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The distinction of between-person age differences from within-person age changesis
necessary for understanding aging-related change processes. Although longitudinal
studies are required to address issues relating to within-person change, most studies
begin using age-heterogeneous samples and conclude using survival-heterogeneous
samples. Given the numerous potential confounds associated with age-heterogeneous
samples, careful treatment of between-person age differencesis essential to obtain the
correct inferences regarding within-person age change. The authors demonstrate how
failure to differentiate between-person age effects (and by extension, of survival age
or other effects producing sample heterogeneity) will lead to uninterpretable infer-
ences regarding within-person change. The authors recommend that convergence of
age differences and age changes be formally evaluated whenever possible.

A magjor objective of developmental and aging research on cognitive functioning
is to describe patterns of change across the life span, including differentiation of
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function in early developmental tragjectories, age of peak performancein different
cognitive abilities, and magnitude of aging and health-related declines in midlife
and later life. Many types of cross-sectional and longitudinal research designs
have been used to understand such developmental trajectories across the life
span. Age-heterogeneous cross-sectional studies that describe age differences
have been used as a basis for inferring aging-related change. However, compari-
sons of findings from cross-sectional and longitudinal studies have often yielded
different conclusions about the patterns and rates of age-related change across the
life span. As noted by Schaie and Hofer (2001), “comparison of longitudinal to
cross-sectional findings provides evidence of both concordance and disagree-
ments (either full or in part)” (p. 61).

Schaie (1996, 2008) has emphasized the importance of evaluating historical
factors associated with birth cohort when evaluating longitudinal patterns of
cognitive change. To that end, longitudinal studies (see Hofer & Sliwinski, 2006)
have used Schaie’'s most efficient sampling design—based on a combination of
cross-sectional and longitudinal sequences. This sampling approach permits
investigation of how level of functioning or rate of change differs across birth
cohorts or how period of testing effects influence outcomes. A more common
sampling approach is that of accelerated longitudinal designs (Bell, 1953, 1954;
McArdle & Bell, 2000), in which individuals from sequential cohorts (e.g., birth
cohort, grade in school) are followed longitudinally for alimited period of time.
Measuring different cohorts that overlap with respect to age permits estimation of
a single trgjectory across the entire range of observed age, a much larger range
than what is observed directly through longitudinal follow-up. Although the
combination of age information across cohorts and over time allows for the opti-
mal estimation of parameters in models of change, it does so only under the
assumption of age convergence, or that cross-sectional age differences and longi-
tudinal age changes converge onto a common trajectory. That is, for such age
convergence models to produce valid results predicted val ues should depend only
on one' s age at a particular observation, and not on when the person was that par-
ticular age. Age convergence is a hypothesis that can be evaluated statistically,
and there are a number of published examples of how to do so when combining
longitudinal data across multiple discrete cohorts (e.g., Mehta & West, 2000;
Miyazaki & Raudenbush, 2000).

Age convergence models have also been used to analyze data from longitudi-
nal studies without discrete cohorts at the first occasion but rather that consist of
individuals with continuously varying ages at baseline. For example, some studies
of adult aging have applied age convergence models to samples with age ranges
at baseline spanning 30 to 40 years (e.g., Ferrer, Salthouse, McArdle, Stewart, &
Schwartz, 2005) or even 90+ years (McArdle, Ferrer-Cgja, Hamagami, &
Woodcock, 2002). Such wide age ranges encompass a large number of discrete
birth cohorts, and so multiple group approaches for testing convergence become
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impractical (Mehta & West, 2000). Accordingly, the purpose of this article isto
describe an alternative approach for testing age convergence in studies with con-
tinuous age heterogeneity at baseline.

