
Measurement Invariance (MI)
in CFA and Differential Item 
Functioning (DIF) in IRT/IFA
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• Topics:
 What are MI and DIF?
 Testing measurement invariance in CFA
 Testing differential item functioning in IRT/IFA



The Big Picture
• In CFA, we are assessing “measurement invariance” (MI), also 

known as “factorial invariance” or “measurement equivalence”

• Concerns the extent to which are the psychometric properties 
of the observed indicators are transportable or generalizable 
across groups (e.g., gender, language) or over time/conditions
 In other words, we are testing whether the indicators measure the same 

construct in the same way in different groups or over time/condition
 If so, then indicator responses should depend only on latent trait scores, 

and not on group membership or time/condition, such that observed 
response differences are caused by TRUE differences in the trait

• In IRT/IFA, lack of measurement invariance is known as 
“differential item functioning” (DIF), but it’s the same idea
 Note the inversion:  Measurement Invariance = Non-DIF

Measurement Non-Invariance = DIF
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2 Distinct Types of Invariance
• Measurement Invariance concerns how the indicators 

measure the latent trait across groups or time/condition
 An invariant measurement model has the same factor loadings, 

item intercepts/thresholds, and residual variances (and covariances)

 Measurement model invariance is a precursor to ANY group or 
time/condition comparison (whether explicitly tested or not)

 It’s not ok if you don’t have at least partial measurement invariance to 
make subsequent comparisons across groups or time/condition

• Structural Invariance concerns how the latent traits are 
distributed and related across groups or time/condition
 An invariant structural model has the same factor variances, factor 

covariances (or same higher-order structure) and factor means

 Given (at least partial) measurement invariance, it is ok if you don’t have 
structural invariance, because those trait differences may be real
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Model Options for Testing Invariance
• Invariance testing in CFA (or testing DIF in IRT/IFA) proceeds 

differently depending on the type of groups to be compared

• Independent groups? Use a “multiple-group” model
 Test separate group-specific factor models, but simultaneously
 Use GROUP = in Mplus and separate MODEL statements per group
 An alternative approach, MIMIC models, in which the grouping variable is 

entered as a predictor, do not allow testing of equality of factor loadings or 
factor variances (so MIMIC is less useful than a full multiple-group model)

• Dependent (longitudinal, repeated, dyadic) groups? 
 All indicator responses go into SAME model, with separate factors per 

occasion/condition (allowing all factor covariances by default)
 Usually, same indicators also have residual covariances by default
 Given measurement invariance, growth modeling of the latent traits can 

serve as a specific type of structural invariance testing
 It is INCORRECT to use a multiple-group model if groups are dependent
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Longitudinal Invariance Model
Residual covariances for 
same indicators at 
different repeated 
measurements are often 
included by default

Factors are estimated 
separately for each 
repeated measurement 
and covariances are 
always estimated to 
reflect dependency of 
observations

FYI: A structural model in which all factor means, variances, and 
covariances are estimated is analogous to a “saturated means, 
unstructured variance model” for observed variables in MLM terms
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Measurement Model 
for Items:
λ’s = factor loadings
e’s = residual variances
μ’s = intercepts

Remember the CFA model?
Let’s start MI testing here….
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We will begin with the 
Mplus default of a 
marker item loading 
but a 0 factor mean.

Var(F1)=?

y1 y2 y3

e1 e2 e3

1 λ21 λ31

Var(F2)=?

y4 y5 y6

e4 e5 e6

1 λ52 λ62

covF1,F2

1

μ1

μ2
μ3

μ4
μ5
μ6

κ1=0 κ2 = 0

Structural Model 
for Factors:
F’s = factor variances
Cov = factor covariances
K’s = factor means



Steps of Testing Invariance across Groups
• Step 0: Omnibus test of equality of the overall indicator 

covariance matrix across groups
 Do the covariances matrices differ between groups, on the whole?

 If not, game over. You are done. You have invariance. Congratulations.

