This example examines alternative factor models for 6 outcomes that measure use of controlled substances on a scale of 0 to 6, where: 0 = Never used, 1 = Have used once or twice, 2 = Once or twice a year, 3 = Less than once a month, 4 = Once or twice a month, 5 = Once or twice a week, and 6 = Daily. Below are the distributions of the outcomes in a sample of 356 rural adolescents. It is admittedly not the best example because of the constrained 7-point ordinal scale rather than a true count, but it is what I have to illustrate these models...

Assuming we wish to model the distribution as some kind of continuum (i.e., not as graded response), there are several reasonable options described below for factor models that assume different conditional item response distributions. We will see examples of how to specify each of these in Mplus next, using MLR (robust ML) for all models. Model fit statistics will only be available for normal models that are easily summarized by a covariance matrix, though.

Hoffman Psyc 948 Example 7b

Normal (regular CFA) Model: We fit a linear model of the factor predicting the ORIGINAL item response and assume each item follows a conditionally normal distribution (i.e., the item residuals are normally distributed after controlling for the factor). The measurement model would thus include per item an intercept (the expected item response when factor = 0), a factor loading (change in item response per unit change in the factor), and a residual variance (amount of item variance not predicted by the factor). A normal model that assumes a linear relationship between the item response and the factor (i.e., an interval scaling of the response options) is not likely to be tenable for these kinds of data, but it's the most common approach. Although we can use MLR instead of ML for CFA models when item response distributions look non-normal to correct the fit statistics and standard errors accordingly, that doesn't solve the basic problem of whether it is reasonable to expect a linear relationship between the item response and the factor. The alternative models below address this latter problem.

Poisson and Negative Binomial Models: We fit a linear model of the factor predicting the LOG of the item response. We assume the items follow a **Poisson** distribution in which the mean is the same as the variance (a single parameter called "k"). The Poisson measurement model would thus include per item an intercept (the expected LOG of the item response when factor = 0) and a factor loading (change in the LOG of the item response per unit change in the factor), but no estimated residual variance (because it is determined by the conditional mean). In the closely related **Negative Binominal** model, we add to the Poisson model a scaling factor " α " that allows the residual variance to exceed the mean (called "over-dispersion"), such that the new variance = k(1+k\alpha). In Mplus we can test if the scaling factor is different than 0 (because 0=Poisson), and thus we could do a nested model comparison as to whether a Negative Binominal fits better than a Poisson for each item response. These models works well for integer count data that can't be negative or data that are skewed, but they run into problems if the over-dispersion is caused by an excess of zeros. The alternative models below address this extra-zero problem.

Zero-Inflated Poisson (ZIP) or Zero-Inflated Negative Binomial (ZINB): These models specify two underlying distributions in the observed item responses: "structural zeros" and "non-structural zeros" (includes expected zeros based on regular Poisson or negative binomial distributions). A structural zero would never do any of the behaviors in question, whereas an expected zero (who belongs in the regular distribution) might do the general behavior, just not that particular item (e.g., zero for use of speed but non-zero for use of weed). We can potentially fit a factor model to each part of the distribution. The structural zero measurement model would have a linear model of the factor predicting the LOGIT of being a structural zero (so the "higher category" being predicted is the structural zero as 1). The structural zero factor model would thus estimate thresholds (expected LOGIT of being a non-structural zero if the factor = 0) and factor loadings (change in the LOGIT of being a structural zero per unit change in the factor). The non-structural-zero measurement model would have a linear model would estimate intercepts (expected LOG of item response if factor = 0) and factor loadings (change in the LOG of the item response, and the ZINB would again have an added scaling parameter for over-dispersion. Thus the non-structural-zero measurement model would estimate intercepts (expected LOG of item response if factor = 0) and factor loadings (change in factor). Just as the Poisson is nested within the Negative Binomial (tests if the scaling parameter for extra residual variance is needed), the ZIP is nested within the ZINB. In addition, the AIC and BIC can be compared between the Poisson and ZIP, or between the Negative Binomial and ZINB, to see if the zero-inflation parameters are helpful. It is not required to have a factor for the inflation, but one can do so in Mplus (very hard to estimate). However, the interpretation of two kinds of zeros can be confusing, and so the alternative models below address the issue