THE IMPORTANCE OF CONVERGENCE

Consider the following model of within-person change, as shown in Equation (1):

Yi = B0 + B1(Agey; ) + by +1y. (1)

This model predicts the value of outcomey at time't for individual i based on
the population average intercept (5), the population average age slope (5;), an
individual-specific intercept deviation (by), and a residual term (r;). Terms
with a subscript i vary between individuals, whereas terms with a subscript ti
vary between individuals (i) and within individuals over time (t). Accordingly,
the within-person variability (across t) reflects the longitudinal component of
the data (i.e., age changes) and the between-person variability (across i)
reflects the cross-sectional component (i.e., age differences). The composite
nature of the variability in the age predictor (i.e., age varies across i and t)
impliesthat the average age slope (3;) is amixture of cross-sectional and longi-
tudinal effects. If the age convergence assumption is met, then the resulting
composite age slope 3, will be more efficient than an age slope estimated using
either purely longitudinal or purely cross-sectional information.

One method of distinguishing temporal (within-person) effects from cohort
(between-person) effects of age involves scaling the age variable. In between-
person age scaling, the origin of the time variable is set to acommon age. For
example, one could set the reference age as 80 by including (Age; — 80) as a
predictor rather than as age at birth as implied by using Age;. In contrast,
within-person age scaling involves representing change as a function of time
passed, which is specific to a given individual rather than to a given age.
Within-person age scaling is usually implemented by using the person’s age
at the initial assessment as the reference (i.e., by including Age; — Agey; as a
predictor rather than Age;), but other reference points have also been used
(Sliwinski, Hofer, Hall, Bushke, & Lipton, 2003; Wilson, Beckett, Bienias,
Evans, & Bennett, 2003). The same longitudinal information is provided from
individual-level data whether age is scaled between-persons (Age,; — 80) or
within-persons (Age; — Agey;). The choice of age scaling will, however, influ-
ence how between-person age variance is represented in the model for
change.
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TESTING AGE CONVERGENCE

Testing for age convergence (see also Hoffman & Stawski, 2009) involves a
simple extension of a technique described in texts on longitudinal data analysis
(Diggle, Liang, & Zeger, 1994) and multilevel modeling (Raudenbush & Bryk,
2002). Because Equation (1) estimates a single age slope (3,), it constrains the
longitudinal and cross-sectional age effects to be equal. Adding each individual’s
mean age (Age;) to the model relaxes this constraint. Equation (2) includes
Age; and groups all termsthat are constant for agiven individual in brackets:

Vi = [ﬁo + 6, (Agey) + by ]+ Br(Ag8 )+ (%)

The variable Ke_i conveys information only about cross-sectional age differ-
ences, and its addition to the model changes the interpretation of the 3, slope for
Age;. In Equation (1), the 8, slope for Age; reflected the effect of cross-sectional
differences in age and longitudinal age changes. In Equation (2) the effect of the
3, slope for Age;; is now its unique effect after controlling for the cross-sectional
age variation in Age; via ,. The unique effect of Age; is its longitudinal or
within-person effect. The precise interpretation of the 3, slope for Age; is clari-
fied by taking the person-level average on both sides of the equal sign, thus
aggregating over al sources of longitudinal information in Equation (3):

Vi =00+ Bo(Age;) + by + Bi(Age; )+ 3
The termsin this equation can be rearranged as shown in Equation (4):
3_/.i =fo+ (B + ﬂZ)Ee_i +hg +1 @

The result isamode that reflects information derived exclusively from between-
person age differences and shows that the between-person or cross-sectional age
slopeisgiven by the quantity (5, + 3,) . Thisimpliesthat the slope 3, reflects the
difference between the longitudinal and cross-sectional age effects. If age con-
vergence holds (i.e., if 3, = 0), then the predicted values from Equation (2) will
be equivalent to those from Equation (1). Within-person age scaling could be
used as well, in which each individual’s average age is set as the reference point
by including aAge, — Age; rather than Age; in Equation (2). This within-person
age scaling would leave the interpretation of the 5, age slope unchanged, but the
B, slope for Ee_i would now directly reflect the between-person age effect
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rather than the difference of the within-person and between-person age effects. It
is more common in longitudinal studies to set the reference to each individua’s
age at baseline (e.g., Mehta & West, 2000; Sliwinski & Buschke, 2004). Using
baseline age as a reference produces comparable results to the steps outlined in
Equations (1-4), except that the between-person age effect would reflect how an
individual’s age at the first occasion related to his or her score on the first occa
sion, rather than how his or her average age related to his or her average score.
Age at basdline is likely to provide a better index of cohort and selection effects
than would scaling relative to mean age, which islikely to be biased due to study
attrition and population mortality.

