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Obtaining Diagnostic Classification Model Estimates Using
Mplus

Jonathan Templin, University of Georgia, and Lesa Hoffman, University of
Nebraska–Lincoln

Diagnostic classification models (aka cognitive or skills diagnosis models) have shown great
promise for evaluating mastery on a multidimensional profile of skills as assessed through
examinee responses, but continued development and application of these models has been hindered
by a lack of readily available software. In this article we demonstrate how diagnostic classification
models may be estimated as confirmatory latent class models using Mplus, thus bridging the gap
between the technical presentation of these models and their practical use for assessment in
research and applied settings. Using a sample English test of three grammatical skills, we describe
how diagnostic classification models can be phrased as latent class models within Mplus and how
to obtain the syntax and output needed for estimation and interpretation of the model parameters.
We also have written a freely available SAS program that can be used to automatically generate the
Mplus syntax. We hope this work will ultimately result in greater access to diagnostic classification
models throughout the testing community, from researchers to practitioners.
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I magine this scenario: Seeking career advancement
through educational or professional opportunities, non-

native English speaking examinees take an English test to
attain a certificate of proficiency at reading English. Exam-
inees receive their score—and find out whether or not they
pass the test and attain their certificate. Those passing have
accomplished their goal; however, those not passing are left
to try again, likely after spending more time and money on
tutors or educational aides. Yet these test results cannot help
examinees with what to study, outside of English as a field,
such that examinees would have little guidance on how to
improve their skills. Had the test provided more skill-specific
feedback, examinees may have a better idea as to the nature
of what they have yet to learn, aiding them in their future
training. This article is about the process of culling such
skill-specific information from tests via diagnostic classifica-
tion models.

In recent years, new psychometric methods have been de-
veloped that can provide precise and detailed information
about the latent attributes or skills examinees may possess
as indicated by their item responses. Although diagnostic
classification models (DCMs; Rupp & Templin, 2008) have
been the focus of numerous articles, books, and conference
presentations (also known cognitive diagnosis models, e.g.,
Leighton & Gierl, 2007; Rupp, 2007), most of this work has
been heavily technical and limited to the statistical portion of
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the psychometric community. We argue this is largely due to
the lack of available software for researchers and practition-
ers who wish to use diagnostic classification models in their
testing programs and empirical research. Currently, software
for these models is limited to stand-alone programs with lim-
ited model options (i.e., The Arpeggio Suite; Bolt et al., 2008)
or that are available only under a restrictive research license
(i.e., MDLTM, von Davier, 2006). Further, methods for esti-
mation of DCMs using Mplus were discussed in Rupp, Tem-
plin, and Henson (2010) and de la Torre (2009); however,
the discussion focused on a technical treatment of the issue
without providing a practical perspective. Therefore, the goal
of this article is to make diagnostic models more accessible
for researchers and practitioners by showing how they can be
estimated using the more flexible and readily available com-
mercial software package Mplus instead (Muthén & Muthén,
2013).

Although diagnostic classification models have shown
much promise, the ultimate standard by which they should be
judged is by their utility to those who may benefit most from
their use: the practitioners and, ultimately, end-users such
as classroom teachers and students. Accordingly, this article
provides the necessary link between the technical details of
diagnostic classification models and their implementation in
easy-to-use software so that they will be more accessible to
everyone—not just for research, but perhaps more impor-
tantly, in practice. We aim to guide readers through each step
in the modeling process—we use a single example test mea-
suring three English language skills throughout the article
to introduce diagnostic classification models as confirmatory
latent class models, to describe the specification of their pa-
rameters through Mplus syntax, and to interpret the resulting
model output.
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For consistency throughout, we will refer to the test takers
as examinees, the questions of the test as items, and the latent
attributes measured by the test as skills. Although the terms
attributes and skills are different concepts—attribute refer-
ring to a characteristic someone possesses and skill referring
to a particular ability or task a person does well—we will use
the term skill to emphasize the educational components of
the traits measured (i.e., that after sufficient education or
training, one should possess that skill). We first describe the
example test data and present the rationale for employing
a diagnostic classification model (DCM). We then show how
the set of skills measured by a test in DCMs can be viewed
as a series of latent classes, allowing for existing software
for latent class models to also be used for DCMs. We then
describe how to implement a general DCM in Mplus through
a series of model constraint syntax statements, followed by
a description of the relevant sections of Mplus output that
provide the DCM item and examinee parameter estimates.
Finally, because the process of specifying all of the necessary
syntax can be somewhat tedious, we describe a SAS program
we have made freely available with which to automate the
Mplus syntax generation process.

Example Data: The Examination for the Certificate of
Proficiency in English (ECPE)
The Examination for the Certificate of Proficiency in English
(ECPE) is a test developed and scored by the English Lan-
guage Institute of the University of Michigan. The test mea-
sures advanced English skills in examinees whose primary
language is not English and is administered internationally
once a year between November and April, depending on the
location. Here we analyze data of 2,922 examinees from a sin-
gle year’s administration. Although the ECPE has four major
test sections, we restrict our example to the grammar sec-
tion, including 28 multiple-choice questions in which a set of
words is missing. Examinees are asked to select the appro-
priate word(s) for the missing section of the statement from
four response options, as shown in this example item:

Mary had to lean _____ the counter to open the window.

(a) above
(b) over
(c) after
(d) around
The ECPE is designed to measure three skills: knowledge

of (1) morphosyntactic rules, (2) cohesive rules, and (3)
lexical rules (see Buck & Tatsuoka, 1998; Henson & Tem-
plin, 2007). Although the ECPE commonly provides just a
single score for an examinee’s overall ability for understand-
ing grammatical rules of English, more specific information
about an examinee’s ability with respect to each of the three
measured skills is often desired. This is where DCMs can be
more useful, because rather than provide a single ability score,
DCMs specify a profile of multiple skills, typically defined such
that examinees can be a master or non-master of each. Our
DCM application to the ECPE data will result in a profile for
each examinee of whether each of the three grammar skills
has been mastered, thus supplying useful information that
can guide further instruction towards any missing skills as
needed. At the same time, however, DCMs can also help test
developers understand the extent to which specific skills are
needed to produce correct responses to the test items in the

first place. That is, through DCMs we can evaluate empiri-
cally whether the items thought to measure each skill really
do—as well as the extent to which those skills appear to be
compensatory in items that measure more than one skill. In
this sense, DCMs can help provide evidence for or against the
validity of a test in making inferences about whether each ex-
aminee possesses the skills in question (e.g., Dimitrov, 2007;
Embretson, 1995; Kane, 2006). Thus, DCMs can be useful at
both the test development stage and in evaluating the skills
of real-world examinees.

To further describe the ECPE and to provide a baseline
understanding of the test from a more classical perspective,
test reliability analyses were conducted. For the total score,
the Guttman-Cronbach Alpha reliability was .78. If one was
to report sum scores representing the three skills thought
to underlie the ECPE (using the Q-matrix of the DCM anal-
ysis as the indicator for which items were included in each
sum score), reliabilities would be .67 for the morphosyntac-
tic skill (13 items), .36 for the cohesive skill (6 items), and
.73 for the lexical skill (18 items). We note that reliability is
dependent on the statistical model, and that these reliabili-
ties refer to the classical true-score model where sum scores
(either across the whole test or for a subscale) provide the
estimate of an examinee’s ability. Accurate estimates of reli-
ability depend on the correctness of the underlying model for
ability, and in no way represent an index of how well a model
fits the data. Under DCMs, reliability is calculated for the
classification of the skill as a categorical latent variable (see
Templin & Bradshaw, in press), which is a different model
for ability and would thus result in a different estimate of
reliability.

