
Introduction to 
Generalized Models
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• Today’s topics:
 The big picture of generalized models
 Review of maximum likelihood estimation
 Models for binary outcomes
 Models for proportion outcomes
 Models for categorical outcomes

 More models for non-normal data coming later, 
time permitting…



Why review Generalized Models?
Outcome Type 
Model Family Name

Observed 
Predictor X

Latent 
Predictor X

Continuous Y 
“General Linear Model”

Linear 
Regression

Confirmatory 
Factor Models

Discrete/categorical Y 
“Generalized Linear Model”

Logistic/Multinomial
Regression

Item Response and 
Item Factor Models
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• The basis of Item Response Theory (IRT) and Item Factor 
Analysis (IFA) lies in models for discrete outcomes, which 
are called “generalized” models

• Thus, IRT and IFA will be easier to understand after 
reviewing concepts from generalized models…



The Two Sides of Any Model
• Model for the Means:
 Aka Fixed Effects, Structural Part of Model
 What you are used to caring about for testing hypotheses
 How the expected outcome for a given observation varies as a 

function of values on predictor variables
 People with the same values on the model predictors get the 

same predicted outcome (i.e., they share a “conditional mean”)

• Model for the Variance:
 Aka Random Effects and Residuals, Stochastic Part of Model
 What you are used to making assumptions about instead
 How residuals are distributed and related across observations 

(persons, groups, time, etc.)  these relationships are called 
“dependency” and this is how MLM differs from GLM
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Dimensions for Organizing Models
• Outcome type: General (normal) vs. Generalized (not normal)
• Dimensions of sampling: One (so one variance term per outcome) vs. 

Multiple (so multiple variance terms per outcome) MLM

• General Linear Models: conditionally normal outcome distribution, 
fixed effects (identity link; only one dimension of sampling)

• Generalized Linear Models: any conditional outcome distribution, 
fixed effects through link functions, no random effects (one dimension)

• General Linear Mixed Models: conditionally normal outcome distribution, 
fixed and random effects (identity link, but multiple sampling dimensions)

• Generalized Linear Mixed Models: any conditional outcome distribution,
fixed and random effects through link functions (multiple dimensions)

• “Linear” means the fixed effects predict the link-transformed conditional 
mean of DV in a linear combination: (effect*predictor) + (effect*predictor)…
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Note: Least 
Squares is 
only for GLM



The Two Sides of a General Model

୧ ଴ ଵ ୧ ଶ ୧ ଷ ୧ ୧ ୧

• Model for the Means (Predicted Values):
• Each person’s expected (predicted) outcome is a weighted linear 

function of his/her values on X and Z (and here, their interaction), 
each measured once per person (i.e., this is a general linear model)

• Estimated parameters are called fixed effects (here, β଴, βଵ, βଶ, and βଷ)

• Model for the Variance (“Piles” of Variance):
• e୧ ∼ N 0, σୣଶ  ONE residual (unexplained) deviation
• e୧ has a mean of 0 with some estimated constant variance σୣଶ, 

is normally distributed, is unrelated to X and Z, and is unrelated across 
people (across all observations, just people here)

• Estimated parameter is residual variance only in above GLM, 
but the question is, what else could it be besides the usual ܑ܍?
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Our focus this week



Generalized Models
• Generalized linear models: link-transformed conditional mean of Y 

is predicted instead of actual Y; ML uses not-normal distributions
 Single-level models  residuals follow some not-normal distribution
 Multilevel/factor models  level-1 residuals follow some not-normal 

distribution, but level-2 random effects or factor scores are almost always 
still multivariate normal

• Many kinds of non-normally distributed outcomes have some kind 
of generalized linear model for them using maximum likelihood:
 Binary (dichotomous)
 Unordered categorical (nominal)
 Ordered categorical (ordinal)
 Counts (discrete, positive values)
 Censored (piled up and cut off at one end)
 Zero-inflated (pile of 0’s, then some distribution after)
 Continuous but skewed data (long tail)

These two are often called 
“multinomial” inconsistently
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3 Parts of Generalized Multilevel Models