Equation (4) illustrates that age convergence will fail so long as the
between-person age slope and within-person age slope differ, even in the
absence of cohort differences on the age slope. Figures 1laand 1b illustrate this
point with hypothetical data. Figure 1a shows 4-year trajectories for three over-
lapping birth cohorts. Individuals at any point in time differ from individuals
who are 4 years older by an amount that is exactly equal to the amount of
change that they experience over the same interval. In this case, information
about longitudinal, within-person age changes and cross-sectional, between-
person age differences converges on the same answer, such that the 3, slope for
Age; in Equation (2) expressing the difference in these effects would be equal
to zero. Figure 1b shows the same longitudinal trajectories as Figure 1a, but
with a positive effect of birth cohort (8, > 0), such that subsequent birth cohorts
(i.e., those beginning the study at a younger age) have higher predicted out-
comes than earlier birth cohorts (who began the study at an older age). The
thick solid line represents the between-person age slope (5g) as obtained from
81+ 3o in Equation (2), which is steeper than the within-person age slope (5y),
as obtained from g, in Equation (2). Thus, even if the rate of age change is
identical across cohorts (as in this example), combining information about
cross-sectional age differences and longitudinal age changes in the presence of
intercept differences across age cohorts would yield a biased estimate of the
true developmental aging effect.

QUANTIFYING THE LONGITUDINAL AND CROSS-SECTIONAL
INFLUENCES

The estimate of the age convergence slope 3, in Equation (1) reflectsinformation
about how individuals change as they age as well as how people of different ages
vary from each other. Even if age convergence obtains such that the cross-sectional
and longitudinal age effects are equal, it would be useful to know the rela-
tive contribution of both types of information to the estimation of the age
convergence slope, or j3c. The formal relationship among the between-person
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FIGURE 1

Examples of age convergence (1a) and age nonconvergence (1b).
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(Bg), within-person (5,y) and convergence (5c) age slopes is expressed in
Equation (5) as

Be = w Pg +(1-w)By- )

The quantity w isthe mixing weight that controls the relative contribution of the
cross-sectiond (3g) and longitudinal age sope (5, to the estimation of the conver-
gence age sope (3c). The higher the value of w, the more 3 would reflect the cross-
sectional information about between-person age differences, and the lower the value
of w the more 3 would reflect the longitudina information about age changes. A
single occasion cross-sectional study would have w = 1, whereasalongitudind study
of individuals identical in age at basdline would have w = 0. Longitudinal studies
with age heterogeneous samples will have values of w that range between 0 and 1.

Calculating the value of w for a given study informs the extent to which the
results are driven by between-person age variance in the data. Although the value
of w would equal the ratio of the between-person sum of sgquares for age to the
total sum of squares for age given ordinary least squares estimation and balanced
data, the relative weighting of 3z and 3y is quite complex in the general case
(Raudenbush & Bryk, 2002). Fortunately, it is possible to determine the relative
contribution of cross-sectional and longitudinal information to the estimate of the
age convergence slope. This can be done by using parameter estimates and rear-
ranging the termsin Equation (5) to solvefor & asshown in Equation (6):

(6)

The weighti ng parameter & can be calculated by estimating the three different
ageeffects( 5c ﬂW, and gB)for aglven data set and then solving for & . For exam-
ple, if ﬂc =1.0, ﬁw =-15, and ﬁw —0.5, then & would be .5, indicating
exactly equal weighung of the cross-sectional and longitudinal age variance in the
estimation of the convergence age slope.