To further describe the structure of the ECPE from a
more common measurement model, the dimensionality of
the test was investigated by comparing the model fit of a one-
dimensional two-parameter item response model with that of
a three-dimensional confirmatory item response model (us-
ing the Q-matrix of the DCM analysis as the indicator for
which items loaded onto each factor). The three dimensional
model (AIC of 85,136.848) fit better than the one dimensional
model (AIC of 85,205.331), providing evidence for the ECPE
having more than one dimension. The correlation between
the morphosyntactic and cohesive skills was estimated to be
.805 (p < .001), the correlation between the morphosyntactic
and lexical skills was estimated to be .820 (p < .001), and the
correlation between the cohesive and lexical skills was esti-
mated to be .791 (p < .001). These estimates establish that
the skills of the test, though highly related, are differentiable
from each other to some degree.

With this background in mind, we now describe how DCMs
can be viewed as confirmatory latent class models, thereby
allowing for their estimation using Mplus software (or any
software that can estimate latent class models with a series of
statistical constraints). In our article, we focus on the Mplus
package as its set of features, documentation, and widespread
use in education and the social sciences makes it a choice
familiar to many practitioners.

Framing DCMs as Latent Class Models
Latent class models are classification-based techniques used
to investigate the number of latent groups of examinees based
on similar patterns of item responses. Latent class models
have had a long history in education, with ties to DCMs as
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early as the mastery model of Macready and Dayton (1977).
Most relevant here is that DCMs can be viewed as confir-
matory latent class models in which the number of classes
is determined by the number of skills measured by a test.
That is, for a test measuring a total of S dichotomous skills
that an examinee has either mastered or not, a total of 2S

distinct mastery profiles exist (as latent classes)—one for
each possible combination of mastery and non-mastery of the
S total skills. In our ECPE example, the three measured skills
(morphosyntactic, cohesive, and lexical knowledge) will re-
sult in 23 = 8 possible mastery profiles, only one of which
will describe the mastery status of a given examinee. As will
be shown, the model for item responses underlying the DCM
assumes that examinees with the same mastery profile will
provide the same item responses. To show its link to DCMs,
we now describe the primary parameters of the general latent
class model.

Latent Class Models

The general latent class model is a very restrictive model that
only includes a statistical parameter for the difficulty of each
item for each latent class (e.g., Lazarsfeld & Henry, 1968).
We will denote the response of examinee e to item i with Xei,
which can either be correct (Xei = 1) or incorrect (Xei = 0).
In the item response function from the latent class model,
the probability examinee e answers item i correctly depends
only on examinee e’s latent class, or ce:

P (X ei = 1|ce ) = πic = ex p (τic )
1 + ex p (τic )

(1)

The item response function specifies that the probability of
a correct response is given by a class-specific item difficulty
parameter, π ic, which is the probability that an examinee who
is a member of class c answers item i correctly. In order to
connect the latent class model to DCMs within Mplus, through
the use of a link function, we will replace the class-specific
item difficulty parameter π ic that ranges from zero to one with
a class-specific item threshold parameter τ ic, an unbounded
continuous variable that can be any real number. As in other
item response models, an inverse log odds or logit function (as
seen in the far right of Equation 1) links the threshold τ ic to
the probability π ic. For instance, a π ic probability of .50 (50%
chance of a correct response) corresponds to a τ ic threshold
of 0 (the log-odds for a probability of .50). Because a separate
threshold τ ic is required for each item and class, this yields a
large number of possible thresholds. For instance, if we were
to analyze the 28 ECPE items using an eight-class model (as
needed to represent the 23 possible skill mastery profiles),
we would need 8 × 28 = 224 item thresholds. But because
the values of these item thresholds within DCMs will depend
on the mastery profile of an examinee, far fewer unique item
thresholds are be necessary in DCMs than in nonconfirmatory
latent class models.

In addition to the class-specific item thresholds that de-
scribe the relationship between class membership and item
responses, the general latent class model also has a set of
structural parameters, which we denote as υc, that give the
proportion of examinees that are members of each class c. Be-
cause these structural parameters are proportions that must
sum to one, the number estimated will be one less than the
number of latent classes. For our eight-class ECPE example,

a total of seven υc structural parameters will be estimated
within Mplus.

Finally, and perhaps most importantly, once the item
threshold parameters (τ ic) and the structural parameters
(υc) have been calibrated, they can then be used to classify
examinees, a process directly analogous to examinee scoring
in other psychometric models. That is, examinee classification
results in an estimate of the probability α̂ec that examinee e
is a member of each latent class c. Examinees can then be
classified as members of the class that has the largest α̂ec
probability. Thus, in DCMs in which the latent classes repre-
sent specific profiles of skill mastery, examinee classification
results in a profile of whether each skill measured by a test
is likely to have been mastered based on that examinee’s
responses. Notably, Mplus can also provide classification for
new examinees using item and structural model parameters
that have already been calibrated in previous samples, a sig-
nificant advantage in real-world assessment.

Linking DCMs to Latent Class Models

DCMs can be viewed as confirmatory latent class models given
that each of the 2S possible skill mastery profiles in DCMs can
be represented by a separate latent class. These skill mastery
profiles are then linked to the observed item responses via
the τ ic item thresholds that predict the log-odds for the prob-
ability of a correct item response according to the skills of
an examinee. But because each item only measures certain
skills, and because skills are either mastered or not, only a
limited set of predicted item responses (created from the pos-
sible unique item threshold values) are distinguishable as a
result. Thus, rather than following a smooth logistic function
as in item response theory models, item responses in DCMs
will follow a step-like function with fewer possible probabili-
ties (as calculated by converting the τ ic item thresholds into
the π ic item difficulties using the general latent class model
in Equation 1.

Further, even though a test may measure multiple skills
overall, each item is likely to measure only some of these skills
by design. In DCMs, the mapping of which skills are measured
by which item is referred to as a Q-matrix (Tatsuoka, 1983),
with entries qis for each item i and skill s. If item i measures
skill s, then qis = 1, otherwise qis = 0. The Q-matrix mapping
of each item to the skill(s) it measures is determined a priori
from theory about the item content, just as in multidimen-
sional confirmatory factor models or item response models.
The Q-matrix used in our example was the result of psycho-
metric analyses on the ECPE by Buck and Tatsuoka (1998).
The analyses showed that items of the test were likely to mea-
sure three distinct skills. The left side of Table 1 shows the
Q-matrix that maps each item to the three skills in our ECPE
example. As shown, eight items measure only one skill, seven
items measure two skills, and zero items measure three skills.
The morphosyntactic (1), cohesive (2), and lexical (3) skills
were each measured by 13, 6, and 18 items, respectively. This
Q-matrix will be the basis for our DCM specification, in that
the τ ic item thresholds will be held equal for latent classes
(skill mastery profiles) with the same mastery status on the
skills measured by the item. For instance, item 20 was written
to measure knowledge of morphosyntactic and lexical rules
only (Skills 1 and 3). As a result, the thresholds for item 20 are
the same for any examinee who has mastered both of these
rules, regardless of the examinee’s mastery on cohesive rules.
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Table 1. ECPE Q-Matrix and LCDM Item Parameter Estimates

Item Skill 1 Skill 2 Skill 3 �i,0 �i,1,(1) �i,1,(2) �i,1,(3) �i,2,(1,2) �i,2,(1,3) �i,2,(2,3)