1. Link Function (different from general): How the conditional 
mean of a non-normal outcome is made unbounded so that 
the model fixed and random effects can predict it linearly

 We can then convert the transformed prediction back into the Y scale
 This way the predicted outcomes will stay within the sample space 

(boundaries) of the observed data (e.g., 0/1 for binary outcomes—the 
model should not predict −1 or 2, so linear slopes need to shut off)

 Written as ࢍሺ⋅ሻ for link and ିࢍ૚ሺ⋅ሻ for inverse link (to go back to data)
 For outcomes with residuals that are already normal, general linear 

models are just a special case with an “identity” link function (Y * 1)
 So general linear models are a special case of generalized linear models, and 

general linear mixed models are a special case of generalized linear mixed models
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2. Fixed (and Random) 
Effects of Predictors=1. Link 

Function
3. Actual 

Data



3 Parts of Generalized Multilevel Models
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2. Linear Predictor (same as in general): How the model 
predictors linearly relate to the outcome conditional mean

 This works the same as usual, except the linear predictor model 
directly predicts the link-transformed conditional mean, which we 
can then convert back into the scale of the original outcome

 That way we can still use the familiar “one-unit change” language to 
describe the effects of model predictors 

 You can think of this as “model for the means” still, but it would also 
include level-2 random effects for dependency of level-1 observations

 Fixed effects are no longer determined: they now have to be found 
through the ML algorithm, the same as the variance parameters

2. Fixed (and Random) 
Effects of Predictors=1. Link 

Function
3. Actual 

Data



3 Parts of Generalized Multilevel Models
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3. Model for Level-1 Residuals (different than general): 
how the level-1 residuals should be distributed given 
the sample space (possible values) of the actual outcome

 Many alternative distributions that map onto what the distribution of 
residuals could possibly look like (and kept within sample space)

 Why? To get the most correct standard errors for fixed effects 

 You can think of this as “model for the variance” still, but not all 
distributions will actually have an estimated residual variance

 Let’s review how ML would use a normal residual distribution, 
then examine models for binary data to illustrate these 3 parts…

2. Fixed (and Random) 
Effects of Predictors=1. Link 

Function
3. Actual 

Data



End Goals of Maximum Likelihood Estimation

1. Obtain “most likely” values for each unknown model 
parameter (fixed effects, variances of residuals, and any 
random effects variances and covariances)  the estimates

2. Obtain an index as to how likely each parameter value 
actually is (i.e., “really likely” or pretty much just a guess?) 
 the standard error (SE) of the estimates

3. Obtain an index as to how well the model we’ve specified 
actually describes the data  the model fit indices

How does all of this happen? Probability distributions!
(i.e., probability density functions, or PDFs)
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Univariate Normal Distribution
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• This PDF tells us how 
likely any value of yi is 
given two pieces of info:
 Conditional mean yො୧
 residual variance σୣଶ

• We can see this work 
using the NORMDIST 
function in excel!
 Easiest for empty model:

y୧ ൌ β଴ ൅ e୧
• We can check our math 

via SAS PROC MIXED!Sum over persons for log of fሺyiሻ= 
Model Log-Likelihood  Model Fit



Conditional Univariate Normal
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such as in regression:
 Fixed effects (intercept, 

predictor slopes) create 
a conditional mean for 
each person,  yො୧
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residual variance σୣଶ
holds for all values of yො୧
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Try, try, then try again…
• The best possible answers for the model parameters 

(e.g., fixed effects and residual variance) can be calculated 
via least squares given certain ideal circumstances:
 Complete data, normally distributed residuals with constant variance, and 

only one dimension of sampling (i.e., single-level, univariate model)

• For almost all other analyses, the best possible estimates 
of these parameters have to be searched for iteratively
 Different algorithms are used to decide which values to try given that each 

parameter has its own distribution of possible values  like an uncharted 
mountain in which each parameter to find has its own dimension (partial)

 Calculus helps the program scale this multidimensional mountain
 At the top, all first partial derivatives (linear slopes at that point) ≈ 0
 Positive first partial derivative? Too low, try again. 
 Negative first partial derivative? Too high, try again.
 Matrix of partial first derivatives = “score function” = “gradient” 