 Many people disagree with the necessity or usefulness of this test to 
begin testing invariance… why might that be?

 People also differ in whether invariance should go from top-down 
or bottom-up directions… I favor bottom-up for the same reason.

• Let’s proceed with an example with 2 factors, 6 indicators 
(3 per factor), and 2 groups…

 Total possible # parameters = ௩ ௩ାଵ
ଶ

 ݒ ൌ  ାଵ
ଶ

 6 ൌ 27 per group

 So our COMBINED possible DF = 54 across 2 groups
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Step 1:  Test “Configural” Invariance
• Do the groups have the same general factor structure?
• Same number of factors, same pattern of free/0 loadings 
 same conceptual definition of latent constructs

• In practice, begin by testing factor structure within each group 
separately, hoping they are “close enough”

• Then estimate separate group-specific models simultaneously, 
but allow all model parameters to differ across groups 
 This will be the baseline model for further comparisons

 χ2 and df will be additive across groups (different group sample sizes 
will result in differential weighting of χ2 across groups)

• This is as good fit as it gets! From here forward, our goal is to 
make model fit NOT WORSE by constraining parameters equal
 That means if the configural model fits badly, game over…
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Testing Invariance Constraints
• As before, we will test whether subtracting parameters 

worsens model fit via likelihood ratio (aka, െ2∆LL, χ2) tests
 Implemented via a direct difference in H0 model χ2 values most often, 

but this is only appropriate when using regular ML estimation

• MLR requires a modified version of this െ2∆LL test (see Mplus 
website): http://www.statmodel.com/chidiff.shtml
 Is called “rescaled likelihood ratio test” when you explain it
 Includes extra steps to incorporate scaling factors (1.00 = regular ML)
 I built you a spreadsheet for this…you’re still welcome 

• If removing parameters (e.g., in invariance testing), H0 model fit can get 
worse OR not worse (as indicated by smaller LL OR by larger െ2LL and χ2)

• If adding parameters (e.g., in adding factors), H0 model fit can get 
better OR not better (as indicated by larger LL OR by smaller െ2LL and χ2)
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Testing Fixes to the Model: −2ΔLL
• Comparing nested models via a “likelihood ratio test” 
െ2∆LL (MLR rescaled version)
 1. Calculate െ2∆LL = െ2*(LLfewer – LLmore)

 2. Calculate difference scaling correction =
(#parmsfewer*scalefewer) – (#parmsmore*scalemore) 

(#parmsfewer – #parmsmore) 

 3. Calculate rescaled difference = −2∆LL / scaling correction 

 4. Calculate ∆df = #parmsmore – #parmsfewer

 5. Compare rescaled difference to χ2 with df = ∆df

 Add 1 parameter? LLdiff > 3.84, add 2 parameters: LLdiff > 5.99…

 Absolute values of LL are meaningless (is relative fit only)

 Process generalizes to many other kinds of models
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Note: Your LL will always 
be listed as the H0
(H1 is for the saturated, 
perfectly fitting model)

Fewer = simpler model
More = more parameters
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1. Configural Invariance Model: 
Same Factor Structure;  All Parameters Separate

Group 1 (subscript = item, group):

• y11	 ൌ 	μ11	  				F1	  	e11
• y21	 ൌ 	μ21	  	λ21F1	  	e21
• y31	 ൌ 	μ31	  	λ31F1	  	e31
• y41	 ൌ 	μ41	  				F2	  	e41
• y51	 ൌ 	μ51	  	λ51F2	  	e51
• y61	 ൌ 	μ61	  	λ61F2	  	e61
• Both factors have estimated 

variances and a covariance, but 
both factor means are fixed to 0

Group 2 (subscript = item, group):

• y12	 ൌ 	μ12	  				F1	  	e12
• y22	 ൌ 	μ22	  	λ22F1	  	e22
• y32	 ൌ 	μ32	  	λ32F1	  	e32
• y42	 ൌ 	μ42	  				F2	  	e42
• y52	 ൌ 	μ52	  	λ52F2	  	e52
• y62	 ൌ 	μ62	  	λ62F2	  	e62
• Both factors have estimated 

variances and a covariance, but 
both factor means are fixed to 0

Total DF across groups = 54 – 38 = 16 ൌ
54 െ 12μ  12σୣଶ  8λ  4σଶ  2σଵଶ  0κ ൌ 16
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Step 2:  Test “Metric” Invariance 
• Also called “weak factorial invariance”
• Do the groups have the same factor loadings?