1 1 1 0 .835 .000 .600 1.222
2 0 1 0 1.037 1.247
3 1 0 1 − .340 .748 .346 .535
4 0 0 1 − .139 1.691
5 0 0 1 1.082 2.015
6 0 0 1 .865 1.692
7 1 0 1 − .106 2.855 .952 − .952
8 0 1 0 1.482 1.922
9 0 0 1 .119 1.195
10 1 0 0 .055 2.050
11 1 0 1 − .039 .818 .961 .777
12 1 0 1 − 1.769 .000 1.290 1.515
13 1 0 0 .660 1.630
14 1 0 0 .176 1.368
15 0 0 1 .996 2.114
16 1 0 1 − .104 2.341 .892 − .864
17 0 1 1 1.354 .767 .596 .076
18 0 0 1 .926 1.389
19 0 0 1 − .195 1.848
20 1 0 1 − 1.389 .243 .908 1.410
21 1 0 1 .164 1.053 1.130 .042
22 0 0 1 − .872 2.245
23 0 1 0 .664 2.071
24 0 1 0 − .673 1.522
25 1 0 0 .092 1.136
26 0 0 1 .164 1.119
27 1 0 0 − .887 1.713
28 0 0 1 .568 1.745

Note. Skill 1: Morphosyntactic rules; Skill 2: Cohesive rules; Skill 3: Lexical rules.

Thus, DCMs are confirmatory not only with respect to how
many latent classes (corresponding to skill mastery profiles)
should be present, but also with respect to how they predict
item responses based on the specific combination of the skills
measured by a given item and the skills mastered by a given
examinee.

Empirical work has resulted in a plethora of specific DCM
variants. For instance, the DINA model (Haertel, 1989; Junker
& Sijtsma, 2001; Macready & Dayton, 1977) separates people
into two classes: those who have mastered all skills measured
by an item and those who have not. Other models assume
that the probability of a correct response increases for each
skill mastered (e.g., the reparameterized unified model, or
RUM, and compensatory RUM; Hartz, 2002). In yet other
models, only a subset of skills must be mastered to answer
an item correctly (e.g., the DINO model; Templin & Henson,
2006). Instead of focusing on any of these specific DCM vari-
ants, we use the more general log-linear cognitive diagnosis
model (LCDM; Henson, Templin, & Willse, 2009) because of
its flexibility and extensions to other psychometric models.
That is, not only can the LCDM take the form of each of the
aforementioned specific DCMs by placing restrictions on its
item parameters, but it also allows for parameterizations not
possible within the other DCMs, thus providing precise yet
flexible information about the structure of items of a test (for
additional details, see Henson, Templin, & Willse, 2009).

Interpreting the Parameters of the LCDM

The LCDM predicts item responses using the Q-matrix map-
ping of the skills measured by each item, as illustrated in
Equation 2 below using item 20, which measures knowledge of

morphosyntactic rules (Skill 1) and knowledge of lexical rules
(Skill 3). This results in Q-matrix entries for item 20 of q20,1 =
1 (because it measures morphosyntactic rules), q20,2 = 0
(because it does not measure cohesive rules), and q20,3 = 0
(because it measures lexical rules). Conditional on an exam-
inee’s mastery profile αe = [αe1, αe2, αe3], the LCDM then
provides the following item response function for item 20
(and for any other item i that measures Skills 1 and 3) as:

P (X ei = 1|αe ) =
exp(λi,0 + λi,1,(1)αe1 + λi,1,(3)αe3 + λi,2,(1,3)αe1αe3)

1 + exp(λi,0 + λi,1,(1)αe1 + λi,1,(3)αe3 + λi,2,(1,3)αe1αe3)

(2)

More generally, the Q-matrix and the psychometric model
provide a series of constraints on the general latent class
model. The resulting model therefore has a fixed number of
classes (set by the number of possible skill patterns) and
a fixed item parameter structure (set by the entries of the
Q-matrix and the DCM).

The LCDM item parameters are analogous to the dif-
fering levels of effects found in an analysis of variance
(ANOVA) model. The mastery profile, αe = [αe1, αe2, αe3],
uses dummy-coding to indicate whether examinee e has mas-
tered skill s (αes = 1) or has not mastered skill s (αes =
0). Mastery status is then mapped onto the predicted item
response by four item parameters: an intercept (λi,0) for the
log-odds of a correct response in an examine who has not
mastered either skill, two main effects (λi,1,(1) and λi,1,(3))
that increase the log-odds of a correct response given mastery
of each skill in the absence of the other, and a two-way inter-
action between the two skills (λi,2,(1,3)) that would further
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increase the log-odds of a correct response given mastery of
both skills. The term within the exponent in Equation 2 be-
comes the τ ic item threshold as predicted by the parameters
of the LCDM and the mastery status of the examinee. For
item 20, there are four possible threshold values: τic = λi,0
for examinees who have not mastered either skill (αe1 = 0
and αe3 = 0), τic = λi,0 + λi,1,(1) for examinees who have
mastered only the morphosyntactic Skill 1 (αe1 = 1 and
αe3 = 0), τic = λi,0 + λi,1,(3) for examinees who have mas-
tered only the lexical Skill 3 (αe1 = 0 and αe3 = 1), and finally
τic = λi,0 + λi,1,(1) + λi,1,(3) + λi,2,(1,3) for examinees who
have mastered both skills (αe1 = 1 and αe3 = 1). To ensure
that mastery of more skills results in a higher probability
of a correct response as intended, the LCDM places order
constraints on the item parameters for the main effects and
interactions, as will be described (see also Henson, Templin,
& Willse, 2009).

To demonstrate how the LCDM predicts an item response,
we assign a hypothetical value each item parameter in Equa-
tion 2: intercept λi,0 = −2, main effects λi,1,(1) = 2 and
λi,1,(3) = 1, and the two-way interaction λi,2,(1,3) = 0. Table 2
shows the LCDM item response function for each of the four
possible combinations of Skills 1 (morphosyntactic) and 3
(lexical: having mastered none, either, or both), through
which the log-odds and probability of a correct item response
can then be predicted. Each of the possible 23 = 8 mastery
profiles maps onto a profile in Table 2 based on the mastery
status of Skills 1 and 3 in that profile. That is, the τ ic item
thresholds for the predicted log-odds of a correct response
(which through Equation 1 can be converted into the π ic la-
tent class model probabilities) can take on one of four possible
values given the specific mastery profile for the examinee’s
class αe = αc.

Using our example values, when neither Skill 1 (mor-
phosyntactic) nor 3 (lexical) has been mastered by the ex-
aminee (αe1 = 0 and αe3 = 0), only the intercept (λi,0)
predicts the item threshold, which is a log-odds of −2 (or a
probability of .12) for a correct response here. That is, simi-
lar to ANOVA, the intercept is defined as the item threshold
for a reference group of examinees that have not mastered
either skill measured by the item. The main effects (λi,1,(1)
and λi,1,(3)) then predict the increase in the item threshold
for possessing either Skill 1 or 3, respectively. An examinee
who has mastered only the morphosyntactic Skill 1 will have
a predicted item threshold of (−2 + 1 = −1). An examinee
who has mastered only the lexical Skill 3 will have a pre-
dicted item threshold of (−2 + 2 = 0). Finally, the two-way
interaction (λi,2,(1,3)) gives the additional change in the item
threshold given mastery of both skills. Because the interac-
tion term was 0 in this example, the item threshold for an
examinee who has mastered both skills is just the sum of the
intercept and main effects for each skill (−2 + 1 + 2 = 1).
When the interaction term is 0, the item response function is
said to be compensatory, in which a mastered skill can com-
pensate for non-mastery of other skills. When the interaction
term is different from 0 instead, such that the item thresh-
old will be different than the sum of the intercept and main
effects, this indicates that the skills are non-compensatory,
or that having both skills provides an additional unexpected
adjustment to the log-odds of a correct response. Similar to
ANOVA, the LCDM can be used to test whether each interac-
tion term is different from 0, thus allowing for a compensatory
or non-compensatory model for each item as needed.

