Higher-Order Models (CFA with MLR and IFA with WLSMV) in Mplus version 7.11

Example data: 1336 college students self-reporting on 49 items (measuring 5 factors) assessing childhood maltreatment: Items are answered on a 1-5 scale: 1=Strongly Disagree, 2=Disagree, 3=Neutral, 4=Agree, 5=Strongly Agree. The items are not normally distributed, so we'll use both CFA with MLR and IFA with WLSMV as 2 options to examine the fit of these models (as an example of how to do each, but NOT to compare between estimators).

- 1. Spurning: Verbal and nonverbal caregiver acts that reject and degrade a child
- 2. Terrorizing: Caregiver behaviors that threaten or are likely to physically hurt, kill, abandon, or place the child or the child's loved ones or objects in recognizably dangerous situations.
- 3. Isolating: Caregiver acts that consistently deny the child opportunities to meet needs for interacting or communicating with peers or adults inside or outside the home.
- <u>4. Corrupting</u>: Caregiver acts that encourage the child to develop inappropriate behaviors (self-destructive, antisocial, criminal, deviant, or other maladaptive behaviors).
- 5. Ignoring: Emotional unresponsiveness includes caregiver acts that ignore the child's attempts and needs to interact (failing to express affection, caring, and love for the child) and show no emotion in interactions with the child

Here are the results from fitting the factor separately to ensure their individual fit FIRST:

Model	# Items	# Possible Parms	# Free Parms	Chi-Square Value	Chi-Square Scale Factor	Chi-Square DF	e Chi-Square p-value	CFI	RMSEA Estimate	RMSEA Lower Cl	RMSEA Higher Cl	RMSEA p-value
MLR Spurning	12	90	36	224.797	1.401	54	<.0001	0.959	0.049	0.042	0.055	0.619
MLR Terror	9	54	27	189.815	1.588	27	<.0001	0.918	0.067	0.058	0.076	0.001
MLR Isolate	6	27	18	80.354	1.494	9	<.0001	0.916	0.077	0.062	0.093	0.002
MLR Corrupt	7	35	21	54.964	1.908	14	<.0001	0.934	0.047	0.034	0.060	0.633
MLR Ignore	15	135	45	484.291	1.792	90	<.0001	0.932	0.057	0.052	0.062	0.008

ASESSMENT OF MODEL FIT USING MLR

ASESSMENT	EIT LICINIC	\A/I CN/I\/
AJEJJIVIEINI		VVLJIVIV

Model	# Items	# Possible	# Free	Chi-Square	Chi-Square	Chi-Square	Chi-Square	CFI	RMSEA	RMSEA	RMSEA	RMSEA
woder	# items	Parms	Parms	Value	Scale Factor	DF	p-value	CFI	Estimate	Lower Cl	Higher Cl	p-value
WLSMV Spurning	12	126	60	294.707		54	<.0001	0.983	0.058	0.051	0.064	0.023
WLSMV Terror	9	81	45	263.155		27	<.0001	0.966	0.081	0.072	0.090	<.0001
WLSMV Isolate	6	45	30	129.827		9	<.0001	0.962	0.100	0.085	0.116	<.0001
WLSMV Corrupt	7	56	35	87.488		14	<.0001	0.976	0.063	0.055	0.076	0.044
WLSMV Ignore	15	180	75	897.691		90	<.0001	0.976	0.082	0.077	0.087	<.0001

Here are the standardized factor loadings for each item under each estimation method. Note that the WLSMV factor loadings are higher in this case – probably because of range restriction in the original data and thus the implausibility of a linear model.

MLR	WLSMV	MLR	WLSMV	MLR	WLSMV	MLR	WLSMV	MLR	WLSMV
Spurning	Spurning	Terror	Terror	Isolate	Isolate	Corrupt	Corrupt	Ignore	Ignore
0.599	0.660	0.512	0.617	0.521	0.696	0.589	0.739	0.672	0.813
0.457	0.528	0.673	0.771	0.550	0.630	0.545	0.713	0.654	0.749
0.769	0.837	0.451	0.713	0.545	0.685	0.375	0.523	0.657	0.748
0.526	0.597	0.612	0.721	0.540	0.629	0.545	0.854	0.724	0.801
0.607	0.677	0.571	0.787	0.563	0.726	0.631	0.826	0.445	0.540
0.816	0.865	0.554	0.617	0.752	0.822	0.580	0.708	0.745	0.833
0.835	0.907	0.685	0.805			0.646	0.840	0.847	0.913
0.465	0.538	0.643	0.743					0.713	0.813
0.516	0.728	0.732	0.815					0.808	0.891
0.655	0.744							0.749	0.845
0.674	0.756							0.656	0.795
0.610	0.680							0.830	0.904
								0.712	0.806
								0.739	0.815
								0.825	0.918