 Each “congeneric” indicator is still allowed to have a different loading 
(i.e., this is not a tau-equivalent model)

 Loadings for same indicator are constrained equal across groups

• Change the method of model identification with respect to the 
factor loadings and factor variances only: Estimate all newly 
constrained factor loadings, but fix the factor variances to 1 
in the reference group (free factor variances in other group)
 Why? Loadings for marker items (fixed=1 for identification) would be 

assumed invariant, and thus they could not be tested

 This alternative specification allows us to evaluate ALL loadings and still 
identify the model (see Yoon & Millsap, 2007), which is BETTER
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2. Metric Invariance Model: 
Same Factor Loadings Only (saves 4 df)

Group 1 (subscript = item, group):

• y11	 ൌ 	μ11	  		ૃ۴	  	e11
• y21	 ൌ 	μ21	  		ૃ۴	  	e21
• y31	 ൌ 	μ31	  		ૃ۴	  	e31
• y41	 ൌ 	μ41	  		ૃ۴	  	e41
• y51	 ൌ 	μ51	  		ૃ۴	  	e51
• y61	 ൌ 	μ61	  		ૃ۴	  	e61
• Both factor variances fixed to 1 

for identification, factor 
covariance is estimated, but both 
factor means are STILL fixed to 0

Group 2 (subscript = item, group):

• y12	 ൌ 	μ12	  	ૃ۴	  	e12
• y22	 ൌ 	μ22	  	ૃ۴	  	e22
• y32	 ൌ 	μ32	  	ૃ۴	  	e32
• y42	 ൌ 	μ42	  	ૃ۴	  	e42
• y52	 ൌ 	μ52	  	ૃ۴	  	e52
• y62	 ൌ 	μ62	  	ૃ۴	  	e62
• Both factor variances estimated 

and a factor covariance, but both 
factor means are STILL fixed to 0

Total DF across groups = 54 – 34 = 20 ൌ
54 െ 12μ  12σୣଶ  ૃ  ો۴  2σଵଶ  0κ ൌ 20
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2. Metric Invariance Model
• Compare metric invariance to configural invariance model: 

Is the model fit not worse (െ2∆LL not significant)?
 Check that factor variances are fixed to 1 in reference group only: 

they should be freely estimated in the other group, otherwise you are 
imposing a structural constraint (that groups have same variability) too 

 Otherwise, inspect the modification indices (voo-doo) to see if there 
are any indicators whose loadings want to differ across groups

 Retest the model as needed after releasing one loading at a time, 
starting with the largest modification index, and continue until your 
partial metric invariance model is not worse than the configural model

• Do you have partial metric invariance (1+ loading per factor)?
 Your trait is (sort of) measured in the same way across groups
 If not, it doesn’t make sense to evaluate how relationships involving the 

factor differ across groups (because the factor itself differs)
 Even if full invariance holds, pry check the modification indices anyway
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Step 3:  Test “Scalar” Invariance 
• Also called “strong factorial invariance”
• Do the groups have the same indicator intercepts?
 Each indicator is still allowed to have a different intercept, but 

intercepts for same indicator are constrained equal across groups
 Indicators that failed metric invariance do not get tested for scalar
 Scalar invariance is required for factor mean comparisons!