As demonstrated in Equation 2 for an item measuring two
skills, the number of parameters in the LCDM item response
function will depend on the number of skills measured by the
item. The right-side columns of Table 1 list the parameters of
the LCDM specified for each ECPE item given the left-side Q
matrix. Items measuring one skill will only have an intercept
and a main effect for that skill. All items measuring two
skills will have an intercept, two main effects, and a two-way
interaction for the pair of skills. Items measuring three skills
will have an intercept, three main effects (one for each skill),
three two-way interactions (one for each pair of skills), and
one three-way interaction (for all three skills). In practice,
however, higher-level interactions are frequently omitted if
not statistically different from 0 or if they cause difficulty
in estimation. The higher order interactions affect the item
response probability for classes where multiple skills have
been mastered. Because there are a small number of classes
where these terms contribute to the response function, the
impact of their omission is expected to be minimal. In general,
we suggest that at least all two-way interactions be specified
for items measuring more two or more skills so as to obtain an
optimal balance between model complexity and estimation
accuracy.

Mplus Syntax for Estimating the LCDM
We now describe Mplus syntax for estimating the LCDM item,
structural, and examinee parameters for our example 28-
item test measuring three skills (knowledge of morphosyn-
tactic rules, cohesive rules, and lexical rules). The following
section assumes basic knowledge of Mplus syntax, as de-
scribed in more detail in the Mplus User’s Guide (Version
6.11; Muthén & Muthén, 2013). Mplus syntax uses a series of
commands, each with a specific purpose and set of options.
The initial Mplus syntax includes four commands: (1) TI-
TLE, (2) DATA, (3) VARIABLE, and (4) ANALYSIS, as found
in the appendix. These initial syntax commands will remain
relatively unchanged across DCMs, and so we provide only
limited discussion of these commands below.

First in the syntax file is the optional TITLE command,
whose text simply provides a title that will appear on each
page of the output. Next is the DATA command, whose op-
tions provide the specifics of the data set to be analyzed. In
our example, the DATA command only includes the name of
our data file: ecpedata.dat. The format of our data is space-
delimited (a space in between each column), with the data
from each examinee located in a single row. The first column
holds an identification number while the next 28 columns
hold the ECPE item responses.

The VARIABLE command provides the names and charac-
teristics of the variables in the data set and in the analysis,
which include four options in our example. First, the NAMES
option lists the names for all variables in the data file, includ-
ing ID for the examinee identification number and x1 through
x28 for the item responses. Second, the USEVARIABLE option
lists which variables in the data file should actually be used
in the analysis. By default, all variables listed in the NAMES
command are included. For our analysis, however, we do not
wish to analyze the ID variable, so we list variables x1–x28
under the USEVARIABLE option. Third, the CATEGORICAL
option indicates that items x1–x28 are categorical response
variables, which is necessary because our items are scored
as 0/1 (incorrect/correct). For the variables listed under the
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Table 2. Example LCDM Item Response Function for Item 20 of the ECPE

Class-specific
�e1 �e3 LCDM Item Response Function Threshold �20,c Probability �20,c

0 0 �20,0 + �20,1,(1) (0) + �20,1,(3)(0) + �20,2,(1,3)(0)(0) −2 .12
0 1 �20,0 + �20,1,(1) (0) + �20,1,(3)(1) + �20,2,(1,3)(0)(1) −1 .27
1 0 �20,0 + �20,1,(1) (1) + �20,1,(3)(0) + �20,2,(1,3)(1)(0) 0 .50
1 1 �20,0 + �20,1,(1) (1) + �20,1,(3)(1) + �20,2,(1,3)(1)(1) 1 .73

Note. The Q-matrix entry for Item 2 was [0, 1, 0]. The Q-matrix entry for item 20 was [1, 0, 1].

CATEGORICAL option, Mplus treats each numeric value as its
own category level. The lowest numeric value, 0 in our data,
will be labeled as CATEGORY 1 by Mplus, and all data values of
1 will be labeled as CATEGORY 2. Fourth, the CLASSES option
specifies the label we will use to name the latent classes and
the number of latent classes present. Here we are measuring
three skills, resulting in 23 = 8 latent classes for the possible
skill profiles. Thus, the syntax c(8) denotes that c will be the
label for our eight latent classes.

The Mplus ANALYSIS command is used to specify numer-
ous options for estimation, of which we will include TYPE and
STARTS. The TYPE option tells Mplus the type of analysis. Be-
cause DCMs are latent class models that are in turn subsumed
into a larger group of finite mixture models (e.g., McLachlan
& Peel, 2000), the option TYPE = MIXTURE will be needed.
The STARTS option indicates the number of random starts
to be used for the analysis, which is set to 10 by default in
a mixture model without constrained parameters. Because
of the constraints of the LCDM, we turn off this unnecessary
option via STARTS = 0.

So far we have described the preliminary syntax for Mplus
and how categorical outcomes in latent class models (and
thus DCMs) are modeled in Mplus. We now describe three
non-syntax steps needed before we can translate the LCDM
predictions into model constraints in the Mplus syntax.

Creating a Class-to-Profile Table Relating Each Latent Class
to a Skill Profile

Because each latent class represents a unique profile of three
skills that are either mastered or not mastered, we must first
map the skill profiles onto the eight latent classes. One way to
do so is to create a class-to-profile table, as shown in Figure 1,
in which all possible classes are listed down the rows and
each skill is listed across the columns. The assignment of non-
mastery (0) or mastery (1) of each skill in the profile proceeds
by successively partitioning the latent classes into two sets
(0 or 1) for each skill. Because our example measures three
skills, three successive partitions are needed, as depicted in
Figure 1 and described below. Further, this process will work
for any number of measured skills, as the total number of skill
profiles, 2S, will always be divisible by two.

In the first step, mastery values are assigned to Skill 1
such that Classes 1 through 4 (the first half of the eight total
classes) get a 0 for non-mastery of Skill 1. The remaining
Classes 5 through 8 get a 1 for mastery of Skill 1. In the second
step, we assign values for Skill 2. We partition only the classes
where Skill 1 is set to 0 (Classes 1 through 4) into two equal
sets: Classes 1 and 2 (the first half of the four classes) get
a 0, and Classes 3 and 4 get a 1. For the remaining Classes
5 through 8, we repeat the pattern from Classes 1 through 4
(so Classes 5 and 6 get a 0, and Classes 7 and 8 get a 1). In
the third step we assign values for Skill 3. We partition only

the first classes of Skill 2 that were assigned a 0 (Classes 1
and 2): Class 1 gets a 0, and Class 2 gets a 1. We replicate this
partitioning pattern for Classes 3 and 4 (3 gets a 0, 4 gets a
1), Classes 5 and 6 (5 gets a 0, 6 gets a 1), and Classes 7 and
8 (7 gets a 0, 8 gets a 1). Thus, through this process a unique
profile of skills is assigned to each latent class, as shown in
the second row of Table 3. For example, the skill profile for
Class 4 is α4 = [0, 1, 1], indicating that although examinees
in Class 4 have not mastered morphosyntactic rules (Skill 1),
they have mastered cohesive rules (Skill 2) and lexical rules
(Skill 3). Given 2S = 23 = 8 possible classes and 28 items, we
can now use this class-to-profile table to specify the 8 × 28 =
224 possible τ ic item thresholds.