Negative Binomial Hurdle and Two-Part Models: Rather than trying to distinguish "structural zeros" from "non-structural zeros", these models simply split each observed item response into two new variables: "0 vs. something", and "how much if not 0". The models differ in how they accomplish this same idea. The **negative binomial hurdle model** for "0 vs. something" uses "0" as what is predicted. Thus, the measurement model for the "not 0 vs. 0" part would have a linear model of its factor predicting the LOGIT of being a 0. It thus estimates a threshold (expected LOGIT of not being 0 if factor = 0) and a factor loading (expected change in the LOGIT of being a 0 per unit change in the factor). The negative binomial hurdle measurement model for the "not 0" part would have a linear model of its factor predicting the LOG of the item response past 0 (a zero-truncated distribution). It thus estimates an intercept (expected LOG of the non-zero item response if factor = 0), a factor loading (expected change in the LOG of the non-zero item response per unit change in the residual variance. **The two-part model** for the "o vs. something" uses "something" as what is predicted. Thus, the measurement model for the "o vs. not 0" part would have a linear model of its factor = 0) and a factor loading (expected change in the LOG of the term response per unit change in the factor), and a scaling parameter for the over-dispersion of the residual variance. **The two-part model** for the "o vs. something" uses "something" as what is predicted. Thus, the measurement model for the "o vs. not 0" part would have a linear model of its factor predicting the LOGIT of being not 0 per unit change in the factor). The two-part measurement model for the factor). The two-part model for the "o vs. something" as what is predicted. Thus, the measurement model for the "not 0" part would have a linear model of its factor predicting the LOGIT of being not 0 per unit change in the factor). The two-part measurement model for the "o vs. not 0" part would ha

Here is one alternative: (1) Normal CFA model with Robust ML

TITLE: Model 1: Normal Response Distribution	MODEL RESULTS				
DATA: FILE IS deviance.dat;				T	wo-Tailed
		Estimate	S.E.	Est./S.E.	P-Value
VARIABLE: NAMES ARE cig beer liquor weed inhale speed;	FACTOR LOADINGS:	CHANGE IN ACTUAL	Y PER	SD CHANGE IN	FACTOR
USEVARIABLES ARE cig beer liquor weed inhale speed;	REC BY				
MISSING ARE .;	CIG	1.179	0.115	10.267	0.000
! No extra code here means we assume each item response is normal	BEER	1.561	0.062	25.195	0.000
	LIQUOR	1.359	0.066	20.667	0.000
ANALYSIS: ESTIMATOR IS MLR;	DRUG BY				
OUTPUT: RESIDUAL STDYX;	WEED	1.037	0.121	8.582	0.000
	INHALE	0.805	0.096	8.412	0.000
MODEL:	SPEED	0.857	0.096	8.930	0.000
! Factor loadings all estimated					
Rec BY cig* beer* liquor*;	CORRELATION BETW	EEN KINDS OF DRUG	USE		
Drug BY weed* inhale* speed*;	REC WITH				
! Intercepts all estimated	DRUG	0.613	0.051	12.110	0.000
[cig* beer* liquor* weed* inhale* speed*];					
! Residual variances all estimated	EXPECTED ACTUAL	Y WHEN FACTOR IS (U		
cig* beer* liquor* weed* innale* speed*;	Intercepts	0.105			
! Factor mean=0 and variance=1 For identification, factors correlate	CIG	2.126	0.116	18.257	0.000
[Rec@0 Drug@0]; Rec@1 Drug@1; Rec WITH Drug*;	BEER	2.726	0.093	29.221	0.000
	LIQUOR	1.886	0.088	21.486	0.000
	WEED	0.593	0.070	8.487	0.000
Number of Free Parameters 19	INHALE	0.431	0.056	7.670	0.000
Loglikelihood	SPEED	0.468	0.060	7.871	0.000
H0 Value -3408.733					
H0 Scaling Correction Factor 2.0743	Residual Variance	es - AMOUNT OF IT	EM VARI	ANCE THAT IS	NOT THE FACTOR
for MLR	CIG	3.439	0.292	11.757	0.000
H1 Value -3388.791	BEER	0.658	0.141	4.669	0.000
H1 Scaling Correction Factor 1.8171	LIQUOR	0.894	0.108	8.282	0.000
for MLR	WEED	0.636	0.175	3.628	0.000
	INHALE	0.462	0.112	4.120	0.000
Information Criteria	SPEED	0.510	0.118	4.332	0.000
Akaike (AIC) 6855.466					
Bayesian (BIC) 6929.090	STDYX Standardization				
Sample-Size Adjusted BIC 6868.813					Two-Tailed
$(n^* = (n + 2) / 24)$		Estimate	S.E.	Est./S.E.	P-Value
Chi-Square Test of Model Fit	RECAMT BY: CO	RRELATION BETWEEN	ACTUAL	Y AND FACTO	R
Value 33.067*	CIG	0.537	0.048	11.096	0.000
Degrees of Freedom 8	BEER	0.887	0.026	34.184	0.000
P-Value 0.0001	LIQUOR	0.821	0.026	31.516	0.000
Scaling Correction Factor 1.206					
for MLR	DRUGAMT BY				
	WEED	0.793	0.062	12.834	0.000
RMSEA (Root Mean Square Error Of Approximation)	INHALE	0.764	0.053	14.322	0.000
Estimate 0.094	SPEED	0.768	0.048	15.922	0.000
90 Percent C.I. 0.062 0.128					
Probability RMSEA <= .05 0.014	RECAMT WITH				
	DRUGAMT	0.613	0.051	12.110	0.000
CFI/TLI					
CFI 0.947					
TLI 0.900					