Syntax for CFA model with MLR including all 5 correlated factors ("biggest model" for comparison):

TITLE: 5-factor model: 5 correlated factors DATA: FILE IS abuse.dat;

VARIABLE:

NAMES ARE ID ! All variables in DATA SET p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31 p32 p33 p34 p35 p36 p37 p38 p39 p40 p41 p42 p43 p44 p45 p46 p47 p48 p49 p50 p51 p52 p53 p54 p55 p56 p57;

USEVARIABLES ARE ! All variables in MODEL p01 p02 p03 p04 p06 p07 p09 p10 p11 p12 p13 p14 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31 p33 p35 p36 p37 p39 p40 p43 p44 p45 p46 p47 p48 p49 p50 p51 p52 p53 p54 p55 p56 p57;

MISSING ARE .; IDVARIABLE IS ID;

ANALYSIS:	ESTIMATOR IS	MLR; ! Robust estimator
OUTPUT:	STDYX MODINDICES RESIDUAL	! Standardized solution ! Voodoo for fixing the model ! Local fit info
	TECH4;	! Factor correlation matrix

SAVEDATA: SAVE = FSCORES; ! Save factor scores FILE IS Abuse_Thetas.dat; ! File of factor scores

PLOT: TYPE IS PLOT1 PLOT2 PLOT3;

MODEL:
! 5 Lower-Order Factors (loadings for first item fixed =1)

! Factor Variances (all must be free) Spurn* Terror* Isolate* Corrupt* Ignore*;

! Factor Means (all fixed = 0 by default)
[Spurn@0 Terror@0 Isolate@0 Corrupt@0 Ignore@0];

! Factor Covariance (all free by default if predictors) Spurn Terror Isolate Corrupt Ignore WITH Spurn* Terror* Isolate* Corrupt* Ignore*;

<u>NOTE:</u> With respect to fit of the structural model, letting the separate factors be correlated is as good as it gets. This will be our "larger model" baseline with which to compare the fit of a single higher-order factor model ("smaller model").

Output for CFA model with MLR including all 5 correlated factors ("biggest model" for comparison):

Number of Free Parameters	157								
Loglikelihood									
H0 Value	-69027.431								
H0 Scaling Correction Factor for MLR	2.5033								
H1 Value	-65787.405								
H1 Scaling Correction Factor for MLR	1.5925								
Information Criteria									
Akaike (AIC)	138368.862								
Bayesian (BIC)	139184.860								
Sample-Size Adjusted BIC (n* = (n + 2) / 24)	138686.140								
Chi-Square Test of Model Fit									
Value	4424.700*								
Degrees of Freedom	1117								
P-Value	0.0000								
Scaling Correction Factor for MLR	1.4645								

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)Estimate0.04790 Percent C.I.0.0460.0450.049Probability RMSEA <= .051.000						
CFI/TLI CFI 0.847 TLI 0.839						
Chi-Square Test of Model Fit for the Baseline Model Value 22801.852 Degrees of Freedom 1176 P-Value 0.0000						

 (10.1000-0		
Value			0	.057

		SPURN	TERROR	ISOLATE	CORRUPT
	SPURN				
Latent	TERROR	0.929			
Variable	ISOLATE	0.898	0.876		
Correlations	CORRUPT	0.689	0.792	0.658	
	IGNORE	0.830	0.767	0.828	0.630
Factor	SPURN	TERROR	ISOLATE	CORRUPT	IGNORE
Variance	0.493	0.231	0.129	0.129	0.212
	0.583	0.532	0.493	0.601	0.681
	0.444	0.678	0.606	0.535	0.653
	0.764	0.462	0.601	0.365	0.650
	0.524	0.596	0.585	0.500	0.717
	0.593	0.587	0.497	0.627	0.474
Standardized	0.796	0.592	0.683	0.611	0.743
Loadings for	0.824	0.674		0.654	0.842
Items	0.515	0.626			0.708
	0.562	0.706			0.807
	0.663				0.757
	0.677				0.670
	0.629				0.822
					0.700
					0.754
					0.822

Note: #free parameters = 157 = 44 loadings + 49 intercepts + 49 residuals + 5 factor variances + 10 factor covariances = 157 parameters USED

Possible = 49*50/2 + 49 = 1274 DF =1117 calculation: 1274 – 157 = 1117

Now we can test the fit of a constrained structural model that posits a single higher-order "General Abuse" factor to account for the correlations among these 5 latent factors.