Creating an LCDM Specification Table

Next, we use the LCDM item parameters and the Q-matrix
entries to provide the item response function for each of the
224 class-specific item thresholds. For sake of illustration,
only the LCDM predictions for items 2 and 20 are shown in
the middle of Table 3. First, because item 2 only measures
Skill 2 (cohesive rules) according to our Q-matrix (as seen
in the left columns of Table 1), it has just two possible LCDM
parameters: an intercept, λ2,0, and a main effect for Skill 2,
λ2,1,(2). Accordingly, each of the eight possible skill profiles
will have one of two possible LCDM item response functions
based on mastery of Skill 2. For skill profiles in which Skill 2
is not mastered (skill profiles α1, α2, α5, and α6), the LCDM
item response function is:

τ2,c = λ2,0 + λ2,1,(2)αc2 = λ2,0 + λ2,1,(2) (0) = λ2,0. (3)

For skill profiles in which Skill 2 is mastered (profiles α3,
α4, α7, and α8), the LCDM item response function is:

τ2,c = λ2,0 + λ2,1,(2)αc2 = λ2,0 + λ2,1,(2)

= λ2,0 + λ2,1,(2). (4)

As such, each of the τ 2c class-specific item thresholds for
item 2 must be defined by either Equation 3 for the classes
in which Skill 2 is not mastered (τ 2,1, τ 2,2, τ 2,5, and, τ 2,6) or
Equation 4 for the classes in which Skill 2 is mastered instead
(τ 2,3, τ 2,4, τ 2,7, and, τ 2,8).

Second, because item 20 measures Skill 1 (morphosyntac-
tic rules) and Skill 3 (lexical rules) according to our Q-matrix,
it has four possible LCDM parameters: an intercept, λ20,0, a
main effect for Skill 1, λ20,1,(1), a main effect for Skill 3,
λ20,1,(3), and a two-way interaction between Skills 1 and 3,
λ20,1,(3). As seen in Table 2, each skill profile will have one
of four possible item response functions based on mastery of
Skills 1 and 3, resulting in one of four possible thresholds.
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FIGURE 1. Schematic diagram of class-to-profile labels. Adaptation from Rupp, Templin, and Henson (2010).

Converting the LCDM Specification Table to an Item
Threshold List

The last step before writing Mplus syntax is to build a thresh-
old list: to determine which τ ic item thresholds will be the
same across classes and which LCDM parameters will predict
each threshold. Each unique item threshold value (as taken
from the LCDM specification table) will receive a separate
label used by Mplus to equate these item threshold values
across classes. For instance, item 2 had two possible thresh-
old values resulting from either λ2,0 (for classes in which
the cohesive Skill 2 was not mastered) or λ2,0 + λ2,1,(2) (for
classes in which the cohesive Skill 2 was mastered). Although
arbitrary for Mplus, to help us keep them organized we will
label the item thresholds using a format of: T[i]_[#]. The
first character, T, will be used in each to indicate we are
labeling a Threshold. The second character (in brackets to
denote that the value will change) will index which item the
threshold is for. The third character, an underscore, sepa-
rates the item index from the final character, which holds the
number of the threshold used for the item (which will also
change).

For example, the threshold labels for item 2 (measuring
only the cohesive Skill 2) appear at the bottom of Table 3,
as constructed from the LCDM specification table as follows.
The first possible threshold for item 2 is labeled T2_1 and
is used when only item 2’s intercept predicts the log-odds of
a correct response—that is, when the cohesive Skill 2 has
not been mastered, which occurs in both Class 1 (skill profile
α1 = [0, 0, 0]) and Class 2 (skill profile α2 = [0, 0, 1]).
But Class 3 (α3 = [0, 1, 0]), does have mastery of the co-
hesive Skill 2, so it gets a different threshold label, T2_2,
which predicts the log-odds of a correct response using item
2’s intercept plus the main effect for Skill 2. The_2 part of the
label reflects that this is the second threshold that appears
for item 2. Class 4 (α4 = [0, 1, 1]) also has mastery of the
cohesive Skill 2, and so it also receives the T2_2 threshold
label. The remaining classes follow a similar pattern, with
Class 5 (α5 = [1, 0, 0]) and Class 6 (α6 = [1, 0, 1]) re-
ceiving label T2_1 because they do not have mastery of Skill
2, and Class 7 (α7 = [1, 1, 0]) and Class 8 (α8 = [1, 1,
1]) receiving label T2_2 because they do have mastery of the
cohesive Skill 2. Thus, rather than eight unique thresholds for
item 2 across the eight latent classes, the LCDM instead esti-
mates only two distinct thresholds, resulting in a much more
parsimonious model. Table 3 also lists the threshold labels

for item 20 measuring Skills 1 (morphosyntactic rules) and
3 (lexical rules), and thus for which four labels are needed
to represent the four possible item thresholds (rather than
eight unique thresholds) corresponding to non-mastery or
mastery of Skills 1 and 3 (none, either, or both). The other
item thresholds would be assigned to each class based on
the relevance to that item of each mastered skill in their
profile.

Mplus MODEL Command Syntax for the LCDM

Using the item threshold list just created, we can now write
the Mplus MODEL command syntax that specifies the model
within each latent class. The appendix provides syntax for
items 2 and 20 within Classes 1, 2, and 8 (taken from Table 3).
The %c#1% heading indicates that the text that follows defines
the item thresholds specifically for Class 1 (skill profile α1 =
[0, 0, 0]). The first term [x2$1], refers to the threshold
($1) for item x2 (our name for item 2). Because they are
dichotomous, each item requires only one model threshold
(i.e., for the difference between an incorrect and correct
response). The second term (T2_1), is the label we provide
to place equality constraints on the threshold for item 2.
Therefore, the line as a whole instructs Mplus that the first
(and only) threshold of item 2 ([x2$1]) will be labeled T2_1.
Critically, any threshold labeled T2_1 will receive that same
value across classes. The rest of the %c#1% section would list
the thresholds and accompanying labels for all items within
the first class. A similar syntax follows for the second class,
beginning with %c#2%, after which threshold labels would
again be specified for all items. In total, the threshold value
for each item in every latent class will need to be constrained
by the label assigned by the LCDM. Due to its size, the full
MODEL syntax for all classes and all items is provided in an
electronic appendix instead.

Mplus MODEL CONSTRAINT Syntax for the LCDM

After specifying the syntax labels for the item thresholds,
next comes the MODEL CONSTRAINT command, in which
each item threshold (represented by the label created in the
MODEL section) will be predicted from the LCDM parame-
ters (as shown for items 2 and 20 in Table 3). Further, given
that the LCDM specifies that mastery of more skills must in-
crease the log-odds of the probability of a correct response
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(i.e., monotonicity), each item will also have a set of ordering
constraint statements for all LCDM main effect and interac-
tion parameters.

The appendix lists MODEL CONSTRAINT syntax for items
2 and 20. The first line for item 2, NEW(L2_0 L2_12), instructs
Mplus to create two new variables named L2_0 and L2_12 for
the LCDM model parameters for item 2. We must use another
naming convention given that Mplus only allows eight charac-
ters in these names. The first letter L refers to being an LCDM
parameter (Lambda: λ). The second character gives the item
(item 2 here). The character after the underscore represents
the level of the effect: 0 for an intercept, 1 for a main effect,
and 2 for a two-way interaction. The characters following the
level of the effect refer to which skills(s) are involved in the
effect (literally which α multiply the parameter in the LCDM
from Equation 2). Here, the label for the intercept (λ2,0) is
L2_0 and for the main effect of the cohesive Skill 2 (λ2,1,(2))
is L2_12.