• Previous (partial) metric invariance model is starting point, 
but change the method of model identification with 
respect to the intercepts and factor means: Estimate all 
newly constrained intercepts, but fix the factor means to 
0 in reference group (free factor means in other group)
 Why? Intercepts for marker items (if fixed=0 for identification) 

would be assumed invariant, and thus they could not be tested
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3. Scalar Invariance Model: 
Same Factor Loadings + Same Intercepts (saves +4 df)

Group 1 (subscript = item, group):

• y11	 ൌ 	ૄ	  		λ1F1	  	e11
• y21	 ൌ 	ૄ	  		λ2F1	  	e21
• y31	 ൌ 	ૄ	  		λ3F1	  	e31
• y41	 ൌ 	ૄ	  		λ4F2	  	e41
• y51	 ൌ 	ૄ	  		λ5F2	  	e51
• y61	 ൌ 	ૄ	  		λ6F2	  	e61
• Both factor variances fixed to 1, 

both factor means fixed to 0 for 
identification, factor covariance is 
still estimated 

Group 2 (subscript = item, group):

• y12	 ൌ 	ૄ	  	λ1F1	  	e12
• y22	 ൌ 	ૄ	  	λ2F1	  	e22
• y32	 ൌ 	ૄ	  	λ3F1	  	e32
• y42	 ൌ 	ૄ	  	λ4F2	  	e42
• y52	 ൌ 	ૄ	  	λ5F2	  	e52
• y62	 ൌ 	ૄ	  	λ6F2	  	e62
• Both factor variances estimated, 

both factor means estimated to 
become mean differences, and 
factor covariance is still estimated

Total DF across groups = 54 – 30 = 24 ൌ
54 െ ૄ  12σୣଶ  6λ  2σଶ  2σଵଶ  ૂ۴ ൌ 24
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Implications of Non-Invariance
Yes Metric 
Yes Scalar

Yes Metric 
No Scalar

No Metric 
Yes Scalar

No Metric 
No Scalar

Latent Factor Latent Factor

Without metric 
invariance: 
Because unequal 
loadings implies 
non-parallel slopes, 
the intercept will 
differ as a result. 
The size of the 
difference depends 
on where theta=0. 

This is why scalar 
invariance is often 
not tested if metric 
invariance fails for 
a given indicator.
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3. Scalar Invariance Model
• Compare scalar invariance to last metric invariance model: 

Is the model fit not worse (െ2∆LL not significant)?
 Check that factor means are fixed to 0 in reference group only: 

they should be freely estimated in the other group, otherwise you are 
imposing a structural constraint (groups have same means) too 

 Otherwise, inspect the modification indices (voo-doo) to see if there 
are any indicators whose intercepts want to differ across groups

 Retest the model as needed after releasing one intercept at a time, 
starting with the largest modification index, and continue until your 
partial scalar invariance model is not worse than last metric model

• Do you have partial scalar invariance (1+ intercept per factor)?
 Your trait is (sort of) responsible for mean differences across groups
 If not, it doesn’t make sense to evaluate factor means differs across 

groups (because something else is causing those differences)
 Even if full invariance holds, pry check the modification indices anyway
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Step 4:  Test Residual Variance Invariance 
• Also called “strict factorial invariance”
• Do the groups have the same residual variances?
 Each indicator is still allowed to have a different residual variance 

(i.e., this is not a parallel items model), but residual variances for 
same indicator are constrained equal across groups 

 Indicators that failed scalar invariance do not get tested for 
residual variance invariance (by convention, although you could)

 Residual invariance is of debatable importance, because it means 
that whatever is causing “not the factor” differs across groups

 Equal residual variances are commonly misinterpreted to mean 
“equal reliabilities”—this is ONLY the case if the factor variances 
are the same across groups, too (stay tuned)

• This is the last step of “measurement invariance”
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4. Residual Invariance Model: 
+ Same Residual Variances (saves +6 df)

Group 1 (subscript = item, group):