Here are two more alternatives: (2a) Poisson Factor Model and (2b) Negative Binomial/Poisson Factor Model

TITLE: Model 2a:	Poisson for all	;			TITLE: Model 2b: Poisson for all; Negative Binomial for CIG only				l for CIG only	
DATA: FILE IS d	eviance.dat;				DATA: FILE IS deviance.dat;					
VARIABLE: NAMES	ARE cig	beer li	quor weed in	nhale speed;	VARIABLE: NAMES ARE cig beer liquor weed inhale speed;			nhale speed;		
USEVA	RIABLES ARE cig	beer li	quor weed in	hale speed;		USEVA	ARIABLES ARE cig	beer li	quor weed i	nhale speed;
MISSI	NG ARE .;					MISS	ING ARE .;			
! Tells Mplus whi	ch distribution	each it	em response	should get	! Tells	Mplus wh:	ich distribution	each it	em response	should get
COUNT ARE cig (p)	beer (p) liquor	(p) we	ed (p) inhal	le (p) speed (p);	COUNT A	RE cig (nl	b) beer (p) liquo	or (p) w	reed (p) inh	ale (p) speed (p);
ANALYSIS: ESTIM	ATOR IS MLR;				ANALYSIS	S: ESTIN	MATOR IS MLR;			
OUTPUT: RESID	UAL; ! STDYX ! s	tandard	ized doesn't	: make any sense	OUTPUT:	RESI	JUAL;			
MODEL:	all actimated				MODEL:	looding	all actimated			
Peg BV gigt h	eert liguort.				: Factor	BV gigt 1	s all estimated			
Drug BV weed*	inhale* speed*•				Drug	BV weed*	inhale* speed*.			
I Intercepts all	estimated				I Intero	repts all	estimated			
[cig* beer* li	guor* weed* inha	le* spe	ed*1:		[cig	* beer* l:	guor* weed* inha	ale* spe	ed*1;	
! Factor mean=0 a	nd variance=1 fo	r ident	ification, f	actors correlate	! Factor	mean=0 a	and variance=1 fo	or ident	ification.	factors correlate
[Rec@0 Drug@0]; Rec@1 Drug@1:	Rec WI	TH Drug*;		[Red	c@0 Drug@0)]; Rec@1 Drug@1	; Rec WI	TH Drug*;	
			-5 /						-5 7	
Number of Free Pa	rameters		13		Number o	of Free Pa	arameters		14	
Loglikelihood					Loglike	Lihood				
HU Valu	ing Comresties -	10 at c	-2004.557			HU Valu	ling Commenting 1	Zo at a	-265/.992	
HU Scal	ing Correction F	actor	0.8884			HU SCA.	Ling Correction J	factor	0.9035	
IOF M					IOT MLR Information Chitania					
Akaika			5355 113		Information Criteria					
Bavesia	n (BIC)		5405 488		$\begin{array}{c} \text{ARAIRE (AIC)} & 5343.904 \\ \text{Bayesian (BIC)} & 5308.233 \end{array}$					
Sample-	Size Adjusted Bl	C	5364 246		Sample-Size Adjusted BIC 5353 819					
(n* =	(n + 2) / 24)		5501.210		$(n^* = (n + 2) / 24)$					
, , , , , , , , , , , , , , , , , , ,	· · · · ·			Two-Tailed			· · · · ·			Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value			Estimate	S.E.	Est./S.E.	P-Value
FACTOR LOADINGS:	CHANGE IN LOG(Y)	PER SD	CHANGE IN H	ACTOR	FACTOR 1	LOADINGS:	CHANGE IN LOG(Y) PER SD	CHANGE IN	FACTOR
REC BY					REC	BY				
CIG	0.879	0.065	13.562	0.000	CIG		0.805	0.077	10.497	0.000
BEER	0.538	0.042	12.892	0.000	BEEH	ર	0.539	0.041	13.090	0.000
LIQUOR	0.713	0.059	12.108	0.000	LIQU	JOR	0.719	0.058	12.326	0.000
DRUG BY					DRUG	BY				
WEED	2.527	0.210	12.038	0.000	WEEI	0	2.578	0.207	12.432	0.000
INHALE	2.476	0.259	9.565	0.000	INHA	ALE	2.528	0.260	9.720	0.000
SPEED	2.613	0.241	10.845	0.000	SPEI	ED	2.663	0.239	11.123	0.000
CORRELATION BETWE	EN KINDS OF DRUG	USE -	MUCH LARGER	NOW	CORRELAT	LION BETWI	EEN KINDS OF DRUG	3 USE -	STILL MUCH	LARGER NOW
REC WITH					REC	WITH				
DRUG	0.952	0.032	29.753	0.000	DRUG	3	0.989	0.032	31.109	0.000
EXPECTED LOG(Y) W	HEN FACTOR IS 0				EXPECTEI	D LOG(Y) V	WHEN FACTOR IS 0			
Intercepts	0 405	0 0 0 4		0 000	Interce	epts	0 070	0 040	10 004	0 000
CIG	0.425	0.084	5.066	0.000	BEER		0.870	0.048	18.204	0.000
BEEK	U.8/2	0.04/	TQ.32/	0.000	LIQU	JOR	0.410	0.070		0.000
TIQUOK	0.413	0.009	5.994	0.000	WEEL	ן אדדי	-2.591	0.203	-9.141 _0 /0/	0.000
	-2.555	0.201 0 220	-9.10/	0.000		-115 715	-2.040	0.330	-0.484	0.000
SDEED	-2.009	0.370	-0.571	0.000	CTC	'	0 482	0.340	-0.039 5 888	0.000
SFEED	-2.099	0.335	-0./11	0.000	CIG		0.402	0.002	5.000	0.000
NO RESIDUAL VARIANCES WERE ESTIMATED (ARE DETERMINED INSTEAD) Dispersion - ALPHA MULTIPLIER TO INCREASE VARIANCE RELATIVE TO MEAN			RELATIVE TO MEAN							
		-		-	CIG		0.229	0.088	2.589	0.010

Here is another alternative: (3) Zero-Inflated Negative Binomial or Poisson Factor Model