The next line of syntax predicts the first threshold value
for item 2 (T2_1) from the LCDM parameters. But because
Mplus models the log-odds for the probability of an incorrect
response rather than a correct response, each item threshold
equation must be multiplied by −1. From Table 2, we see that
T2_1 is used when only the item 2’s intercept predicts the
log-odds of a correct response, so only the label for the inter-
cept (L2_0) appears in parentheses. Similarly, the next line
provides the LCDM equation to predict the second threshold
value for item 2 (T2_2). Table 2 lists the second threshold
for item 2 as predicted by item 2’s intercept (L2_0) plus the
main effect for the cohesive Skill 2 (L2_12), so the resulting
equation is T2_2 = −1(L2_0 + L2_12). The final portion of
the syntax for item 2 provides the ordering constraints for the
LCDM parameters. Specifically, all main effects in the LCDM
must be positive to ensure that masters of a skill have a higher
probability of answering the item correctly than non-masters.
The syntax indicating this constraint is L2_12>0, which states
that the label for the main effect L2_12 must be greater than
0. All other items measuring one skill will have similar syntax,
with changes for the notation for the main effect (i.e., L3_11
refers to the main effect of the morphosyntactic Skill 1 for
item 3).

The syntax for item 20 demonstrates the ordering con-
straints when two skills are measured by an item. Because
the LCDM specifies all possible main effects and interactions
among skills, as the number of skills measured per item in-
creases, so does the number of LCDM parameters. As such,
item 20 has four LCDM parameters: its intercept (L20_0),
two main effects (L20_11 for morphosyntactic Skill 1 and
L20_13 for lexical Skill 3), and a two-way interaction be-
tween Skills 1 and 3 (L20_213). The syntax for the first three
thresholds (T20_1, T20_2, and T20_3) is a direct extension
of that for item 2, including only the intercept or the in-
tercept plus a main effect. The fourth threshold (T20_4)
represents the sum of all possible LCDM parameters for item
20, which includes its intercept, both main effects, and a
two-way interaction (L20_212). As such, item 20 now has
two additional ordering constraints for the interaction so
that the log-odds of a correct response will be greater when
both skills are mastered than when only one skill is mas-
tered. Specifically, the fourth threshold (for classes in which
Skills 1 and 3 are mastered) must be greater that the third
threshold (for classes in which only Skill 1 is mastered) and
greater than the second threshold (for classes in which only

44 C© 2013 by the National Council on Measurement in Education Educational Measurement: Issues and Practice



Skill 3 is mastered). These constraints are expressed by two
inequalities:

τ20,4 > τ20,3 → λ20,0 + λ20,1,(1) + λ20,1,(3) + λ20,2,(1,3)

> λ20,0 + λ20,1,(1) → λ20,2,(1,3) > −λ20,1,(3),
(5)

and

τ20,4 > τ20,2 → λ20,0 + λ20,1,(1) + λ20,1,(3) + λ20,2,(1,3)
> λ20,0 + λ20,1,(3) → λ20,2,(1,3) > −λ20,1,(1).

(6)

These inequalities are expressed by the lines L20_213>
-L20_11 and L20_213>-L20_13. All items measuring two skills
will have similar constraints to ensure monotonicity across
all skill profiles. For higher level interactions, the inequalities
are always formed by comparing the interaction term to each
of the thresholds representing the level of the effect imme-
diately below the interaction term. For instance, a threshold
including a three-way interaction would be compared to the
three thresholds including a two-way interaction, and so forth.

The Remaining Mplus Syntax

Finally, just two other Mplus commands remain. As shown in
the appendix, the TECH10 option on the OUTPUT command
requests additional model fit statistics not given by default.
The SAVE option on the SAVEDATA command instructs Mplus
to save to an external file the examinee estimates of the
probability of membership in each class (i.e., the probability
of each mastery profile for each examinee). The FORMAT
option specifies the format in which the data are to be saved
as f10.5—a total of 10 digits per estimate, with 5-decimal
precision. Finally, the FILE = option specifies the name and
path of the external file of examinee estimates. Here, we call
the file ecpe_examinee.dat, which will be saved to the folder
with our syntax file by default.

Understanding Mplus Output for LCDM Parameters
Once the full syntax file has been constructed, it is then sub-
mitted to Mplus by using either the RUN button found along
the top of the user interface or through calling Mplus in batch
mode from the command line syntax in Windows. Assuming
there are no syntax errors, once Mplus terminates success-
fully the output will appear in a text file with the same name
as the input file, ending with the extension .out. We now
describe how to interpret the sections of Mplus output rel-
evant to the LCDM. Although Mplus output is voluminous,
most key LCDM output is contained in just a few sections.
Using the Mplus headings and going in order of appearance
in the output file, we will describe two important sections:
final class counts and proportions and new/additional pa-
rameters. Both of these output sections appear in abbreviated
form following the syntax in the appendix. After describing
these model output sections, we then discuss and interpret
the estimates in the saved external file of examinee posterior
probabilities.

Final Class Counts and Estimated Proportions Output

We begin with the output section for the final class counts
and estimated proportions. For each skill profile (latent
class c), the estimated number of examinees with that pro-
file is shown along with the DCM structural parameters, υc,
for the proportion of the sample that is a member of class c.
Mplus reports this information in several ways: based on the

estimated model, based on estimated posterior probabilities,
and based on the most likely class. We focus on the results
based on the estimated model that provides the most likely es-
timate of each structural model parameter. These results are
technically marginal maximum likelihood estimates, which
provide several beneficial statistical properties.

The output section has three columns, the first beginning
with the label latent classes. Results are given for each latent
class simply numbered 1 through 8, such that we must pro-
vide each latent class with our assigned skill profiles (as in
Figure 1). The second column provides the expected count
of respondents with each class. This count is found by mul-
tiplying the value from the third column, the estimated υc
parameter from the latent class model, by the sample size.
For our example data, we see that Class 1 (representing skill
profile α1 = [0, 0, 0]) has an estimate of υ1 = 0.30074.
This means that approximately 30% of our sample is ex-
pected to have mastered none of the three skills measured by
the ECPE (or .30074*2922 = 878.8 examinees). Skill profile
α8 = [1, 1, 1] has an estimate of υ8 = .34561, meaning that
approximately 34.6% of our sample (or 1009.9 examinees)
is expected to have mastered every skill measured by the
ECPE. The other parameter estimates in this section can be
interpreted similarly.

New/Additional Parameters Output—LCDM Item
Parameter Estimates

The next section of output is perhaps the most relevant to
the process of estimating and calibrating the LCDM from
our data. The New/Additional Parameters section contains
the parameter estimates for all LCDM model parameters.
The parameters appearing in this section were created by
the use of the NEW option under the MODEL CONSTRAINT
command. The values of the LCDM parameters were set by
the syntax equating the LCDM model to each item threshold.
Therefore, this section will contain all the information that
is needed to assess how well each item actually measures the
skills it is supposed to be based on the Q-matrix.