Syntax for CFA model with MLR and a higher-order factor instead of correlations among 5 factors ("smaller/bigger model" for comparison):

TITLE: 5-factor model: 5 lower-order, 1 higher-order factor DATA: FILE IS abuse.dat;

VARIABLE:

NAMES ARE ID ! All variables in DATA SET p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31 p32 p33 p34 p35 p36 p37 p38 p39 p40 p41 p42 p43 p44 p45 p46 p47 p48 p49 p50 p51 p52 p53 p54 p55 p56 p57;

USEVARIABLES ARE ! All variables in MODEL p01 p02 p03 p04 p06 p07 p09 p10 p11 p12 p13 p14 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31 p33 p35 p36 p37 p39 p40 p43 p44 p45 p46 p47 p48 p49 p50 p51 p52 p53 p54 p55 p56 p57;

MISSING ARE .; IDVARIABLE IS ID;

- ANALYSIS: ESTIMATOR IS MLR; ! Robust estimator
- OUTPUT: STDYX ! Standardized solution MODINDICES ! Voodoo for fixing the model RESIDUAL; ! Local fit info
- SAVEDATA: SAVE = FSCORES; ! Save factor scores (thetas) FILE IS Abuse_Thetas.dat; ! File factor scores saved to
- PLOT: TYPE IS PLOT1 PLOT2 PLOT3;

MODEL:
! 5 Lower-Order Factors (loadings for first item fixed =1)

! Factor Variances (all must be free - NOW "DISTURBANCES")
Spurn* Terror* Isolate* Corrupt* Ignore*;

! Factor Means (all fixed = 0 by default)
[Spurn@0 Terror@0 Isolate@0 Corrupt@0 Ignore@0];

```
! Higher-Order Factor (estimate loadings, fix mean=0 & variance=1)
Abuse BY Spurn* Terror* Isolate* Corrupt* Ignore*;
Abuse@01;
[Abuse@0];
```

<u>NOTE:</u> With respect to fit of the structural model, we are now fitting a single higher-order factor INSTEAD OF covariances among the 5 factors.

To test the fit against the saturated (all possible factor correlations model), we can do a -2Δ LL scaled difference test.

Output for CFA model with MLR and a higher-order factor instead of correlations among factors ("smaller/bigger model" for comparison):

MODEL FIT INFORMATION								
Number of Free Parameters	152							
Loglikelihood								
HO Value	-69080.656							
H0 Scaling Correction Factor for MLR	2.5109							
H1 Value	-65787.405							
H1 Scaling Correction Factor for MLR	1.5925							
Information Criteria								
Akaike (AIC)	138465.313							
Bayesian (BIC)	139255.323							
Sample-Size Adjusted BIC (n* = (n + 2) / 24)	138772.486							
Chi-Square Test of Model Fit								
Value	4486.382*							
Degrees of Freedom	1122							
P-Value	0.0000							
Scaling Correction Factor for MLR	1.4681							

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximati	on)
Estimate	0.047
90 Percent C.I. 0.046	0.049
Probability RMSEA <= .05	0.999
CFI/TLI	
CFI	0.844
TLI	0.837
and and red neet Meen among Desidual	`
SRMR (Standardized Root Mean Square Residual	
Value	0.058

DIDIN DU					Two-Tailed
			~ -		
				Est./S.E.	P-Value
ABUSE	BY (HIGHE	R-ORDER STAN	NDARDIZED L	OADINGS)	
SPURI	N	0.971	0.010	101.941	0.000
TERR	OR	0.952	0.011	88.191	0.000
ISOL	ATE	0.933	0.016	59.159	0.000
CORRI	JPT	0.745	0.027	27.312	0.000
IGNO	RE	0.846	0.018	48.111	0.000
Residual	Variances	(PROPORTION	N OF VARIAN	CE NOT ACCO	OUNTED FOR)
SPURI	N	0.057	0.018	3.107	0.002
TERR	OR	0.093	0.021	4.531	0.000
ISOL	ATE	0.129	0.029	4.374	0.000
CORRI	JPT	0.444	0.041	10.921	0.000
IGNO	RE	0.284	0.030	9.557	0.000
Tata	at				Two-Tailed
Late			~ -		
Varia		Estimate			
R-SQUARE	(VARIANCE	ACCOUNTED H			,
SPURI	N	0.943	0.018	50.970	0.000
TERR	OR	0.907	0.021	44.096	0.000
ISOL	ATE	0.871	0.029	29.580	0.000
CORRI	JPT	0.556	0.041	13.656	0.000
IGNO	RE	0.716	0.030	24.056	0.000

This higher-order factor model uses 5 fewer parameters (5 higher-order loadings to replace the 10 covariances among the factors).