(as in NLMIXED output for models with truly nonlinear effects)
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End Goals 1 and 2: Model Estimates and SEs

• Process terminates (the model “converges”) when the next set 
of tried parameter values don’t improve the LL very much…
 e.g., SAS default convergence criteria = .00000001 

 Those are the values for the parameters that, relative to the other 
possible values tried, are “most likely”  the estimates

• But we need to know how trustworthy those estimates are…
 Precision is indexed by the steepness of the multidimensional mountain, 

where steepness  more negative partial second derivatives

 Matrix of partial second derivatives = “Hessian matrix”

 Hessian matrix *െ1 = “information matrix”

 So steeper function = more information = more precision = smaller SE
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1Each parameter SE
information





End Goal #3: How well does the model fit?
• Relative model fit is indexed by a “deviance” statistic  −2LL

 −2LL indicates BADNESS of fit, so smaller values = better models

 Given as −2 log likelihood in SAS, SPSS, but given as LL instead in Mplus 

• Nested models are compared using their deviance values: −2∆LL Test 
(i.e., Likelihood Ratio Test, Deviance Difference Test)

1. Calculate −2∆LL:   (−2LLfewer)  – (−2LLmore)

2. Calculate  ∆df:  (# Parmsmore)  – (# Parmsfewer)

3. Compare −2∆LL to χ2 distribution with df = ∆df (use CHIDIST in excel for p-value)

• Nested or non-nested models can also be compared by Information 
Criteria that reflect −2LL AND # parameters used and/or sample size
 AIC = Akaike IC     = −2LL +        2 *(#parameters)

 BIC = Bayesian IC  = −2LL + log(N)*(#parameters)  penalty for complexity

 No significance tests or critical values, just “smaller is better”
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Testing Significance of Model Effects
• For random effects (variances, covariances) you must use a 
−2LL (likelihood ratio) test to assess significance

• For single fixed effects, you can examine the p-value on the 
output created from the Wald test: test	statistic	 ൌ Est	/	SE
 Test: SAS uses a t-distribution; Mplus uses z (infinite denominator df)

• For multiple fixed effects, you can compare nested models 
using −2LL (likelihood ratio) test
 Add parameters? Model can get BETTER or NOT BETTER

 Remove parameters? Model can get WORSE or NOT WORSE

 You can also use the CONTRAST statement to provide a multivariate 
Wald test of multiple fixed effects (my favorite new trick—stay tuned!)
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Software for Generalized Models
• SAS for single-level generalized models

 PROC LOGISTIC or PROC PROBIT for binary data

 PROC GENMOD for categorical and some continuous data

 PROC FMM for lots of things (include hurdle models!)

 PROC QLIM or PROC LIFEREG for censored data (tobit; cut-off data)

• SAS for multilevel multivariate generalized models
 PROC GLIMMIX is newest and easiest to use

 PROC NLMIXED allows user-defined custom models with lots of code

• Mplus for either type of generalized model
 CATEGORICAL for binary/ordinal, NOMINAL for unordered categories, 

COUNT for discrete data, TWOPART for two-part models, CENSORED for 
cut-off data, DSURVIVAL for discrete-time survival data
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Estimation for Generalized Models
• Maximum likelihood estimation is the gold standard, but only 

recently has it become computationally feasible for all models
 Previous approaches are band-aids at best and should not be used if 

possible, but they still exist in software so you should be careful

• Here is what you want to look for in the SAS PROCs:
 GLIMMIX: METHOD = QUAD, LAPLACE  these are true maximum 

likelihood estimators that permit −2LL tests and give good estimates

• Here is what you want to avoid in the SAS PROCS:
 GLIMMIX: METHOD = RSPL/MSPL (except for normal outcomes, which is 

then equivalent to REML/ML, respectively), RPML, MMPL
 These are “quasi” or “pseudo” likelihoods, which are known to have biased 

variance components and for which −2LL tests are invalid
 Always check your output to see what SAS did for you by default: For instance, 

Quasi/pseudo likelihood estimators get invoked if you use the _residual_ option 
in a RANDOM statement to induce a scale factor or structure an R matrix