The New/Additional Parameters output contains five
columns. The first column contains the names of the pa-
rameters. These are the labels created for each of the LCDM
parameters under the MODEL CONSTRAINT command. The
values under the Estimate column are the estimated values of
the LCDM item parameters. The third column, S.E., contains
the standard errors of the estimated LCDM item parameters.
The fourth column is a Wald test statistic for the parame-
ter (Est./S.E.), and the fifth column is a two-tailed p-value
providing an approximate test of the null hypothesis that the
parameter is equal to 0. If the test is non-significant, we can
omit an LCDM parameter from a model without significantly
affecting measurement precision or model fit.

To illustrate, we examine the output for items 2 and 20.
Item 2 measured the cohesive rules skill, giving it two item
parameters, an intercept λ2,0 = 1.037 and the main effect
of mastering the cohesive skill λ2,1(2) = 1.247. The intercept
is the log-odds of a correct item response for the reference
group, examinees who have not mastered the cohesive rules
skill. When converted into a probability, the intercept shows
that examinees not mastering this skill have a .74 probability
of answering the item correctly. The main effect of cohesive
rules is the increase in the log-odds of a correct for examinees
mastering the cohesive rules skill, giving these examinees a
log-odds of a correct response of 1.037+1.247 = 2.284. When
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converted to a probability, this indicates that examinees who
were masters of the cohesive rules skill had a .91 probability
of answering the item correctly. The size of the intercept in-
dicates that item 2 may not be well-measured by the cohesive
rules skill, given that non-masters of the skill still have a high
chance of answering the item correctly. Results such as this
can indicate a lack of evidence for validity for the item (i.e.,
it does not measure the cohesive rules skill especially well),
item misfit (i.e., the Q-matrix entry is lacking one or more
skills that are actually being measured by the item), or simply
that the item is very easy for examinees.

Likewise, the estimated intercept for item 20, λ20,0 =
−1.389 (label L20_0), is the log-odds of a correct response
to item 20 for examinees mastering neither of the skills it
measures (morphosyntactic and lexical rules). When con-
verted into a probability, this means that examinees without
these two skills have a .20 probability of getting item 20 cor-
rect. We are generally unconcerned whether the intercept is
significantly different from 0 (i.e., in which 0 indicates that
non-masters have a 50% chance of a correct response). The
estimated main effect for Skill 1 of morphosyntactic rules,
λ20,1,(1) = .243 (label L20_11), is the increase in the log-
odds of a correct response to item 20 for mastering Skill 1
(in examinees who have not mastered Skill 3). The larger
its main effect of Skill 1, the more item 20 discriminates be-
tween masters and non-masters of Skill 1 (morphosyntactic
rules). Similarly, the estimated main effect for Skill 3 of lex-
ical rules, λ20,1,(3) = .908 (label L20_13), is the increase in
the log-odds of a correct response to item 20 for mastering
Skill 3 (in examinees who have not mastered morphosyn-
tactic Skill 1). Finally, the two-way interaction parameter,
λ20,2,(1,3) = 1.410 (label L20_213), is the additional increase
in log-odds of a correct response to item 20 when both Skills
1 and 3 are mastered (often called the over-additive effect).
Because its p-value = .239 indicates that the two-way inter-
action between morphosyntactic rules and lexical rules is not
significantly different from 0, the two-way interaction for item
20 can be omitted from the model, indicating that Skills 1 and
3 have a compensatory relationship for item 20. Table 1 lists
the estimated values for all LCDM parameters for the ECPE
items, which can be interpreted in a similar fashion.

Examinee Estimates: Probabilities of Class Membership

Our SAVEDATA command instructed Mplus to save exami-
nee estimates into an external file called ecpe_examinee.dat.
Table 4 lists entries in this file for five selected examinees.
The first 28 columns of the file (omitted from the table) con-
tain the examinee’s responses to the 28 ECPE items, followed
by the examinee’s original ID variable so that the external
file can be merged back into the original data file. Next are
a series of eight probabilities that the examinee is a member
of each latent class, one for each possible skill profile. We
label the probability that examinee e has profile c as α̂ec (in
boldface to indicate the probability is for the entire profile of
skills). The next column in the table displays the skill pro-
file estimate for the examinee, as based on the latent class
for which the examinee had the highest probability of mem-
bership. Although not in the output directly (but resulting
from computations of the output to be described), the final
three columns of the table, labeled α̂es (without boldface to
indicate the probability is for a single skill) give the marginal
probability that examinee e is a master of skill s.

To illustrate, we consider the entries for examinee 1 in the
first row in Table 4. Examinee 1 answered 26 of the 28 items
correctly, suggesting he or she is likely to have mastered all
three skills of the test. Consequently, the skill profile with the
highest probability for examinee 1 is profile 8 (α8 = [1, 1,
1]) with α̂1,8 = .96. This means that examinee 1 has a 96%
chance of having skill profile α8 that specifies mastery on all
three skills. The estimated probability for profile 6, α̂1,6 =
.04, (for α6 = [1, 0, 1]), indicates that although examinee
1 answered nearly every item correctly, the combination of
the two items answered incorrectly (item 4 measuring Skill 3
and item 24 measuring Skill 2) made it slightly possible (a 4%
chance) that the examinee had profile 6 in which Skill 2 was
not mastered (α6 = [1, 0, 1]) instead of profile 8 in which
Skill 2 was mastered (α8 = [1, 1, 1]). Each response pattern
yields a specific set of posterior probabilities, so examinees
with the same response patterns will have the same estimates
of profile membership.

These profile probability estimates are a straightforward
way to provide diagnoses about the total skills profile for ex-
aminees, but another form of an examinee estimate, the skill
mastery probability, provides additional useful information
about each individual skill rather than the overall profile of
skills. The formula for the probability of mastery for skill s,
denoted by α̂es (without boldfaced α, given a single skill and
not a profile), comes from the expected value for each skill:
summing the product of the skill profile probability times the
value for skill s (0 for non-masters, 1 for masters) across each
possible skill mastery profile (latent class) c, or αcs :

α̂es =
2S∑

c=1

α̂ecαcs (7)

Using the formula, we find that examinee 1 has a skill
mastery probability for Skill 1 of α̂1,1 = 1.00, for Skill 2 of
α̂1,2 = .96, and for Skill 3 of α̂1,3 = 1.00. These values sum-
marize the strength of the evidence obtained from the item
responses through the LCDM that a given examinee is a mas-
ter of each skill. In the case of examinee 1, we are virtually
certain he or she is a master of all three skills measured by the
test: morphosyntactic rules, lexical rules, and cohesive rules.
Thus, even though the model is specified such that each skill
is either mastered or not, the probabilities provided by the
LDCM for the overall profile and the mastery of each skill can
still be used to more accurately convey the shades of gray
that exist in assessing the abilities of real people. This type of
examinee feedback can be used to provide tailored instruc-
tion or tutoring plans for examinees that have yet to master
the skills measured by the test. For instance, examinees who
are not a master of a given skill (i.e., that have a predicted
probability less than .50), can be given extra instruction on
that skill specifically.

Discussion
In this article we have shown how diagnostic classification
models (DCMs) can provide informative results to analysts,
evaluators, and examinees. Unfortunately, development and
application of DCMs have primarily been conducted using ad
hoc software written to estimate only specific model variants.
Further, the software currently available for fitting DCMs is
not easily obtainable for most users, either due to the use
of advanced estimation techniques that require a high level
of technical proficiency (such as the Markov Chain Monte
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Table 4. Estimated Examinee Posterior Probabilities for Four Examinees

Skill Profile Probability Estimates Max Skill Mastery Probability
ID �̂e1 �̂e2 �̂e3 �̂e4 �̂e5 �̂e6 �̂e7 �̂e8 �̂ec �̂e1 �̂e2 �̂e3

1 .00 .00 .00 .00 .00 .04 .00 .96 [1,1,1] 1.00 .96 1.00
10 .34 .03 .00 .01 .46 .02 .10 .04 [1,0,0] .62 .15 .10
14 .46 .49 .00 .05 .00 .00 .00 .00 [0,0,1] .00 .05 .54
29 .02 .41 .00 .01 .03 .46 .00 .07 [1,0,1] .56 .08 .95
33 .75 .00 .04 .00 .07 .00 .12 .02 [0,0,0] .21 .18 .02

Note. Boldface entries represent highest probability across all profiles, �̂ec, and for each skill separately, �̂es. Max �̂ec is frequently given to the
examinee as the reported attribute profile.