According to the $-2\Delta LL$ scaled difference relative to the previous model,

 $-2\Delta LL(5) = 111.585, p < .0001$

STDYX Standardization

trying to reproduce the 5 factor covariances with a single higher-order factor results in a significant decrease in fit. Based on the factor correlations we examined earlier and the standardized higher-order loadings, I'd guess the issue lies with the "corrupting" factor not being as related to the others.

For the sake of illustration, we can try one more alternative – what if the items were measuring a single factor (i.e., a "total score")? Syntax for CFA model with MLR including a single factor instead of a higher-order factor ("smallest model" for comparison):

	single factor for everything	MODEL FIT INFORMATION				
DATA: FI	LE IS abuse.dat;	Number of Free Parameters	147			
VARIABLE:						
NAMES ARE	ID ! All variables in DATA SET	Loglikelihood				
p01 p02 p0	3 p04 p05 p06 p07 p08 p09 p10	HO Value	-70386.526			
p11 p12 p1	3 p14 p15 p16 p17 p18 p19 p20	H0 Scaling Correction Factor	2.398			
p21 p22 p2	3 p24 p25 p26 p27 p28 p29 p30	for MLR				
p31 p32 p3	3 p34 p35 p36 p37 p38 p39 p40	H1 Value -65787.405				
p41 p42 p4	3 p44 p45 p46 p47 p48 p49 p50	H1 Scaling Correction Factor	1.593			
p51 p52 p5	3 p54 p55 p56 p57;	for MLR				
USEVARTABL	ES ARE ! All variables in MODEL					
-	3 p04 p06 p07 p09 p10	Information Criteria				
	3 p14 p16 p17 p18 p19 p20	Akaike (AIC)	141067.051			
	3 p24 p25 p26 p27 p28 p29 p30	Bayesian (BIC)	141831.074			
	3 p35 p36 p37 p39 p40	Sample-Size Adjusted BIC	141364.120			
p4	3 p44 p45 p46 p47 p48 p49 p50	$(n^* = (n + 2) / 24)$				
p51 p52 p5	3 p54 p55 p56 p57;					
	_	Chi-Square Test of Model Fit				
MISSING AR		Value	6183.985*			
IDVARIABLE	IS ID;	Degrees of Freedom	1127			
ANALVETE.	ESTIMATOR IS MLR; ! Robust estimator	P-Value	0.0000			
ANALISIS.	ESTIMATOR IS MER, RODUSE ESTIMATOR	Scaling Correction Factor	1.487			
OUTPUT:	STDYX ! Standardized solution	for MLR				
	MODINDICES ! Voodoo for fixing the model					
	RESIDUAL; ! Local fit info	RMSEA (Root Mean Square Error Of Approximation)				
		Estimate	0.058			
SAVEDATA:	SAVE = FSCORES; ! Save factor scores (thetas)		0.057 0.059			
	FILE IS Abuse_Thetas.dat; ! File factor scores saved to	Probability RMSEA <= .05				
PLOT: TY	PE IS PLOT1 PLOT2 PLOT3;	CFI/TLI				
MODEL:		CFI	0.766			
! Higher-O	rder Factor	TLI	0.756			
! (estimat	e loadings and fix mean=0, variance=1)					
		SRMR (Standardized Root Mean Square Re	sidual)			
Abuse BY		Value	0.062			
p06* p10* p14* p25* p27* p29* p33* p35* p48* p49* p53* p54*		14240	0.002			
	p13* p17* p24* p26* p36* p55* p56*	NOTE: With respect to fit of the structural mod	al we are now fitting a single			
p01* p18* p19* p23* p39* p43*		<u>NOTE:</u> With respect to fit of the structural model, we are now fitting a single factor INSTEAD OF 5 factors and a higher-order factor. This will tell us the				
p09* p12* p16* p20* p28* p47* p50*			er lactor. This will tell us the			
p02* p03* p04* p21* p22* p30* p31* p37* p40* p44* p45* p46* p51* p52* p57*;		extent to which a "total score" is appropriate.				
Abuse@1; [
		According to the −2∆LL scaled difference relat	ive to the previous model,			
		$-2\Delta LL(5) = 448.415, p < .0001$				
		Therefore, a single factor fits significantly worse than 5 factors + a higher-orde				

Therefore, a single factor fits significantly worse than 5 factors + a higher-order factor, and so one factor does not capture the covariances for these 49 items.