 GENMOD: using the REPEATED statement invokes GEE, which is also bad
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3 Parts of Generalized Multilevel Models

1. Link Function (different from general): How the conditional 
mean of a non-normal outcome is made unbounded so that 
the model fixed and random effects can predict it linearly

2. Linear Predictor (same as in general): How the model 
predictors linearly relate to the outcome conditional mean

3. Model for Level-1 Residuals (different than general): 
how the level-1 residuals should be distributed given 
the sample space (possible values) of the actual outcome
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2. Fixed (and Random) 
Effects of Predictors=1. Link 

Function
3. Actual 

Data



Normal GLM for Binary Outcomes?
• Let’s say we have a single binary (0 or 1) outcome…

 Conditional mean is proportion of people who have a 1, so 
the probability of having a 1 is what we’re trying to predict 
for each person, given the predictor values: ࢖ሺܑܡ ൌ ૚ሻ

 General linear model: ࢖ሺܑܡ ൌ ૚ሻ ൌ ઺૙ ൅ ઺૚ܑ܆ ൅ ઺૛ܑ܈	 ൅ ܑ܍
 ઺૙ = expected probability when all predictors are 0
 ઺’s = expected change in ࢖ሺܑܡ ൌ ૚ሻ for a one-unit ∆ in predictor
 ܑ܍ = difference between observed and predicted binary values

 Model becomes ܑܡ	 ൌ 	 ሺ܌܍ܜ܋ܑ܌܍ܚܘ	ܡܜܑܔܑ܊܉܊ܗܚܘ	܎ܗ	૚ሻ 	൅ ܑ܍	
 What could possibly go wrong?
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Normal GLM for Binary Outcomes?
• Problem #1: A linear relationship between X and Y??? 
• Probability of a 1 is bounded between 0 and 1, but predicted 

probabilities from a linear model aren’t going to be bounded 
• Linear relationship needs to shut off  made nonlinear
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We have this… But we need this…
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Generalized Models for Binary Outcomes
• Solution to #1: Rather than predicting ࢖ሺܑܡ ൌ ૚ሻ	directly, we must 

transform it into an unbounded variable with a link function:
 Transform probability into an odds ratio: ௣

ଵି௣
ൌ ୮୰୭ୠ ୷ୀଵ

୮୰୭ୠሺ୷ୀ଴ሻ
 If ݌ y୧ ൌ 1 ൌ .7 then Oddsሺ1ሻ 	ൌ 	2.33; Oddsሺ0ሻ 	ൌ 	 .429
 But odds scale is skewed, asymmetric, and ranges from 0 to +∞  Not helpful

 Take natural log of odds ratio called “logit” link:  ܏ܗۺ ࢖
૚ି࢖

 If ݌ y୧ ൌ 1 ൌ .7, then Logitሺ1ሻ 	ൌ 	 .846; Logitሺ0ሻ ൌ െ.846
 Logit scale is now symmetric about 0, range is ±∞ DING
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Solution to #1:  Probability into Logits
• A Logit link is a nonlinear transformation of probability:

 Equal intervals in logits are NOT equal intervals of probability

 Logits range from ±∞ and are symmetric about prob = .5 (logit = 0)

 Now we can use a linear model  The model will be linear with respect to 
the predicted logit, which translates into a nonlinear prediction with respect to 
probability  the outcome conditional mean shuts off at 0 or 1 as needed

Probability:
iൌܡሺ࢖ ૚ሻ

Logit:
܏ܗۺ ࢖

૚ି࢖

Zero-point on 
each scale:

Prob = .5
Odds = 1
Logit = 0
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Normal GLM for Binary Outcomes?
• General linear model:  ࢖ሺܑܡ ൌ ૚ሻ ൌ ઺૙ ൅ ઺૚ܑ܆ ൅ ઺૛ܑ܈ ൅ ܑ܍
• If ܑܡ is binary, then ܑ can only be 2 things:  ܑ܍ ൌ ܑܡ െ ොܑܡ