• y11	 ൌ 	μ1	  		λ1F1	  ܍	
• y21	 ൌ 	μ2	  		λ2F1	  ܍	
• y31	 ൌ 	μ3	  		λ3F1	  ܍	
• y41	 ൌ 	μ4	  		λ4F2	  ܍	
• y51	 ൌ 	μ5	  		λ5F2	  ܍	
• y61	 ൌ 	μ6	  		λ6F2	  ܍	
• Both factor variances fixed to 1, 

both factor means fixed to 0 for 
identification, factor covariance is 
still estimated 

Group 2 (subscript = item, group):

• y12	 ൌ 	μ1	  	λ1F1	  ܍	
• y22	 ൌ 	μ2	  	λ2F1	  ܍	
• y32	 ൌ 	μ3	  	λ3F1	  ܍	
• y42	 ൌ 	μ4	  	λ4F2	  ܍	
• y52	 ൌ 	μ5	  	λ5F2	  ܍	
• y62	 ൌ 	μ6	  	λ6F2	  ܍	
• Both factor variances estimated, 

both factor means estimated to 
become mean differences, and 
factor covariance is still estimated

Total DF across groups = 54 – 24 = 30 ൌ
54 െ 6μ  ો܍  6λ  2σଶ  2σଵଶ  2κ ൌ 30
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4. Residual Variance Invariance Model
• Compare residual invariance to last scalar invariance model: 

Is the model fit not worse (െ2∆LL not significant)?
 Otherwise, inspect the modification indices (voo-doo) to see if there 

are any indicators whose residual variances want to differ across groups
 Retest the model after releasing one residual variance at a time, starting 

with the largest modification index, and continue until your partial 
residual invariance model is not worse than last scalar model

• Do you have partial residual variance invariance 
(1+ residual variance per factor)?
 Your groups have the same amount of “not the factor” in each item (???)
 Even if full invariance holds, pry check the modification indices anyway
 Also assess any residual covariances across groups if you have those

• Your (partial) residual invariance model is the new baseline for 
assessing structural invariance…
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Testing Structural Invariance
• Are the factor variances the same across groups? (+1 df/factor)

 Fix the factor variance in the alternative group to 1 (as in the ref group)
 Is model fit worse? If so, the groups differ in their factor variances

• Is the factor covariance the same across groups? (+1 df per pair)
 Fix the factor covariances equal across groups, is model fit worse?
 Factor correlation will only be the same across groups if the factor variances 

are the same, too (if factor variances differ, then factor covariance will, too)

• Are the factor means the same across groups? (+1 df/factor)
 Fix the factor mean in the alternative group to 0 (as in the ref group)
 Is model fit worse? If so, the groups differ in their factor means

• It is not problematic if structural invariance doesn’t hold
 Given measurement invariance, this is a substantive issue about differences 

in the latent trait amounts and relations (and that’s ok)
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Summary:  Invariance Testing in CFA
• In CFA: Testing invariance has two distinct parts:
 Measurement invariance: Is your construct being measured 

in the same way by the indicators across groups/time? 
 Hope for at least “partial” invariance… otherwise, game over

 Structural invariance: Do your groups/times differ in their 
distribution and/or means of the construct? Let’s find out!
 Structural differences are real and interpretable differences

given measurement invariance of the constructs

• In IFA:  Still called testing invariance 
 Conducted similarly (but not exactly the same) in Mplus

• In IRT:  Now called testing “differential item functioning” 
 With different names and rules, not directly tested in Mplus
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Differential Item Functioning (DIF)
• In IRT (model with ୧ discrimination and ୧ difficulty), 

measurement NON-invariance = DIF
 Note the inversion:  Measurement Invariance = Non-DIF

Measurement Non-Invariance = DIF
 An item has “DIF” when persons with equal amounts of the traits, 

but from different groups, have different expected item responses
 An item has “non-DIF” if persons with the same amount of the 

trait  have the same expected item response, regardless of group
 DIF can be examined across groups, over time, over conditions, 

etc., the same as in CFA/IFA
 Independent groups? Multiple-group model
 Dependent “groups”? One factor per “group” in same model
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2 Types of DIF (as described in IRT)
• “Uniform DIF”  Analogous to scalar NON-invariance

 IRT bi parameters differ across groups
 Item is systematically more difficult/severe for members of one group, 

even for persons with the same amount of the theta trait
 Example: “I cry a lot” Would men and women with the same amount of 

depression have the same expected item response?