Carlo methods found in Arpeggio; Bolt et al., 2008) or due
to restrictive research license requirements (i.e., as found
with programs such as MDLTM; von Davier, 2006). The field
of diagnostic modeling is still in its infancy, and its potential
contributions to educational assessment will only be realized
through continued research on and with these models. We
hope that our demonstration of how DCMs can be imple-
mented within Mplus will be a helpful step towards this end
goal.

The analysis of the ECPE served to demonstrate how to
obtain DCM item parameter and examinee probability es-
timates. In practice, the process of evaluating DCM infor-
mation begins with an investigation of the item parameters
estimates. First, items that have relatively high intercepts
indicate a large number of examinees who are not masters of
their measured skills are still answering the item correctly,
which could indicate a misfit in the Q-matrix. In our example,
the intercept for item 2 was large (i.e., non-masters still had
74% probability of answering item 2 correctly). Depending on
the item, one could change Q-matrix entries for the item (i.e.,
as warranted by the empirical work or theory surrounding the
measured skills), or one may consider specifying a new skill
altogether (i.e., a new column in the Q-matrix). Second, for
items measuring more than one skill, the interaction terms
should be inspected to determine if they are needed. In our
analysis, from Table 1 we can see that item 21 (measuring
the morphosyntactic rules and lexical rules skills) appears to
have a very low estimate for the interaction (.042). We can
remove this interaction from the item by deleting the entry
for it in the MODEL CONSTRAINT section of the Mplus syn-
tax. Finally, for items without interactions, the main effects
for each skill should be inspected for statistical significance
to determine if they indicate the skill is being measured by
the item. Each of our items without interactions had main
effects that were somewhat large (the smallest was the main
effect for the lexical rules skill on item 26, which was 1.119),
indicating that each item measured its skill at an acceptable
level. We note that item main effects can only be removed
from a model in the absence of any interaction terms involv-
ing their attributes. Upon inspection, the Q-matrix can be
refined, and the model can be re-estimated in Mplus.

The process of examining the results of the analysis leads
to a discussion of the validity of the tests and the skills them-
selves. At the test level, the skill information can help indicate
that the test is measuring the relevant content. For example,
small parameters for every item measuring a given skill would
cast doubt as to whether or not the skill is actually present in
the test. Validity is also relevant at the skill level. When pro-
viding skill-level feedback to an examinee, it is important to
ascertain that the skill measured is what it is purported to be.
This information, however, cannot be obtained solely from the

results of an analysis but must be evaluated using evidence
external to a test. Methods for investigating the validity of
skills measured by a test can follow methods for investigat-
ing any latent trait, and can include references to external
criteria (e.g., do masters of a skill perform better on related
tasks). Although different in form, the skills measured by a
DCM are no different in function from the traits measured in
any classical psychometric procedure. Therefore, their prop-
erties and the validity of each must be continually evaluated
to justify their use in practice.

Once the item parameters appear to be acceptable and the
traits being measured have evidence for their validity, then
examinee probabilities can be used. In this sense, examinee
probabilities provide a roadmap for what examinees should
focus on during instruction and remediation. Examinees with
very low probabilities of mastery for skills should focus on
learning those skills, rather than focus on skills that already
have high probabilities of mastery. In practice, though, teach-
ing is not as easily segmented into separate skills as it may
appear. Thus, it may be difficult to find methods for instruction
for fine-grain skills that are embedded within large skills or
for content areas that are not easily disentangled. Therefore,
skill-level information may be useful in specific situations but
potentially less useful in others. As such, there is a need to
build tests for use with DCMs rather than to adapt existing
tests for DCM use in order to ensure that useful skills are in-
corporated into the test. Knowledge of the precise type of skill
level information needed to augment instruction is critically
important, as then test items can be constructed to measure
such information and Q-matrices can be built to model such
items.

Practically, although our choice of Mplus was motivated by
its widespread availability, the use of Mplus for DCM anal-
yses is not without limitations. Because Mplus is a general
program that estimates a host of psychometric and statistical
models, estimation time can be lengthy. For Q-matrices with
six or fewer skills, estimation time can take several hours.
Each additional skill brings about an exponential increase in
estimation time, making Mplus ill-suited for Q-matrices with
more than six skills. Furthermore, although Mplus is limited
only by the size of the memory in the computer on which it is
installed, in our experience Mplus has difficulty in estimating
more than 80 items. In tests with more than six skills or more
than 80 items, we recommend the use of software created by
psychometricians in the field of DCMs (such software can be
obtained by contacting the first author).

In addition, as the reader might have guessed by now,
specification of the syntax to estimate diagnostic classification
models can be very labor-intensive and error-prone, especially
for models with large numbers of items measuring many skills.
To facilitate this process, we have developed a SAS program
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(freely available from the authors) to do most of this work for
us. The SAS program requires the user to input a Q-matrix
mapping items to the skills they measure and to provide
information about the data file (e.g., file names, number of
items, and number of skills). The SAS program then writes
the Mplus syntax based on data and its Q-matrix, executes
Mplus, and parses the output into SAS data sets. It is our hope
that this SAS program can further facilitate research with and
using diagnostic classification models as estimated in Mplus.

As Mplus syntax can be difficult to construct for esti-
mation of DCM model parameters, we expect educational
measurement practitioners are most likely to build the nec-
essary syntax, rather than classroom teachers. However, if
model parameters have already been obtained though pre-
calibration with existing data, Mplus can also be used to
provide examinee skill probabilities with new test data. In
fact, once a calibration syntax file containing item parame-
ters exists, Mplus can be run with a new data file using the
same syntax file. In these situations, we expect that anyone
with access to Mplus can readily obtain examinee skill mas-
tery probabilities. Because item parameter estimation takes
the bulk of the time, such examinee estimation only takes
a fraction of a second. As such, DCM-scored tests could be

Appendix
Abbreviated Mplus Syntax and Relevant Output

built with Mplus scoring files, and teachers or practitioners
can obtain examinee estimates from data. For more informa-
tion about how to build such files, we refer the reader to Rupp,
Templin, and Henson (2010).

In summary, the steps outlined in this article show how to
estimate the parameters of the LCDM with a readily avail-
able and user-friendly software package, Mplus. We showed
how the LCDM can be specified as a confirmatory latent class
model so that its estimation becomes possible using more
general software programs. Furthermore, because many com-
monly used DCMs can be fitted through the LCDM parameter-
ization, the methods explicated in this article will be useful
for many different model variants. Additionally, the Mplus
package is flexible enough to be used in many real-world test-
ing situations, handling missing data and differing response
variable types with ease. In addition, the MONTECARLO com-
mand in Mplus can be used to conduct simulation studies for
psychometric research, further expanding the software’s ca-
pacity to provide information about the statistical properties
of DCMs. It is our hope that these gains in accessibility and
practicality through more widely available software like Mplus
will help spur further development of and applications with
models for diagnostic assessment.
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