The rel ative amount of longitudinal and cross-sectional age variance available
to estimate 5 isan important determinant of the magnitude of & for agiven data
set. In pracucal terms, thisimplies that increasing the range of age at baseline and
reducing the amount of follow-up drives & upward (i.e., toward the between-
person, cross-sectional age effect), whereas restricting the initial age range and
increasing the amount of follow-up reduces & (i.e., toward the within-person, lon-
gitudinal age effect). The second implication is that the amount of residual within-
person variance will influence estimation of & . Asthe amount of residua variance
decreases, the relative weight of the longitudinal age variance increases, and vice
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versa. A formal test of age convergence coupled with an assessment of the relative
weighting of cross-sectional and longitudina age information can help to under-
stand why age convergence does or does not obtain in a given application. How-
ever, in extreme cases, such aswhen 95% of the age variance is between-persons, it
may be harder to detect nonconvergence because there would be so little longitudi-
nal information on which to base the test of age convergence.

APPLICATION TO SIMULATED DATA

The purpose of the current simulation study is twofold. First, we illustrate that
cohort differencesin level of an outcome (intercept) but not rate of change are
sufficient to bias age convergence dopes. Second, we examine how different study
design features (e.g., follow-up frequency, interval, and duration) and sample
characteristics (e.g., age range) systematically influence estimates of age conver-
gence effects. This isimportant because results from alongitudinal study do not
necessarily reflect exclusively or even mostly intraindividual change. Depending
on the study design, sample characteristics, and the analytic model, estimates of
aging effects from longitudinal data could reflect primarily cross-sectional age
differences, telling us very little about developmentally relevant intraindividual
change.

Each simulated data set consisted of an age-heterogeneous sample measured
longitudinally. Three design factors were varied across simulations. Thefirst fac-
tor was age range at baseline, which was set to either 20 or 40 years. Age was
uniformly distributed across its range. The second factor was the number of
assessments, which was set to 2, 3, 4, or 5. The third factor was the interva
between assessments, which was set to either 1 or 2 years. Sample size was fixed
to 500 for each simulated sample. Data for the simulations were generated using
the model in Equation (7):

Yi = 0o + 51(AQe&; ) + B2 (Birth Year,) + by + by (Agey ) +1y, (7

inwhich £, isthe population average intercept, 3, isthe population average age
slope, and 3, is the linear effect of cohort (i.e., birth year). The parameters by,
and by; represent each person’s deviation from the population average intercept
and age slope, respectively. Each simulation specified values for the fixed effects
(Bg, 8, and 3,). The population values for 3y and 3; were set to be 50 and —25 for
all simulations. The value for 3, was set to either 0 or —20. When 3, = 0, the
cross-sectional age effect (3, + ;) corresponded exactly to the longitudinal
effect. When 3, = —.20, the cross-sectional age effect was equal to —45. Note
that there is no interaction between age and cohort; the difference between
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cohorts, if present, was constant across al ages. The random intercept and age
slope were assumed to follow a bivariate normal distribution with variances of (g
and ¢, respectively. For simplicity, the covariance between the two random
effects was assumed to be 0 and the values for {5 and ¢; were set to 100 and .5,
respectively, for all simulations. In addition, the level-1 residuas (ry; values)
were assumed to be independently distributed from a univariate normal distribu-
tion, with a mean of 0 and variance ¢, set to either 30 or 10 for all simulations.
The values for the intercept variance (¢) and residual variance (o?) implies a
dependent measure with a SD = 10 and an intraclass correlation (an index of reli-
ability) of either .77 or .91 when o is set to 30 and 10, respectively. Crossing all
elements of the ssmulation design resulted in 64 different simulations, and each
simulation consisted of 1,000 samples, producing a total of 64,000 simulations.
Simulations were conducted in SAS (v 9.1) and analyses of the simulated data
sets were performed using PROC MIXED.