• “Non-Uniform DIF”  Analogous to metric NON-invariance
 IRT ai (and possibly bi) parameters differ across groups
 Item is systematically more related to theta for members of one group 

higher discrimination (item “works better”) 
 Shift in item difficulty is not consistent across theta continuum

• What about residual variance invariance? It depends:
 Doesn’t exist in ML: no estimated error variance  (is logit=3.29 or probit=1.00)
 Will exist in WLSMV after constraining loadings and thresholds, but not before…
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Testing Measurement Invariance
in Categorical Outcomes

• 2 versions of model for polytomous outcomes in Mplus:
 IRT:  Logit	or	Probit ykis ൌ 1 ൌ a୧ሺθୱ െ b୩୧ሻ

 IFA:  Logit	or	Probitሺykis ൌ 1ሻ ൌ	– τki  λiθs	
 Logit or Probit in ML; only Probit in WLSMV

• Mplus estimates the IFA τki	and λi	parameters, then converts to the 
IRT a୧ and b୩୧ parameters for binary (but not polytomous) outcomes
 Tests of measurement invariance are specifically for τki	and λi	, not a୧ and b୩୧
 So Mplus does not directly allow examination of “DIF” for ai and bi directly

• IFA ૌܑܓ	and ૃܑ	are held directly invariant, not IRT ܑ܉ and ܑ܊
 So even if λi	factor loadings are invariant across groups, IRT ai discriminations will 

still differ across groups due to differences in their theta variances

 Likewise, even if τki	thresholds are invariant across groups/time, IRT bi difficulty 
parameters can still differ due to differences in theta mean and theta variance

The ݇ thresholds divide the 
ܥ item responses into ܥ െ 1
cumulative binary submodels 
ݕ) ൌ 0 if lower, ݕ ൌ 1 if higher)
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Review:  From IFA to IRT
IFA with “easiness” intercept ܛܑܡ	ܜܑ܊ܗܚ۾	ܚܗ	ܜܑܗۺ   :ܑૄ ൌ 	ૄܑ  ܛ۴ܑૃ ૄܑ ൌ െૌܑ
IFA with “difficulty” threshold ૌܑ:  ܜܑܗۺ	ܚܗ	ܜܑ܊ܗܚ۾	ܛܑܡ ൌ	– ૌܑ  ܛ۴ܑૃ

IFA model with “difficulty” thresholds can be written as a 2-PL IRT Model:

IRT model: IFA model:
ܛܑܡ	ܜܑ܊ܗܚ۾	ܚܗ	ܜܑܗۺ ൌ –ܛሺીܑ܉ ሻܑ܊ ൌ		– 	ܑ܊ܑ܉  ܛીܑ܉	

Convert IFA to IRT: Convert IRT to IFA:

a୧ 	ൌ λ୧ ∗ Theta	Variance λ୧ ൌ
ୟ

୦ୣ୲ୟ	ୟ୰୧ୟ୬ୡୣ

b୧ ൌ
தିሺ∗୦ୣ୲ୟ	ୣୟ୬ሻ
∗ ୦ୣ୲ୟ	ୟ୰୧ୟ୬ୡୣ

τ୧ ൌ a୧b୧
୦ୣ୲ୟ	ୣୟ୬
୦ୣ୲ୟ	ୟ୰୧ୟ୬ୡୣ

ૌܑ ૃܑ

ܑ܉ = discrimination
ܑ܊ = difficulty
ીܛ = Fs latent trait 

Note: prior to Mplus 
v7, these formulas 

will differ when 
using logit or probit
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Invariance Testing in Mplus
• IFA using Full-Information MML: Multiple group models are not 

permitted, but you can trick Mplus into doing it (e.g., here, by group):
 VARIABLE: KNOWNCLASS = group (men=1, women=2);
 ANALYSIS: TYPE = MIXTURE;
 MODEL:   %OVERALL% (… model for reference group listed here)