 If ܑܡ ൌ 0 then (predicted probability − 0) =	ܑ܍

 If ܑܡ ൌ 1 then (predicted probability − 1) =ܑ܍

• Problem #2a: So the residuals can’t be normally distributed
• Problem #2b: The residual variance can’t be constant over X as 

in GLM because the mean and variance are dependent
 Variance of binary variable: ܚ܉܄ ܑܡ ൌ ࢖ ∗ ሺ૚ െ ሻ࢖
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Mean (݌)
Variance

Mean and Variance of a Binary Variable



Solution to #2:  Bernoulli Distribution
• Instead of a normal residual distribution, we will use a Bernoulli

distribution a special case of a binomial for only one outcome
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Predicted Binary Outcomes
• Logit:  ࢖

૚ି࢖ ૙ ૚ ܑ ૛ ܑ

 Predictor effects are linear and additive like in GLM, 
but ઺ = change in logit(y) per one-unit change in predictor

• Odds:  ࢖
૚ି࢖ ૙ ૚ ܑ ૛ ܑ

or ࢖
૚ି࢖ ૙ ૚ ܑ ૛ ܑ 

• Probability: ܑ
ܘܠ܍ ઺૙ା઺૚ܑ܆ା઺૛ܑ܈

૚ାܘܠ܍ ઺૙ା઺૚ܑ܆ା઺૛ܑ܈

or           ܑ
૚

૚ାܘܠ܍ ି૚ሺ઺૙ା઺૚ܑ܆ା઺૛ܑ܈ሻ
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“Logistic Regression” for Binary Data
• This model is sometimes expressed by calling the logit(y୧) a 

underlying continuous (“latent”) response of ܑܡ∗ instead:

∗ܑܡ ൌ ࢊ࢒࢕ࢎ࢙ࢋ࢘ࢎ࢚ ൅ ܔ܍܌ܗܕ	ܚܝܗܡ	 ൅ ܑ܍
 In which ܑܡ ൌ ૚ if y୧∗ ൐ ݈݀݋݄ݏ݁ݎ݄ݐ , or ܑܡ ൌ ૙ if y୧∗ ൑ ݈݀݋݄ݏ݁ݎ݄ݐ

So if predicting ܑܡ∗, then

e୧	~	Logistic 0, σୣଶ ൌ  3.29

Logistic Distribution:
Mean = μ, Variance = ஠

మ

ଷ
 ,ଶݏ

where s = scale factor that 
allows for “over-dispersion” 
(must be fixed to 1 in logistic 
regression for identification)

Logistic 
Distributions

݈݀݋݄ݏ݁ݎ݄ݐ ൌ ଴ߚ ∗ െ1 is given 
in Mplus, not intercept
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Other Models for Binary Data
• The idea that a “latent” continuous variable underlies an observed 

binary response also appears in a Probit Regression model:

 A probit link, such that now your model predicts a different transformed ௣ܻ: 
Probit y୧ ൌ 1 ൌ Φିଵ݌ y୧ ൌ 1 ൌ ݈݁݀݋݉	ݎݑ݋ݕ

 Where ઴	= standard normal cumulative distribution function, so the transformed 
y୧ is the z-score that corresponds to the value of standard normal curve below 
which observed probability is found (requires integration to transform back)

 Same binomial (Bernoulli) distribution for the binary e୧ residuals, in which 
residual variance cannot be separately estimated (so no e୧ in the model)
 Probit also predicts “latent” response: y୧∗ ൌ threshold ൅ 	your	model ൅ e୧

 But Probit says e୧	~	Normal 0, σୣଶ ൌ 1.00 , whereas Logit	σୣଶ = ஠
మ

ଷ
ൌ 3.29

 So given this difference in variance, probit estimates are on a different scale 
than logit estimates, and so their estimates won’t match… however…

ሺ⋅ሻ܏
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Probit vs. Logit: Should you care? Pry not.