Analysis and Results of Simulation Study

Two models were fit to each simulated data set, using SAS PROC MIXED
and full information maximum likelihood estimation, as shown in Equations
(8) and (9):

Vi = Bo + B1(Ag&; ) + by + by +1 (8)

Vi = 6o + Bu(Agey) + B (Age; ) + b + by +1y 9

Model (7), the age convergence model, assumes no effect of birth cohort and
hence that longitudinal and cross-sectional age effects are equivalent. Model (9),
the age change + age differences model, isidentical to the model (7) used to gen-
erate the data because birth year and average age are perfectly correlated. In prac-
tice, birth year and average age would be perfectly correlated if the baseline
assessment occurred on the same date for all individuals and there were no miss-
ing data (i.e., no attrition). Although this circumstance would likely never occur,
the correlations between birth year and average age should tend to be extremely
high in most circumstances.

The top portion of Table 1 shows that the modelsin (8) and (9) recovered the
true value for the age slope (3, = —0.25) when there was no effect of birth year
(8, = 0). Model (9) also accurately recovered the null birth year effect (average
, = 0.001 across all simulations) and the age slope and birth year effects when
fit to simulated data with a birth year effect of 3, =-0.20. Variance components
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TABLE 1
Simulation Results

Model 8 Model 9

o2 Interval B o G o> B B G a4 2

3, =-0.25,3, = 0.00

10 1 -0250 99.712 0498 9984 -0.251 0.000 99.541 0.498 9.978
10 2 -0.250 99.802 0.498 9981 -0.250 0.001 99.582 0.498 9.978
30 1 -0.251 99.653 0.500 29.957 -0.251 0.000 99.528 0.500 29.937
30 2 -0.250 99.638 0.499 29948 -0.250 0.002 99.433 0.499 29.934
Average= -0.250 99.701 0.499 -0.250 0.001 99.521 0.499

8, =-0.25, 3, = -0.20

10 1 -0.360 100.186 0.499 10.000 -0.251 -0.450 99.538 0.499 9.978
10 2 -0.311 101.211 0.499 10.001 -0.250 -0.449 99570 0499 9977
30 1 -0.395 99.622 0.499 29.986 -0.250 -0.449 99.315 0.499 29.935
30 2 -0.346 100.455 0.499 30.001 -0.250 -0.451 99.454 0.499 29.938
Average= -0.353 100.368 0.499 —0.250 -0.450 99.469 0.499

closely approximated their population valuesin all simulations. However, the age
convergence slope estimate from Model (8) was consistently biased in the
presence of cohort effects, with an average 5 = —0.35 across al sim-
ulations. Bias tended to be larger for simulations with the shorter compared
to longer follow-up interval (=0.38 vs. —.33) and when reliability was lower
(-0.37 vs. —0.34).

This bias reflects amixture of longitudinal (—0.25) and cross-sectional (—0.40)
effects. Importantly, these results show that an effect of cohort on the intercept
can bias estimates of convergence age slopes, even when there is no cohort by
age change interaction. Next, a value of w was computed for each simulated data
set and these were averaged across data sets for each of the 128 simulation condi-
tions. Preliminary inspection of the results indicated that presence or absence of
cohort effects did not influence values of w, and therefore were collapsed across
this condition, yielding atotal of 64 values.

