fluctuate daily (at

level 1, WP), it may also be the case that some participants

may have higher levels of social support than other partic-

ipants on average (at level 2, BP). As a result, social support

could have differential effects on physical activity across

levels of analysis, and so it is important to specify its effects

8 Cushing, Walters, and Hoffman
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in the model allowing these level-specific effects to be

observed.

The Convergence Effect and Variable
Partitioning

It is important to note that because time-varying predictors

typically contain level-1 and level-2 variability, they are

really two variables instead of one. Thus, inclusion of a

time-varying predictor directly into a model without first

partitioning its WP and BP sources of variance into sepa-

rate predictions will result in a convergence slope (aka, con-

flated or composite slope; a weighted combination of the

WP and BP slopes) that will ultimately lead to

uninterpretable and incorrect parameter estimates (see

Raudenbush & Bryk, 2002, pp. 138–139 for full descrip-

tion). Thus, to avoid such model mis-specification, we rec-

ommend explicitly partitioning the WP and BP portions of

any time-varying predictor that has nonzero BP variability

(as determined by the ICC for the predictor from an empty

model). For our simulated data, social support had an ICC

of 0.41, indicating that 41% of the variability in social

support was between participants. As a result, we parti-

tioned the WP and BP variance in social support into

two uncorrelated predictors using person-mean-centering

for the level-1 predictor, as described by Hoffman and

Stawski (2009).

In person-mean centering (also known as group-mean

centering in clustered models, e.g., persons nested within

groups), each person’s mean social support across days

(i.e., person-mean social support) was subtracted from

the time-varying social support variable at each occasion.

This new WP social support predictor—composed only of

level-1 variability—represents a participant’s time-specific

deviation from their usual level of social support.

Specifically to our study, WP social support examined

whether a participant increased physical activity from

their usual level if they had more social support than

usual on a given day.

The second predictor, person-mean social support—

composed only of level-2, BP variability—was then cen-

tered at a constant of 3, which was near its grand mean.

Person-mean social support was included as a predictor in

the level-2 model to explore how between-person differ-

ences in average levels of social support may predict be-

tween-person differences in mean physical activity on

control days (i.e., random intercept variance through its

main effect) and between-person differences in the treat-

ment effect (i.e., random treatment slope variance through

its cross-level interaction with treatment).

Model Results

The final model provides interpretations for the most

common effects considered in a multilevel linear model.

Specifically, we model two time-invariant predictors, two

time-varying predictors (one with no BP variability, one

with some BP variability), and three cross-level interac-

tions. While not exhaustive of all possible effects, addi-

tional time-invariant variables, time-varying variables, and

interaction effects can be added sequentially to the model

to evaluate their importance. For example, if two time-vary-

ing predictors (both with some BP variability) are being

considered, their WP and BP variance should be parti-

tioned and added separately to the model to evaluate

their statistical significance via p-values as well as their

unique contribution to the model via pseudo-R2. Similar

to a single-level linear regression, the variable that explains

the largest proportion of variance can be considered the

most important.

The final model results are presented in Table II and

illustrated in Figure 1; syntax, results, and pseudo-R2

estimates for the intermediate model building process are

provided in the online Supplementary Materials. The pre-

dictors, as a set, explained �23.89% of the total variability

in physical activity. We interpret each of the final model

parameters, beginning with the fixed intercept, which in-

dicates average minutes of physical activity when all pre-

dictors are centered at zero: Specifically on control days,

for participants with self-efficacy of 25, with person-mean

social support of 3, who were at their usual daily level of

social support (within-person¼ 0) averaged 52.01 min of

physical activity.

Likewise, because all predictors are involved in one or

more interaction effects, their main effects are interpreted

as simple main effects, which are conditional on the inter-

acting predictor(s)¼ 0. Accordingly, the treatment effect

can be understood as a simple main effect conditional on

self-efficacy, within-person social support, and person-

mean social support¼ 0. Thus, specifically for a participant

who has self-efficacy of 25, an average social support of 3,

who is also at their usual daily level of social support,

physical activity was significantly higher by 27.74 min on

treatment days than on control days. This within-person

treatment effect explained �15.48% of the level-1 residual

variance (i.e., the remaining within-person daily fluctuation

in physical activity).