• Other fun facts about probit:
 Probit = “ogive” in the Item Response Theory (IRT) world
 Probit has no odds ratios (because it’s not based on odds)

• Both logit and probit assume symmetry of the probability 
curve, but there are other asymmetric options as well…

Probit ો܍૛ ൌ 1.00
(SD=1)

Logit 
૛ࢋ࣌ ൌ 3.29
(SD=1.8)

Rescale to equate 
model coefficients: 
࢚࢏ࢍ࢕࢒ࢼ ൌ
࢚࢏࢈࢕࢘࢖ࢼ ∗ ૚. ૠ

You’d think it would 
be 1.8 to rescale, 
but it’s actually 1.7…

y୧ ൌ 0

Threshold
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y୧ ൌ 1

Transformed	y୧ (y୧∗) 

Pr
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Transformed	y୧ (y୧∗) 
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Other Link Functions for Binary Outcomes

ૄ ൌ ܔ܍܌ܗܕ Logit Probit Log-Log Complement. Log-Log

gሺ⋅ሻ for 
new y୧:

Log ௣
ଵି௣

= μ Φିଵ ݌ = μ െLog െLog ݌ = μ Log െLog 1 െ ݌ = μ

gିଵሺ⋅ሻ to
get back to 
probability:

݌ ൌ
exp μ

1 ൅ exp μ
݌ ൌ Φ μ ݌ ൌ exp െexp െμ ݌ ൌ 1 െ exp െexp μ

In SAS LINK= LOGIT PROBIT LOGLOG CLOGLOG

‐5.0
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‐3.0
‐2.0
‐1.0
0.0
1.0
2.0
3.0
4.0
5.0

0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

Tr
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sf
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ed

 Y

Original Probability

Logit Probit = Z*1.7

Log‐Log Complementary Log‐Log

Logit = Probit*1.7
which both assume 
symmetry of prediction

Log-Log is for outcomes in 
which 1 is more frequent

Complementary 
Log-Log is for outcomes in 
which 0 is more frequent

e୧~extreme	value െγ? , σୣଶ ൌ
πଶ

6
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Too Logit to Quit: Predicting Proportions
• The logit link can also be useful in predicting proportions:

 Range between 0 and 1, so model needs to “shut off” predictions for 
conditional mean as they approach those ends, just as in binary data

 Data to model:  μ in logits ൌ Log ௣
ଵି௣

 Model to data  ݌ ൌ ୣ୶୮ ஜ
ଵାୣ୶୮ ஜ

• However, because the outcome values aren’t just 0 or 1, 
a Bernoulli residual distribution won’t work for proportions

• Two distributions: Binomial (discrete) vs. Beta (continuous)
 Binomial: Less flexible (just one hump), but can include 0 and 1 values

 Beta: Way more flexible (????), but cannot directly include 0 or 1 values
 (Not sure if it’s ok to cheat by rescaling to fit between 0 and 1)
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ሺ⋅ሻ܏ Link

૚ି܏ ⋅ Inverse-Link



Binomial Distribution for Proportions
• The discrete binomial distribution can be used to predict 

correct responses given trials
 Bernoulli for binary = special case of binomial when ݊=1

 ܾ݋ݎܲ ݕ ൌ ܿ 	ൌ ௡!
௖! ௡ି௖!

௖݌ 1 െ ݌ ௡ି௖
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݌ = probability of 1

As ݌ gets closer to 
.5 and n gets larger, 
the binomial pdf
will look more like a 
normal distribution.

But if many people 
show floor/ceiling 
effects, a normal 
distribution is not 
likely to work well… 
so use a binomial!

Mean = ݊݌
Variance = ሺ1݌݊ െ ሻ݌



Binomial Distribution for Proportions
• SAS PROC GLIMMIX allows the outcome variable to be 

defined as #events/#trials on MODEL statement
 LINK=LOGIT so that the conditional mean stays bounded 

between 0 and 1 as needed (or alternatively, CLOGLOG/LOGLOG)
 DIST=BINOMIAL so variance (and SEs) are determined by that 

mean, as they should be assuming independent events

• Be careful of overdispersion
 Overdispersion = more variability than the mean would predict 

(cannot happen in binary outcomes, but it can for binomial)
 Indicated by Pearson χଶ/df ൐ 1 in SAS output
 Can be caused by an improperly specified linear predictor model 

(e.g., forgot some interaction terms) or correlated observations 
(i.e., due to nesting, clustering, multivariate, and so forth)
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Beta Distribution for Proportions
• The continuous beta distribution (LINK=LOGIT, DIST=BETA) 

can predict percentage correct ࢖ (must be 0 ൏ ࢖ ൏ 1)