Figures 2aand 2b plot values of w as afunction of years of follow-up yearsfor
residual variances equal to 30 (intraclass correlation [ICC] = .77) and 10 (ICC =
.91), respectively. Figure 2a shows results from simulations with a reliability of
.77 (2 = 30). Age convergence slopes reflected primarily cross-sectional infor-
mation (i.e., w > .80) when follow-up was fewer than 2 and 3 years for samples
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in convergence age slope for reliabilities of .77 (a) and .91 (b).
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with a 30- and 40-year age ranges, respectively. Four years of follow-up was
required for convergence age slopes to mostly reflect longitudinal information
for samples with a 20-year age range, and 6 years of follow-up was required for
samples with a40-year age range. Eight years of follow-up was required for sam-
ples with 20-year age ranges and more than 8 years would be required for sam-
ples with a 40-year age range to primarily reflect longitudinal information (v <
.20). Comparing Figures 2a and 2b indicates that smaller values of w are associ-
ated with the smaller residual variance (i.e., higher reliability) for agiven follow-
up duration, interval, and age range. When reliability is high (.91), age conver-
gence slopes from samples with a 20-year age range primarily reflected longitu-
dina information after 4 years of follow-up, and convergence estimates from
samples with a 40-year age range primarily reflected longitudinal information
after about 7 years of follow-up. Thus, increasing reliability (i.e., reducing resid-
ual variance) increases the relative weighting of longitudinal information.

The solid lines in Figures 2a and 2b represent results from simulations
with 1-year intervals between assessments, and dotted lines represent results
from simulations with 2 years separating each assessment. For a given
amount of follow-up, results indicated by the solid lines are based on twice
the number of assessments than are results indicated by the dashed lines for a
given age range. The graphs show that w decreases slightly with increased
assessments, but that this effect is not nearly as large as the decrease that
results from additional follow-up time. Overall, these results indicate that
under moderate reliability (.77), at least 6 years of follow-up is required for
age convergence slopes to primarily reflect information about intraindividual
developmental change. When follow-up is short (i.e., < 2 years), age conver-
gence slopes mostly reflect cross-sectional information about age differ-
ences, even if reliability isvery high.

DISCUSSION

Longitudinal studies are necessary to directly measure within-person change. How-
ever, most longitudinal studies begin as age-heterogeneous samples and, particu-
larly in studies of change in later life, will conclude as survival-heterogeneous
studies. Careful treatment of the between-person age differences observed in
such studies is essential to obtain correct inferences about within-person age
change. This article demonstrated how to empiricaly assess the differential
effects of cross-sectional age differences and longitudinal age changes rather
than simply assuming that they converge onto the same tragjectory. We have shown
how omission of between-person age effects (by extension, survival age or other
effects producing sample heterogeneity) will lead to estimated within-person age
effects that in reality reflect an uninterpretable blend of both kinds of effects, the
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weighting of which depends on the particular parameters of the sampling design
(e.g., agerange at baseline, length of follow-up).

There are a number of potentia causes for alack of convergence of the between-
and within-person effects of age. The importance of context in individual devel-
opment has long been recognized (e.g., Kuhlen, 1940; Schaie, 1965, 2008) and
perhaps most frequently made manifest in terms of birth cohort differences. The
importance of influences related to birth cohort was underscored in Schaie’'s
(1965) most efficient design that involved repeated assessments of individuals
sampled from different birth cohorts initialy, with additional samples added at
subsequent occasions. This design permits evaluation of cohort-sequential, time-
sequential, and cross-sequentia studies within a single sampling design. The
inherent confounds of age, period, and cohort mean that these effects cannot be
independently evaluated—one factor must be assumed to be zero or some other
fixed value so that the other two random factors may be analyzed instead.

Mortality selection is also likely to have an important role in the lack of age
convergence. In longitudinal studies of aging, at each new wave of testing the
sample becomes less representative of the population from which it originated
and generalizations from the sample of continuing participants to the initial
population become more difficult to justify (e.g., Baltes, Schaie, & Nardi, 1971;
Hofer & Hoffman, 2007). Whereas some forms of nonparticipation can logically
permit inference to asingle population, in the case of mortality, such an inference
isimpossible because individual s have | eft the population. In this case, inferences
must be defined as conditional on the probability of surviving and/or remaining
in the study (e.g., DuFouil, Brayne, & Clayton, 2004). Initial sample selection
and attrition relate to population inference differently for designs based on either
age-heterogeneous or age-homogeneous sampling. In age-heterogeneous sam-
ples, whether cross-sectional or longitudinal, inference to individual aging pro-
cesses is not possible in the aggregate sample because initial sample selection of
individuals varying in age is confounded with population mortality (Schaie,
Labouvie, & Barrett, 1973).