TITLE: Model 3: Zero-Inflated Poisson and Negative Binomial (FOR CIG)	MODEL RESULTS					
DATA: FILE IS deviance.dat;					Two-Tailed	
		Estimate	S.E.	Est./S.E.	P-Value	
VARIABLE: NAMES ARE cig beer liquor weed inhale speed;						
USEVARIABLES ARE cig beer liquor weed inhale speed;	FACTOR LOADINGS:	CHANGE IN LOG(Y)	PER SD	CHANGE IN I	FACTOR	
MISSING ARE .;	APPLIES TO NON-STRUCTURAL ZEROS ONLY					
! Tells Mplus which distribution each item response should get	RECAMT BY					
COUNT ARE cig (nbi) beer (pi) liquor (pi) weed (pi) inhale (pi)	CIG	0.787	0.075	10.538	0.000	
speed (pi);	BEER	0.542	0.041	13.094	0.000	
	LIQUOR	0.725	0.059	12.358	0.000	
ANALYSIS: ESTIMATOR IS MLR;						
OUTPUT: RESIDUAL; ! STDYX ! standardized doesn't make any sense	DRUGAMT BY					
MODEL:	WEED	2.618	0.219	11.946	0.000	
! Factor loadings all estimated for AMOUNT if Structural Non-Zero	INHALE	2.472	0.297	8.315	0.000	
RecAmt BY cig* beer* liquor*;	SPEED	2.707	0.245	11.041	0.000	
DrugAmt BY weed* inhale* speed*;						
! Means all estimated for inflation variables (not predicted)	CORRELATION BETWE	EN KINDS OF DRUG	USE IN	NON-STRUCT	URAL ZEROS	
<pre>[cig#1* beer#1* liquor#1* weed#1* inhale#1* speed#1*];</pre>	REC WITH					
! Intercepts all estimated for AMOUNT factor	DRUG	0.983	0.034	28.730	0.000	
<pre>[cig* beer* liquor* weed* inhale* speed*];</pre>						
! Factor mean=0 and variance=1 for identification, factors correlate	EXPECTED LOGIT OF	BEING A STRUCTU	JRAL ZERO	, -15 = "TO	OO SMALL TO FIND"	
[RecAmt@0 DrugAmt@0]; RecAmt@1 DrugAmt@1; RecAmt WITH DrugAmt*;	Means					
	RECAMT	0.000	0.000	999.000	999.000	
	DRUGAMT	0.000	0.000	999.000	999.000	
MODEL FIT INFORMATION						
Number of Free Parameters 20	BEER#1	-15.000	0.000	999.000	999.000	
	LIQUOR#1	-15.000	0.000	999.000	999.000	
Loglikelihood	WEED#1	-2.835	0.848	-3.344	0.001	
H0 Value -2654.559	INHALE#1	-2.621	2.184	-1.200	0.230	
H0 Scaling Correction Factor 0.9560	SPEED#1	-4.123	5.086	-0.811	0.418	
for MLR	CIG#1	-2.597	0.598	-4.341	0.000	
Information Criteria	EXPECTED LOG(Y) W	HEN FACTOR IS 0	IN NON-S	TRUCTURAL 2	ZEROS	
Akaike (AIC) 5349.118	Intercepts					
Bayesian (BIC) 5426.616	BEER	0.869	0.048	18.183	0.000	
Sample-Size Adjusted BIC 5363.167	LIQUOR	0.407	0.070	5.820	0.000	
$(n^* = (n + 2) / 24)$	WEED	-2.565	0.305	-8.414	0.000	
	INHALE	-2.715	0.457	-5.934	0.000	
	SPEED	-2.967	0.375	-7.905	0.000	
ZIP AND ZINB Inflation factors: Although we could have fit factors for	CIG	0.555	0.094	5.892	0.000	
the zero-inflation part (the logit of being a structural zero is						
predicted by each factor), those models showed severe convergence	Variances					
problems, most likely because the probability of being a structural	RECAMT	1.000	0.000	999.000	999.000	
zero was so small in this particular sample. For instance, the largest	DRUGAMT	1.000	0.000	999.000	999.000	
probability is for the mean of CIG#1 (logit of $-2.597 = \text{prob of } .07$).						
So we proceed with a single factor for each item for now.	Dispersion - ALP	HA MULTIPLIER TO	INCREAS	E VARIANCE	RELATIVE TO MEAN	
	CIG	0.101	0.093	1.091	0.275	
Further, the AIC and BIC are higher in this zero-inflated model,						
suggesting that most of the items do not need "structural zeros", or						
that including inflation parameters for the extra zeros does not help						
model fit.						
	L					

Here is another alternative: (4) Two-Part Factor Model (here, with a log transformation of the continuous part)