 ܨ ,ߙ|ݕ ߚ ൌ ୻ ఈାఉ
୻ ఈ ୻ ఉ

yఈିଵ	 1 െ y ఉିଵ
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ߙ and ߚ are ”shape” parameters (> 0)
Mean = μ = ஑

஑ାஒ

“Scale” = ϕ = α ൅ β

Variance = ஜ ଵିஜ
ଵାம

SAS GLIMMIX will 
provide a fixed 
intercept as logit(μ) 
and the “scale” ϕ



Too Logit to Quit…http://www.youtube.com/watch?v=Cdk1gwWH-Cg

• The logit is also the basis for many other generalized models 
for predicting categorical outcomes

• Next we’ll see how ܥ possible response categories can be 
predicted using ܥ െ 1 binary “submodels” that involve carving 
up the categories in different ways, in which each binary 
submodel uses a logit link to predict its outcome

• Types of categorical outcomes:
 Definitely ordered categories: “cumulative logit”

 Maybe ordered categories: “adjacent category logit” (not used much)

 Definitely NOT ordered categories: “generalized logit”
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Logit-Based Models for C Ordinal Categories
• Known as “cumulative logit” or “proportional odds” model in generalized 

models; known as “graded response model” in IRT
 LINK=CLOGIT, DIST=MULT in SAS GLIMMIX

• Models the probability of lower vs. higher cumulative categories via ܥ െ 1
submodels (e.g., if ܥ ൌ 4 possible responses of ܿ ൌ 0,1,2,3): 

0 vs. 1, 2,3 0,1 vs. 2,3 0,1,2 vs. 3

• In SAS, what the binary submodels predict depends on whether the model 
is predicting DOWN ܑܡ) ൌ ૙, the default) or UP (ܑܡ ൌ ૚) cumulatively

• Example predicting UP in an empty model (subscripts=parm,submodel)

• Submodel 1: Logit y୧ ൐ 0 ൌ β଴ଵ 	݌ y୧ ൐ 0 ൌ exp β଴ଵ / 1 ൅ exp β଴ଵ
• Submodel 2: Logit y୧ ൐ 1 ൌ β଴ଶ  ݌ y୧ ൐ 1 ൌ exp β଴ଶ / 1 ൅ exp β଴ଶ
• Submodel 3: Logit y୧ ൐ 2 ൌ β଴ଷ    	݌ y୧ ൐ 2 ൌ exp β଴ଷ / 1 ൅ exp β଴ଷ

Submodel3Submodel2Submodel1

I’ve named these submodels 
based on what they predict, 
but SAS will name them its 
own way in the output.
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Logit-Based Models for C Ordinal Categories
• Models the probability of lower vs. higher cumulative categories via ܥ െ 1

submodels (e.g., if ܥ ൌ 4 possible responses of ܿ ൌ 0,1,2,3): 

0 vs. 1,2,3 0,1 vs. 2,3 0,1,2 vs. 3

• In SAS, what the binary submodels predict depends on whether the model 
is predicting DOWN ܑܡ) ൌ ૙, the default) or UP (ܑܡ ൌ ૚) cumulatively
 Either way, the model predicts the middle category responses indirectly

• Example if predicting UP with an empty model:

 Probability of 0 =       1 – Prob1
Probability of 1 = Prob1– Prob2
Probability of 2 = Prob2– Prob3
Probability of 3 = Prob3– 0

Submodel3
 Prob3

Submodel2
 Prob2

Submodel1
 Prob1

The cumulative submodels that create these 
probabilities are each estimated using all the 
data (good, especially for categories not chosen 
often), but assume order in doing so (may be 
bad or ok, depending on your response format).