During the model-building process, we evaluated for

carryover effects by examining whether a binary predictor

for whether the previous day was a treatment or control

day significantly moderated the treatment effect. Similar to

the fixed effects described in Study I, this new predictor

Aggregated N-of-1 Randomized Controlled Trials 9
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was then included in the model alongside to the treatment

variable and their interaction, with a statistically significant

interaction effect indicating a carryover effect. Results indi-

cated no significant carryover effects, t(813)¼�0.38,

p¼ 0.70. However, we suggest that other pediatric psychol-

ogists using this technique should not expect a null finding

and testing for carryover effects is likely to be an important

part of the model-building process.

Next, we consider the WP effect of social support.

Because WP social support interacts with the treatment

variable, the simple main effect of WP social support indi-

cated that specifically on a control day a one-point increase

beyond a participant’s usual level of social support was re-

lated to a nonsignificant increase in physical activity on that

day by 3.10 min. This level-1 simple main effect—as eval-

uated specifically for control days—explained an additional

3.49% of daily fluctuation in physical activity (i.e., residual

variance) and is seen in Figure 1 as the difference between

the dashed lines. The treatment-by-WP social support in-

teraction can then be interpreted as how the effect of

greater than usual levels of social support differed between

control and treatment days. Thus, when a participant’s

social support was rated one-point higher than their

usual levels, physical activity increased significantly by an

additional 8.57 min on that treatment day, for a total

Table II. Final Results Using Random-Effects Model

Fixed effects (model for the means) Estimate SE t p

Intercept 52.01 3.90

Intervention day 27.74 3.76 7.38 <.05

WP social support on control day 3.10 1.95 1.59 .11

WP social support on intervention day 11.67 1.95 5.99 <.05

PM social support on control day 13.40 6.00 2.23 <.05

PM social support on intervention day 22.33 7.73 2.89 <.05

Intervention day-by-WP social support 8.57 2.76 3.10 <.05

Intervention day-by-PM social support 8.93 5.79 1.54 .13

Self-efficacy on control day .63 .48 1.32 .20

Self-efficacy on intervention day 1.67 .61 2.74 <.05

Intervention day-by-self efficacy 1.05 .46 2.29 <.05

Random effects (model for the variances) Estimate SE z p

Intercept 367.36 109.60 3.35 <.05

Intervention day slope 280.92 102.12 2.75 <.05

Intercept–intervention day covariance �.80 75.56 �.01 .99

Residual 852.69 41.61 20.49 <.05

Model fit

�2 Log Likelihood 8745.5

AIC 8769.5

BIC 8786.3

Note. WP¼within-participant; PM¼ person-mean.

PM social support was centered at 3.

Self-efficacy was centered at 25.

Figure 1. Pane 1: Low person-mean social support (i.e., person-

mean social support¼2). Pane 2: High person-mean social support

(i.e., person-mean social support¼4).
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significant effect of 3.10þ 8.57¼ 11.67 min (as shown by

the difference between the solid lines in the figure). This

level-1 interaction effect explained an additional 1.08% of

the daily fluctuation in physical activity (i.e., residual var-

iance) and is shown as the increasing difference of the

respective markers between the dashed and solid lines in

each panel of Figure 1. For example, in panel 1 at an av-

erage level of self-efficacy, the small difference in physical

activity between intervention and control days at lower

than usual social support level (i.e., triangle markers) in-

creased to a larger difference at higher than usual social

support level (i.e., square markers).

Now we consider the effect of person-mean social

support. Because person-mean social support interacted

with the treatment variable, the simple main effect of

person-mean social support indicated that specifically

on a control day a one-point increase in the person-

mean of social support indicated that physical activity

increased significantly by an average of 13.40 min. This

level-2 simple main effect—as evaluated for control

days—explained 12.40% of mean differences in physical

activity across participants on control days (i.e., random

intercept variance), shown by the increase in the dashed

lines from panel 1 to panel 2. The treatment-by-person-

mean social support interaction effect can then be inter-

preted as how the effect of greater person-mean levels of

social support differed between control and treatment

days. Specifically, a one-point increase in person-mean

social support was related to a nonsignificant 8.93-min

increase in physical activity on treatment days compared to

control days, for a total significant effect of 13.40þ

8.93¼ 22.33 min (as shown by the increase in the solid

lines from panel 1 to panel 2). This cross-level interaction

explained �6.81% of the individual differences in the

treatment effect (i.e., random treatment slope variance),

and is shown by comparing the differences between the

solid and dashed lines across panels 1 and 2. For exam-

ple, consider the markers at high levels of self-efficacy:

The differences in physical activity between intervention

and control days in panel 1 were more pronounced at

higher person-mean social support in panel 2.