TITLE: Mod	lel 4: Two-Part Distributions (0 vs. log something)					Two-Tailed
DATA: FII	LE IS deviance.dat;		Estimate	S.E.	Est./S.E.	P-Value
		FACTOR LOADINGS F	OR "NOT 0":	CHANGE IN	LOGIT (Y=SOMET	THING INSTEAD OF
DATA TWOPAR	RT: ! Instructs Mplus to cut up each into 0/log of amount	0) PER SD CHANGE	IN FACTOR	(APPLIES TO	ALL 0 VALUES	3)
NAMES A	ARE cig beer liquor weed inhale speed;	RECNOTO BY				
BINARY	ARE Bcig Bbeer Bliquor Bweed Binhale Bspeed;	BCIG	1.350	0.210	6.415	0.000
CONTINU	JOUS ARE Ccig Cbeer Cliquor Cweed Cinhale Cspeed;	BBEER	3.614	0.882	4.099	0.000
CUTPOIN	VT IS 0;	BLIQUOR	3.079	0.694	4.439	0.000
TRANSFO	ORM IS LOG; ! Could also use "NONE" for no transformation	DRUGNOTO BY				
		BWEED	4.415	1.075	4.106	0.000
VARIABLE:	NAMES ARE cig beer liquor weed inhale speed;	BINHALE	2.712	0.474	5.716	0.000
	USEVARIABLES ARE Bcig Bbeer Bliquor Bweed Binhale Bspeed	BSPEED	4.313	0.976	4.419	0.000
	Ccig Cbeer Cliquor Cweed Cinhale Cspeed:					
	CATEGORICAL ARE Brig Bbeer Bliguor Bweed Binhale Bspeed;	FACTOR LOADINGS F	OR "AMT": C	HANGE IN LO	G(AMOUNT Y) H	PER SD CHANGE IN
	MISSING ARE .:	FACTOR (APPLIES T	O ALL NON-Z	EROS)	- (, -	
		RECAMT BY		,		
ANALYSIS:	ESTIMATOR IS MLR:	CCIG	0.385	0.052	7.365	0.000
OUTPUT:	RESIDUAL STDYX TECH4: ! TECH4 gives factor correlation matrix	CBEER	0.565	0.028	20 241	0 000
MODEL		CLIQUOR	0.500	0.020	16 175	0 000
L Factor lo	padings all estimated for 2 separate factors $(0/amount)$	DRUGAMT BY	0.500	0.051	10.175	0.000
RecNot 0	BY Bcig* Bbeer* Bliguor*:	CWEED	0 916	0 111	8 292	0.000
DrugNot) BY Bweed* Binhale* Bspeed*:	CINHALE	0.910	0.111	3 846	0.000
Diagnood	, bi breed bindre bepeed ,	CSPEED	0.151	0.113	5 162	0.000
RecAmt	BY Coig* Cheer* Cliquor*:	COLEED	0.551	0.107	5.102	0.000
DrugAmt	BY Cweed* Cinhale* Caneed*.	Thresholds - EXPE		V=0) FOR 0	VS SOMETHING	WHEN FACTOR IS 0
Drugraie	bi cweed climate object ,	BCTG\$1	-1 078	0 165	-6 523	