Retest effects may also cause a lack of age convergence (e.g., Salthouse,
2009) by biasing estimates of longitudinal aging effects. Age convergence mod-
els that also include parameters for retest rely on the effects of between-person
age differences to correct for the within-person retest effects (e.g., Ferrer et a.,
2005) but seldom explicitly evaluate the age convergence assumption. Simply
because longitudinal estimates may be biased (e.g., due to retest effects) does not
imply that cross-sectional age differences do not reflect cohort, selection, mortal-
ity, or other contaminating influences. In general, studies that correct for retest
effects in longitudinal data produce estimates of aging effects that primarily
reflect cross-sectional information (i.e., high values of w because statistically
partialing for retest will remove much of the longitudina information from
the age variable). This approach is defensible only if one can be confident that
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cross-sectional age differences represent an unbiased estimate of maturational
effects. Unfortunately most analyses that correct for retest effects in longitudinal
data do not attempt to formally assess the convergence assumption, check for
cohort or mortality effects, or in any way evaluate whether cross-sectional age
differences can serve as avalid anchor for estimation of true aging effects.

The question then arises of whether estimates that primarily reflect cross-sec-
tional information should be framed as a “longitudinal result” that reflects
“change,” even if based on a sample with lengthy follow-up. There is no single
value of w that should be deemed acceptable or unacceptable for all circum-
stances. However, we can identify values less than .50 as a natural threshold at
which the convergence age slopes mostly reflect longitudinal and opposed to
cross-sectional information. In general, values of w < .20 indicate that the con-
vergence age slope primarily reflects longitudinal information, and values higher
than .80 indicate that the convergence age slope primarily reflects cross-sectional
information. As a rule of thumb, we would caution against fitting age conver-
gence mode s without testing the convergence assumption, especialy when w > .80.
Failure to test for convergence under this circumstance undermines the rationale
for having conducted a longitudinal study.

Finally, we wish to recognize that the extent to which tests of age convergence
have sufficient power to be practically useful depends to a great extent on the
longitudinal sampling design used. Although tests of age convergence on the
intercept as shown here are likely to have sufficient power, tests of convergence
on the age slopes (or on higher-order age terms) may be problematic except in
studies that have large amounts of longitudinal follow-up. In such cases, the most
useful aternative approach would likely depend on the context of the study. For
instance, in studies of children in successive grade cohorts, it may be reasonable
to utilize a between-person age scaling that assumes convergence of the higher-
order coefficients of age change (e.g., quadratic terms), given that the children
were sampled largely from the same specific context, that the total amount of
time covered across grade cohortsis rather limited, and that differential selection
and attrition may not be an issue. In contrast, in longitudina studies of adult
development and aging that feature a wide range of age at baseline, it may not be
reasonable to assume convergence of higher-order rates of change, given that the
study recruitment itself is likely the only commonality of the individuals sam-
pled, and given the likely effects of non-random selection processes over time. In
this case, it may be more reasonable to use within-person age scaling instead,
which requires no assumptions of age convergence.

In summary, athough longitudinal studies provide direct estimates of within-
person change, they usually also provide information about between-person age
differences. Failure to explicitly account for the differential effects of these two
sources of age information can lead to incorrect estimates of age change. When
relying on between-person age scaling in models of change, it is critical that one
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tests explicitly for convergence of the effects of between-person age differences
and within-person age changes. Although between-person age scaling may result
in more efficient estimates when age convergence obtains, this rarely seems to
occur in samples of older adults in practice. In such cases, a within-person age
scaling that provides a clear demarcation of the cross-sectional and longitudinal
age effects may be more useful instead. Regardless, however, results that are
based on models that falsely assume convergence of the effects of between-per-
son age differences and within-person age changes cannot be interpreted, as they
represent an unknown mix of two different kinds of effects.
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