Syntax for IFA model with WLSMV including all 5 correlated factors ("biggest model" for DIFFTEST):

TITLE: 5-factor model: 5 correlated factors DATA: FILE IS abuse.dat;

VARIABLE:

NAMES ARE ID ! All variables in DATA SET p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31 p32 p33 p34 p35 p36 p37 p38 p39 p40 p41 p42 p43 p44 p45 p46 p47 p48 p49 p50 p51 p52 p53 p54 p55 p56 p57;

USEVARIABLES ARE ! All variables in MODEL p01 p02 p03 p04 p06 p07 p09 p10 p11 p12 p13 p14 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31 p33 p35 p36 p37 p39 p40 p43 p44 p45 p46 p47 p48 p49 p50 p51 p52 p53 p54 p55 p56 p57;

 CATEGORICAL
 ARE
 ! All variables for IFA

 p01
 p02
 p03
 p04
 p06
 p07
 p09
 p10

 p11
 p12
 p13
 p14
 p16
 p17
 p18
 p19
 p20

 p21
 p22
 p23
 p24
 p25
 p26
 p27
 p28
 p29
 p30

 p31
 p33
 p35
 p36
 p37
 p39
 p40

 p43
 p44
 p45
 p46
 p47
 p48
 p49
 p50

 p51
 p52
 p53
 p54
 p55
 p56
 p57;
 p50

MISSING ARE .; IDVARIABLE IS ID;

- ANALYSIS: ESTIMATOR IS WLSMV; ! Limited info estimator PARAMETERIZATION IS THETA;
- OUTPUT: STDYX ! Standardized solution MODINDICES ! Voodoo for fixing the model RESIDUAL ! Local fit info TECH4; ! Factor correlation matrix
- SAVEDATA: DIFFTEST=5factor.dat; ! Save fit of 5 factor model SAVE = FSCORES; ! Save factor scores (thetas) FILE IS Abuse_Thetas.dat; ! File factor scores saved to

PLOT: TYPE IS PLOT1 PLOT2 PLOT3;

MODEL:
! 5 Lower-Order Factors (loadings for first item fixed =1)

! Factor Variances (all must be free) Spurn* Terror* Isolate* Corrupt* Ignore*;

! Factor Means (all fixed = 0 by default)
[Spurn@0 Terror@0 Isolate@0 Corrupt@0 Ignore@0];

```
! Factor Covariance (all free by default if predictors)
Spurn Terror Isolate Corrupt Ignore WITH
Spurn* Terror* Isolate* Corrupt* Ignore*;
```

<u>NOTE:</u> With respect to fit of the structural model, letting the 5 separate factors be correlated is as good as it gets. This will be our "largest model" baseline with which to compare the fit of a single higher-order factor model ("smaller model").

Output for IFA model with WLSMV including all 5 correlated factors ("biggest model" for DIFFTEST):

MODEL FIT INFORMATION

Number of Free Parameters	255
Chi-Square Test of Model Fit	
Value	5934.138*
Degrees of Freedom	1117
P-Value	0.0000

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)						
	Estimate		0.057			
	90 Percent C.I.	0.055	0.058			
	Probability RMSEA <= .05		0.000			
CFI/TLI						
	CFI		0.927			
	TLI		0.923			

Chi-Square Test of	Model	Fit	for	the	Baseline	Model
Value					67288	3.037
Degrees of Freedom						1176
P-Value					0	.0000

Note: #free parameters = 255 = 44 loadings + 49*4=196 thresholds + 5 factor variances + 10 factor covariances = 255 parameters USED or estimated

Possible = 49*50/2 + 49*4 = 1421 DF =1117 calculation: 1421 – 255 – 49 "residuals" = 1117

Now we can test the fit of a constrained structural model that posits a single higher-order "General Abuse" factor to account for the correlations among these 5 latent factors.