Next, we consider the effect of time-invariant self-

efficacy, which also interacted with the treatment variable.

The simple main effect of self-efficacy indicated that,

specifically on a control day, a one-point increase in self-

efficacy resulted in a nonsignificant increase in physical

activity by an average of 0.63 min. The level-2 simple

main effect—as evaluated for control days—explained an

additional 5.89% of mean differences in physical activity

across participants on control days (i.e., random intercept

variance), as seen in panels 1 and 2 by the slightly positive

slope of the dashed lines. The cross-level treatment-by-self-

efficacy interaction effect can then be interpreted as how

the effect of self-efficacy differs between control and treat-

ment days: A one-point increase in self-efficacy was related

to a significant 1.05-min increase in physical activity on

treatment days compared to control days, for a total signif-

icant effect of 0.63þ 1.05¼ 1.67 min within rounding

error (as shown by the positive slope for the solid lines

in each panel). This cross-level interaction explained an

additional 19.73% of the individual differences in the treat-

ment effect (i.e., random treatment slope variance) and is

shown in either panel by the greater difference between the

dashed and solid lines at higher levels of self-efficacy.

Finally, we note that our random-effects model could

be extended to include differential within-person variability

(i.e., heterogeneity in level-1 residual variance), as we had

examined in the previous fixed-effects model in Study I.

However, just as we switched from a focus of who improves

in Study I to why do some participants improve more than

others in Study IIa and IIb, here the emphasis would be on

predicting between-person differences in within-person

variability, rather than simply allowing different residual

variances by participant ID. But, given their additional

computational complexity and lack of availability in some

popular software programs (such as SPSS), we do not

pursue random-effects models with heterogeneous residual

variances here (but see Snijders & Bosker, 2011 for more

details).

Limitations of N-of-1 RCTs and Alternative
Methodologies

As noted previously, N-of-1 RCTs are not suitable for all

research questions. Specifically, research questions that

pertain primarily to external validity or generalizability are

likely to be best addressed using traditional fully powered

between-groups designs. Moreover, there may be instances

where an investigator is interested in a research question

that does not meet the criteria of reversibility. Indeed,

many interventions in pediatric psychology are aimed at

teaching problem solving or coping skills that the investi-

gator undoubtedly hopes will be sustained beyond the

treatment phase (e.g., Wysocki et al., 2006). When this

is the case and the research question is early in its stage

of development, other small-n techniques may be most

appropriate (see Rapoff & Stark, 2008 for review). In par-

ticular, a multiple-baseline design may be of interest when

a treatment effect is not expected to be reversible within a

given participant. While it is beyond the scope of this ar-

ticle, it is possible to apply multilevel modeling to this

design with each day representing within-person variability

and experimental condition as a covariate. However, it is

Aggregated N-of-1 Randomized Controlled Trials 11
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important to note that in multiple-baseline designs obser-

vations will not be balanced within experimental condition.

That is, some participants will spend much more time in

intervention than control and vice versa. As such, it is

critically important to define an appropriate time metric

and may limit the ability to answer the for whom does

the treatment work question, which is better addressed by

N-of-1 RCTs.

Conclusions

The combination of N-of-1 RCTs and multilevel modeling

may represent a methodological advancement in pediatric

psychology, leading the field to new scientific discovery

and providing an accessible tool for clinicians to conduct

scientifically informative clinical work. We have attempted

to provide an overall narrative and a data analysis example

that is rigorous yet accessible to a doctoral-level pediatric

psychologist. At a minimum, most practicing pediatric psy-

chologists can likely use the fixed-effect models presented

in Study I within commonly available statistical packages

(e.g., SPSS, SAS) to answer the question of what works for

whom. Admittedly, the question of why an intervention

works is more complex, but we have attempted to provide

a springboard to allow researchers to answer these ques-

tions with random-effects models.

Supplementary Data

Supplementary data can be found at: http://www.jpepsy.

oxfordjournals.org/
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