Logit y୧ ൐ 2 ൌ β଴ଷ

	݌ y୧ ൐ 2 ൌ ୣ୶୮ ஒబయ
ଵାୣ୶୮ ஒబయ
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Logit-Based Models for C Ordinal Categories
• Ordinal models usually use a logit link transformation, but they can also use 

cumulative log-log or cumulative complementary log-log links
 LINK= CUMLOGLOG or CUMCLL, respectively, in SAS PROC GLIMMIX

• Almost always assume proportional odds, that effects of predictors are the 
same across binary submodels—for example (subscripts = parm, submodel)
 Submodel 1: Logit y୧ ൐ 0 ൌ ઺૙૚ ൅ βଵX୧ ൅ βଶZ୧ ൅ βଷX୧Z୧
 Submodel 2: Logit y୧ ൐ 1 ൌ ઺૙૛ ൅ βଵX୧ ൅ βଶZ୧ ൅ βଷX୧Z୧
 Submodel 3: Logit y୧ ൐ 2 ൌ ઺૙૜ ൅ βଵX୧ ൅ βଶZ୧ ൅ βଷX୧Z୧

• Proportional odds essentially means no interaction between submodel and 
predictor effects, which greatly reduces the number of estimated parameters
 Assumption for single-level data can be tested painlessly using PROC LOGISTIC, 

which provides a global SCORE test of equivalence of all slopes between submodels

 If the proportional odds assumption fails and ܥ ൐ 3, you’ll need to write your own 
model non-proportional odds ordinal model in PROC NLMIXED
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Logit-Based Models for C Categories
• Uses multinomial distribution for residuals, whose PDF for 
ܥ ൌ 4 categories of ܿ ൌ 0,1,2,3, an observed ݕ௜ ൌ ܿ, and 
indicators ܫ if ܿ ൌ ௜ݕ

݂ y୧ ൌ c ൌ ୧଴݌
୍ሾ୷౟ୀ଴ሿ݌୧ଵ

୍ሾ୷౟ୀଵሿ݌୧ଶ
୍ሾ୷౟ୀଶሿ݌୧ଷ

୍ሾ୷౟ୀଷሿ

 Maximum likelihood is then used to find the most likely parameters in 
the model to predict the probability of each response through the 
(usually logit) link function; probabilities sum to 1: ∑ ୧ୡେ݌

ୡୀଵ ൌ 1

• Other models for categorical data that use the multinomial:
 Adjacent category logit (partial credit): Models the probability of 

each next highest category via ܥ െ 1 submodels (e.g., if ܥ ൌ 4): 
0 vs. 1 1 vs. 2 2 vs. 3

 Baseline category logit (nominal): Models the probability of reference 
vs. other category via ܥ െ 1 submodels (e.g., if ܥ ൌ 4 and 0 ൌ ref): 

0 vs. 1 0 vs. 2 0 vs. 3

Only ݌௜௖ for the response 
௜ݕ ൌ ܿ	 gets used
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In nominal models, all 
parameters are estimated 
separately per submodel



One More Idea…
• Ordinal data can sometimes also be approximated with a logit

link and binomial distribution instead
 Example: Likert scale from 0-4  #	trials ൌ 4, #	correct ൌ yi
 Model predicts ݌ of binomial distribution, ݌ ∗ 	ݏ݈ܽ݅ݎݐ# ൌ 	݉݁ܽ݊
 ሺyiሻ݌ = proportion of sample expected in that ݅ݕ response category

• Advantages: 
 Only estimates one parameter that creates a conditional mean for each 

response category, instead of ܥ െ 1 cumulative intercepts or thresholds

 Can be used even if there is sparse data in some categories

 Results may be easier to explain than if using cumulative sub-models

• Disadvantages: 
 # persons in each category will not be predicted perfectly to begin with, 

so it may not fit the data as well without the extra intercept parameters
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Generalized Models: Summary
• Statistical models come from probability distributions
 Specifically, residuals are assumed to have some distribution
 The normal distribution is one choice, but there are lots of others: 

we saw Bernoulli, binomial, beta, and multinomial
 ML estimation tries to maximize the height of the data using that 

distribution along with the model parameters

• Generalized models have three parts:
1. Link function: how bounded conditional mean of Y gets 

transformed into something unbounded we can predict linearly
 We’ve seen identity, logit, probit, log-log, and cumulative log-log

2. Linear predictor: how we predict that conditional mean
3. Residuals model: what kind of distribution they follow
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