		SPURN	TERROR	ISOLATE	CORRUPT
	SPURN				
Latent	TERROR	0.947			
Variable	ISOLATE	0.925	0.885		
Correlations	CORRUPT	0.791	0.866	0.776	
	IGNORE	0.882	0.817	0.863	0.729
Factor	SPURN	TERROR	ISOLATE	CORRUPT	IGNORE
Variance	0.641	0.823	0.895	1.358	2.492
	0.625	0.672	0.687	0.759	0.845
	0.499	0.778	0.663	0.687	0.738
	0.819	0.713	0.806	0.423	0.717
	0.575	0.687	0.641	0.790	0.781
Standardized	0.645	0.796	0.682	0.823	0.676
Loadings for	0.839	0.692	0.753	0.793	0.822
Items	0.895	0.795		0.875	0.898
	0.703	0.722			0.807
	0.820	0.762			0.892
	0.731				0.859
	0.754				0.852
	0.693				0.888
					0.763
					0.844
					0.908

Syntax for IFA model with WLSMV including a higher-order factor instead of 5 correlated factors ("smaller/bigger model" for DIFFTEST):

TITLE: 5-factor model: 5 lower-order, 1 higher-order factor DATA: FILE IS abuse.dat;

VARIABLE:

NAMES ARE ID ! All variables in DATA SET p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31 p32 p33 p34 p35 p36 p37 p38 p39 p40 p41 p42 p43 p44 p45 p46 p47 p48 p49 p50 p51 p52 p53 p54 p55 p56 p57 total victim;

USEVARIABLES ARE ! All variables in MODEL p01 p02 p03 p04 p06 p07 p09 p10 p11 p12 p13 p14 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p33 p35 p36 p37 p39 p40 p43 p44 p45 p46 p47 p48 p49 p50 p51 p52 p53 p54 p55 p56 p57;

 CATEGORICAL
 ARE
 ! All variables
 for
 IFA

 p01
 p02
 p03
 p04
 p06
 p07
 p09
 p10

 p11
 p12
 p13
 p14
 p16
 p17
 p18
 p19
 p20

 p21
 p22
 p23
 p24
 p25
 p26
 p27
 p28
 p29
 p30

 p31
 p33
 p35
 p36
 p37
 p39
 p40

 p43
 p44
 p45
 p46
 p47
 p48
 p49
 p50

 p51
 p52
 p53
 p54
 p55
 p56
 p57;

MISSING ARE .; IDVARIABLE IS ID;

- ANALYSIS: ESTIMATOR IS WLSMV; ! Limited info estimator PARAMETERIZATION IS THETA; DIFFTEST=5factor.dat; ! Test fit against saturated
- OUTPUT: STDYX ! Standardized solution MODINDICES ! Voodoo for fixing the model RESIDUAL; ! Local fit info
- SAVEDATA: DIFFTEST = HigherOrder.dat ! Save fit of higher-order SAVE = FSCORES; ! Save factor scores (thetas) FILE IS Abuse_Thetas.dat; ! File factor scores saved to

PLOT: TYPE IS PLOT1 PLOT2 PLOT3;

MODEL: ! 5 Lower-Order Factors (loadings for first item fixed =1)

! Factor Variances (all must be free - NOW "DISTURBANCES")
Spurn* Terror* Isolate* Corrupt* Ignore*;

```
! Factor Means (all fixed = 0 by default)
[Spurn@0 Terror@0 Isolate@0 Corrupt@0 Ignore@0];
```

```
! Higher-Order Factor (estimate loadings, fix mean=0 & variance=1)
Abuse BY Spurn* Terror* Isolate* Corrupt* Ignore*;
Abuse@1;
[Abuse@0];
```

<u>NOTE:</u> With respect to fit of the structural model, we are now fitting a single higher-order factor INSTEAD OF covariances among the 5 factors.

To test the fit against the saturated (all possible factor correlations model), we direct DIFFTEST on the ANALYSIS command to use the results from the previous model.

Output for IFA model with WLSMV including a higher-order factor instead of 5 correlated factors ("smaller/bigger model" for DIFFTEST):