I Threshold	is all estimated for hinary part	BEFFD¢1	-4 545	0.105	_4 934	0.000
	is all estimated for binary part	BEERŞI BI TOHOD¢1	-4.545	0.921	-4.954	0.000
	a all estimated for continuous part	BLIQUORȘI BWEED¢1	-2.012	0.420	-4.787	0.000
: Incercept	Cheert Cliquort Gweedt Cinhalet Caneedtly	DINUALE'	2.215	0.733	4.300	0.000
LCCTA	cheel cliquoi cweed climate chpeed 17	BEDEFD¢1	2.030	0.403	4 745	0.000
L Regidual	variances all estimated for continuous part	Intercepts - EXPE	CTED LOG(AM		NON-ZERO WHEN	
Coig* (beert Cliquort Cweedt Cinbalet Cspeedt.		0 789	0 049	16 256	
ccrà c	sbeer criquor cweed crimare espeed ,	CREEP	0.705	0.038	23 004	0.000
I Factor me	an=0 and factor variance=1 for identification	CLIQUOR	0.911	0.038	17 727	0.000
[RecNot()@0 Recamt@0 DrugNot0@0 DrugAmt@0].	CWEED	-0.272	0.050	-1 657	0.000
RecNot)@1 Recimted DrugNot0@1 Drugimted;	CINHALE	0.272	0.139	0 840	0.401
Rechord	ei keemmeer brughetter brughmeery	CSPEED	-0 018	0.157	-0 116	0 908
I All facto	ors correlated by default	Residual Variance		OF TTEM VAR	TANCE WNOT TH	IE FACTOR
. AIT Fuctor) WITH Reclamt* DrugNot()* Druglamt*•		0 413	0 036	11 384	
RecAmt	WITH DrugNot0* DrugAmt*:	CBEER	0.115	0.030	3 317	0.001
DrugNot	-0 WITH DrugAmt*:	CLIQUOR	0.000	0.020	6 653	0.000
Drugnot		CWEED	0.131	0.020	0.882	0.378
Number of F	Tree Darameters 36	CINHALE	0.071	0.001	4 345	0.000
Loglikeliho	and Stores	CSPEED	0.200	0.000	4 656	0.000
DOGIIKEIIIG	10 Value = 1727 508	CSFEED	0.232	0.054	1.050	0.000
	IN Scaling Correction Factor 0 9497	TECH4 OUTPUT.				
	for MLR	ECHT COIFOI.	דה מספסינאיי	τονι ματρτν	דרף דאד דאיידי	TT VARTARIES
1	LOT MER	ESIIMAI. DEC		DRIGNOTO	BEGVWL THE THIEL	DBIIGVML COTTADTES
Information	Criteria	REC		DICOGINO I O	I/II/AMI I	DIOGAMIT
	$\lambda = \frac{1}{2527} 016$	PECNOTO 1				
	$\frac{1}{2}$	RECIVITO 1	.000	1 000		
	Dayestan (JUC) 3000.513		. 744	1.000	1 000	
2	$aut_{D1C} = 552.305$.009	0.707	1.000	1 000
1	(11" = (11 + 2) / 24)	DRUGAMI U	. /00	0.034	0./5/	T.000