%group#2% (… model for alternative group goes here)

• IFA using Limited-Information WLSMV: Mplus does allow multiple group 
models, with a few useful other benefits
 Faster estimation if you have multiple factors/thetas
 DIFFTEST does nested model comparisons for you (still going for “not worse”)
 Can get modification indices (voo-doo) to troubleshoot non-invariance
 Can test differences in residual variances (in THETA parameterization)

• In either method, the same category responses must be observed 
for each group, otherwise you cannot test the item thresholds
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Configural Invariance Baseline Model 
for Categorical Outcomes (2 Groups)

• Factor variances: fixed to 1 in both groups

• Factor covariances: if any, free in both groups

• Factor means: fixed to 0 in both groups

• Factor loadings: all freely estimated (so each can be tested later)
 Remember: IRT ai parameters will still vary across groups even after loadings are 

constrained because of group differences in theta variance

• Item Thresholds: all freely estimated (so each can be tested later)
 Remember: IRT bki parameters will still vary across groups even after thresholds are 

constrained because of group differences in theta mean and theta variance

• Fix all residual variances=1 in all groups
 Groups will eventually be allowed to differ in both factor variance and “error 

variance” (proxy for total variation in WLSMV models)

You could also use the same 
configural model identification 
as in CFA (your choice of scale)

PSYC 948:  Lecture 9 31



Sequential Invariance Models 
Note: Save for DIFFTEST at each step!

• Step 1: Fit baseline configural invariance model across groups
 Should be “close enough” factor structures, otherwise game over

 Alternative group is allowed different loadings and thresholds, SAME residual variances=1

• Step 2 (Metric-ish): Constrain all loadings equal but free factor variances in 
alternative group—is fit worse relative to configural model?
 If fit is worse, check MODINDICES to see why; release problematic constrained loadings 

one at a time; check fit against configural model to see if it’s not worse yet

• Step 3 (Scalar-ish): Constrain thresholds equal for items that passed metric but 
free factor means in alternative group—is fit worse relative to metric model?
 If fit is worse, check MODINDICES to see why; release problematic constrained thresholds 

one item at a time; check fit against metric model to see if it’s not worse yet

 MODINDICES may want the “intercept” free, but this is not possible to do, so focus on 
problematic (non-invariant) item thresholds instead

 Reasonable people disagree: Mplus recommends doing steps 2 and 3 in one step because 
loadings and thresholds are dependent; others disagree (see Millsap’s 2011 book; all of IRT)
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Sequential Invariance Models 
Note: Save for DIFFTEST at each step!

• Step 4: Test if residual variances for items that passed scalar in alternative 
group ≠1  differ from reference group (in which residual variance = 1)
 Differences in residual variances between groups are not identified until you have at least 

some of the loadings and thresholds constrained across groups

 Consequently, this test proceeds backwards: first estimated is the “bigger” non-invariant 
residual variance model, second estimated is the “smaller” original scalar invariance model 
(in which residual variances were fixed to 1 for all items for all groups)

 Differential residual variances can be a proxy for group differences in overall variability, 
but this model may not always converge (if it doesn’t, skip this step, but note doing so)

• Steps 5, 6, 7: Test Structural Invariance (just like before in CFA): 
 Constrain equal across groups in sequential models: factor variances, then factor 

covariances, and then factor means (equal to 0) to test for “real” group differences

 Same story as in CFA: Only if you have at least partial measurement invariance can 
structural group/time/condition differences be meaningfully interpreted

• Factors are the same no matter what measurement model was used to 
create them… so now we are ready to use them to do SEM!
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