MODEL FIT INFORMATION		STDYX Standardization				
						Two-Tailed
Number of Free Parameters	250		Estimate	S.E.	Est./S.E.	P-Value
		ABUSE BY (HIG	HER-ORDER STANDA	ARDIZED L	OADINGS)	
Chi-Square Test of Model Fit		SPURN	0.990	0.005	204.055	0.000
Value	5941.911*	TERROR	0.948	0.007	139.928	0.000
Degrees of Freedom	1122	ISOLATE	0.951	0.009	106.595	0.000
P-Value	0.0000	CORRUPT	0.835	0.014	60.998	0.000
		IGNORE	0.885	0.009	93.999	0.000
Chi-Square Test for Difference Test	ing					
Value	92.518					
Degrees of Freedom	5	Residual Varianc	es (PROPORTION (OF VARIAN	ICE NOT ACCO	UNTED FOR)
P-Value	0.0000	SPURN	0.020	0.010	2.116	0.034
		TERROR	0.101	0.013	7.878	0.000
 * The chi-square value for MLM, M 	LMV, MLR, ULSMV, WLSM and	ISOLATE	0.096	0.017	5.634	0.000
WLSMV cannot be used for chi-square	CORRUPT	0.303	0.023	13.286	0.000	
regular way. MLM, MLR and WLSM chi	regular way. MLM, MLR and WLSM chi-square difference testing			0.017	13.071	0.000
is described on the Mplus website.	is described on the Mplus website. MLMV, WLSMV, and ULSMV					
difference testing is done using th	Latent				Two-Tailed	
		Variable	Estimate	S.E.	Est./S.E.	P-Value
RMSEA (Root Mean Square Error Of Ap	R-SQUARE (VARIAN	CE ACCOUNTED FOR	R BY HIGH	IER-ORDER FA	CTOR)	
Estimate	0.057					
90 Percent C.I.	0.055 0.058	SPURN	0.980	0.010	102.028	0.000
Probability RMSEA <= .05	0.000	TERROR	0.899	0.013	69.964	0.000
		ISOLATE	0.904	0.017	53.298	0.000
CFI/TLI		CORRUPT	0.697	0.023	30.499	0.000
CFI	0.927	IGNORE	0.782	0.017	46.999	0.000
TLI	0.924					

This higher-order factor model uses 5 fewer parameters (5 higher-order loadings to replace the 10 covariances among the factors).

According to DIFFTEST, trying to reproduce the 5 factor correlations with a single higher-order factor results in a significant decrease in fit. However, the RMSEA and CFI are reasonably happy with this model, and the higher-order factor accounts for a practically significant amount of variance in each factor.

We can try one more alternative – what if the items were measuring a single factor (i.e., a "total score")? Syntax and output for IFA model with WLSMV including only a single factor ("smallest model" for DIFFTEST):

TITLE: Saturated 5-factor model: 5 correlated factors MODEL: DATA: FILE IS abuse.dat; ! Higher-Order Factor (estimate loadings and fix variance=1) VARIABLE: Abuse BY p06* p10* p14* p25* p27* p29* p33* p35* p48* p49* p53* p54* NAMES ARE ID ! All variables in DATA SET p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p07* p11* p13* p17* p24* p26* p36* p55* p56* p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p01* p18* p19* p23* p39* p43* p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p09* p12* p16* p20* p28* p47* p50* p31 p32 p33 p34 p35 p36 p37 p38 p39 p40 p02* p03* p04* p21* p22* p30* p31* p37* p40* p44* p41 p42 p43 p44 p45 p46 p47 p48 p49 p50 p45* p46* p51* p52* p57*; p51 p52 p53 p54 p55 p56 p57 total victim; Abuse@1; [Abuse@0]; USEVARIABLES ARE ! All variables in MODEL p01 p02 p03 p04 p06 p07 p09 p10 NOTE: With respect to fit of the structural model, we are now fitting a single p11 p12 p13 p14 p16 p17 p18 p19 p20 factor INSTEAD OF 5 factors and a higher-order factor. This will tell us the p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31 p33 p35 p36 p37 p39 p40 extent to which a "total score" is appropriate. p43 p44 p45 p46 p47 p48 p49 p50 p51 p52 p53 p54 p55 p56 p57; To test the fit against the higher-order factor model, we direct DIFFTEST on the ANALYSIS command to use the results from the previous model. CATEGORICAL ARE ! All variables for IFA p01 p02 p03 p04 p06 p07 p09 p10 p11 p12 p13 p14 p16 p17 p18 p19 p20 MODEL FIT INFORMATION p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31 p33 p35 p36 p37 p39 p40 Number of Free Parameters 245 p43 p44 p45 p46 p47 p48 p49 p50 p51 p52 p53 p54 p55 p56 p57; Chi-Square Test of Model Fit Value 7563.403* MISSING ARE .; Degrees of Freedom 1127 IDVARIABLE IS ID; P-Value 0.0000 ANALYSIS: ESTIMATOR IS WLSMV; ! Limited info estimator Chi-Square Test for Difference Testing Nope, we can't fit a PARAMETERIZATION IS THETA; 612.219 Value single factor instead DIFFTEST=HigherOrder.dat; ! Test fit against higher-order Degrees of Freedom 5 without hurting fit. This P-Value 0.0000 OUTPUT: STDYX ! Standardized solution would suggest that a MODINDICES ! Voodoo for fixing the model RMSEA (Root Mean Square Error Of Approximation) total score (or factor) RESIDUAL; ! Local fit info Estimate 0.065 will not be as useful as 90 Percent C.I. 0.064 0.067 5 separate subscores SAVEDATA: Probability RMSEA <= .05 0.000 SAVE = FSCORES; ! Save factor scores (thetas) (or factors). FILE IS Abuse_Thetas.dat; ! File factor scores saved to CFI/TLT 0.903 CFI PLOT: TYPE IS PLOT1 PLOT2 PLOT3; TLI 0.898