Unfortunately, absolute model fit statistics are not given for the non-normal models, and relative fit statistics (AIC and BIC) are not comparable across the normal, Poisson/NB/ZIP/ZINB, and two-part families. What we can do is examine the predicted item response across factor levels for each alternative model and see what seems reasonable. Here are the plots (made in excel) for cigarettes and for weed, with scale ends noted with the horizontal lines.

As we can see, the Negative Binomial (for cigarettes) and Poisson (for weed) dramatically overshoot the possible item response at higher levels of the factor. The same is true for the zero-inflated versions of these models. But the normal model extends below the possible scale for both items.

The two-part models seems to have the best fit – results are shown for models with either a log transformation (model 4) or no transformation of the "how much" part (those model results were not shown). They both "shut off" towards the 0 end of the scale as needed (because "0 vs. something" is covered by the other part not plotted), but the predicted "how much" doesn't have the dramatic upswing at higher factor levels like the other models. Plus they have a more straightforward interpretation than the inflated models: Here, this is the relationship between answering "how much if not 0" and the factor.

Not shown is the model for the other factor that predicts the probability of "0 vs. something" instead. Finally, we could have had the binary "0 vs. something" items and the "how much if not 0" items load onto the same factor (but fit got worse for that in these data).

STDYX Standardization - STANDARDIZED LOADINGS are available					
	Estimate	S.E. Est./S.E.	Two-Tailed P-Value		
RECNOTO BY -	CORRELATION BETWEE	N LOGIT(SOMETHING)	AND FACTOR		
BCIG	0.597	0.060 9.970	0.000		
BBEER	0.894	0.044 20.369	0.000		
BLIQUOR	0.862	0.050 17.227	0.000		
DRUGNOTO BY -	CORRELATION BETWEE	N LOGIT(SOMETHING)	AND FACTOR		
BWEED	0.925	0.033 28.436	0.000		
BINHALE	0.831	0.045 18.500	0.000		
BSPEED	0.922	0.031 29.402	0.000		
RECAMT BY -	CORRELATION BETWEE	N LOG(AMOUNT) AND	FACTOR		
CCIG	0.514	0.066 7.820	0.000		
CBEER	0.910	0.029 31.146	0.000		
CLIQUOR	0.810	0.035 23.391	0.000		
DRUGAMT BY -	CORRELATION BETWEE	N LOG(AMOUNT) AND	FACTOR		
CWEED	0.959	0.050 19.117	0.000		
CINHALE	0.649	0.133 4.888	0.000		
CSPEED	0.741	0.093 7.937	0.000		