Example results section for CFA using MLR:

After examining the fit of each of the five factors individually, as described previously, a combined model was estimated in which all five factors were fit simultaneously with covariances estimated freely among them. A total of 49 items were thus included. Each factor was identified by fixing the first item loading on each factor to 1, estimating the factor variance, and then fixing the factor mean to 0, while estimating all possible item intercepts, item residual variances, and remaining item loadings. Robust maximum likelihood (MLR) estimation was used to estimate all higher-order models using Mplus v. 7.11 (Muthén & Muthén, 1998-2012), and differences in fit between nested models were evaluated using -2^* rescaled difference in the model log-likelihood values.

As shown in Table 1, the fit of the model with five correlated factors was acceptable by the RMSEA (.047), but not by the CFI (.847). Standardized model parameters (loadings, intercepts, and residual variances) are shown in Table 2. Correlations of .6 or higher were found amongst the five factors, suggesting evidence that the five factors may indicate a single higher-order factor. This idea was testing by eliminating the covariances among the factors and instead estimating loadings for the five factors from a single higher-order factor (whose variance was fixed to 1). Although the fit of the higher-order factor model remained marginal (see Table 1), a nested model comparison revealed a significant decrease in fit, $-2\Delta LL(5) = 111.585$, p < .0001, indicating that a single factor did not appear adequate to describe the pattern of correlation amongst the five factors. A further nested model comparison was conducted to examine the extent to which a single factor could describe the covariances among the items rather than five lower-order factors and a single higher-order factor. Fit of the single factor only model was poor, as shown in Table 1, and was significantly worse than the higher-order factor model, $-2\Delta LL(5) = 448.415$, p < .0001, indicating that a single "total score" would not be recommended.

Example results section for IFA using WLMSV:

After examining the fit of each of the five factors individually, as described previously, a combined model was estimated in which all five factors were fit simultaneously with covariances estimated freely among them. A total of 49 items were thus included. Each factor was identified by fixing the first item loading on each factor to 1, estimating the factor variance, and then fixing the factor mean to 0, while estimating all possible item thresholds (four for each item given five response options) and remaining item loadings. WLSMV estimation including a probit link and the THETA parameterization (such that all item residual variances were constrained to 1) was used to estimate all higher-order models (Muthén & Muthén, 1998-2010). Thus, model fit statistics describe the fit of the item factor model to the polychoric correlation matrix among the items. Nested model comparisons were conducted using the DIFFTEST procedure.

As shown in Table 1, the fit of the model with five correlated factors was acceptable. Item factor analysis parameters (loadings and thresholds) and their corresponding item response model parameters (discriminations and difficulties) are shown in Table 2. Correlations of .7 or higher were found amongst the five factors, suggesting evidence that the five factors may indicate a single higher-order factor. This idea was testing by eliminating the covariances among the factors and instead estimating loadings for the five factors from a single higher-order factor (whose variance was fixed to 1). Although the fit of the higher-order factor model remained acceptable (see Table 1), a nested model comparison via the DIFFTEST procedure revealed a significant decrease in fit, DIFFTEST(5) = 92.52, p < .0001, indicating that a single factor did not appear adequate to describe the pattern of correlations among the items rather than five lower-order factors and a single higher-order factor. Fit of the single factor only model was poor, as shown in Table 1, and was significantly worse than the higher-order factor model, DIFFTEST(5) = 612.22, p < .0001, indicating that a single factor only model was poor, as shown in Table 1, and was significantly worse than the higher-order factor model, DIFFTEST(5) = 612.22, p < .0001, indicating that a single factor only model was poor, as shown in Table 1, and was significantly worse than the higher-order factor model, DIFFTEST(5) = 612.22, p < .0001, indicating that a single "total score" would not be recommended.

Table 1 = table with fit info per model, Table 2 = model parameters