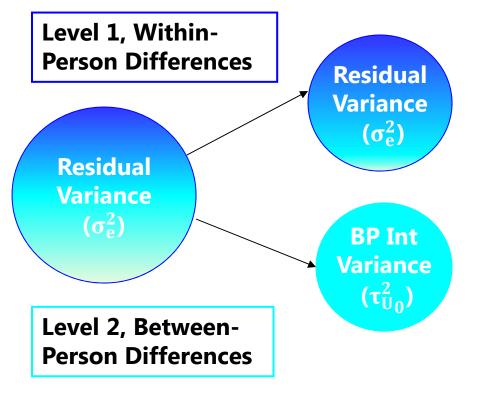
Three-Level (and Crossed) Random Effects Models

- Topics:
 - Decomposing variation across three levels in clustered longitudinal data
 - > Unconditional (time only) model specification
 - > Conditional (other predictors) model specification
 - > Other kinds of three-level and crossed designs

What determines the number of levels?

- Answer: the model for the outcome variance ONLY
- How many dimensions of sampling in the outcome?
 - > Time within person \rightarrow 2-level model
 - > Time within person within family \rightarrow 3-level model
 - > Time within person within family within country \rightarrow 4-level model
 - Sampling dimensions may also be crossed instead of nested, or may be modeled with fixed effects if the # units is small
- Need at least one pile of variance per dimension (for 3 levels, that's 2 sets of random effects and a residual)
 - Include whatever predictors you want for each level, but keep in mind that the usefulness of your predictors will be constrained by how much Y variance exists in its relevant sampling dimension

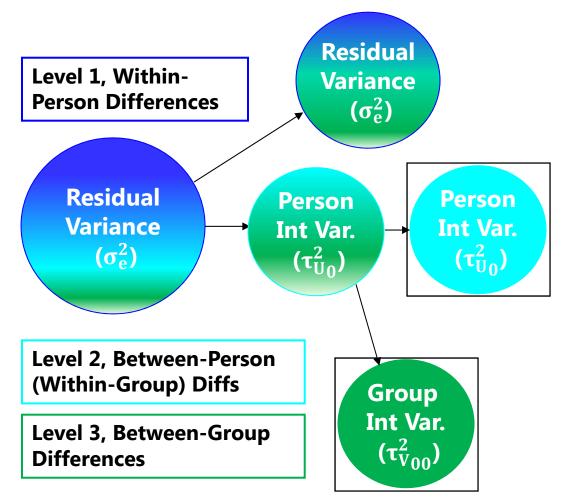
Empty Means, 3-Level Random Intercept Model


Notation: t = level-1 time, i = level-2 person, j = level-3 group

Level 1:
$$y_{tij} = \beta_{0ij} + e_{tij}$$

Residual = time-specific deviation
from person's predicted outcome
Level 2: $\beta_{0ij} = \delta_{00j} + U_{0ij}$
Person Random Intercept
= person-specific deviation
from group's predicted outcome
Level 3: $\delta_{00j} = \gamma_{000} + \gamma_{00j}$
Fixed Intercept
= grand mean
(because no
predictors yet)
 $Group Random Intercept$
= group-specific deviation
from fixed intercept

PSYC 945: Lecture 7


2-Level Random Intercept Model

- Where does each kind of person dependency go? Into a new random effects variance component (or "pile" of variance):
- Let's start with an empty means, random intercept 2-level model for time within person:

3-Level Random Intercept Model

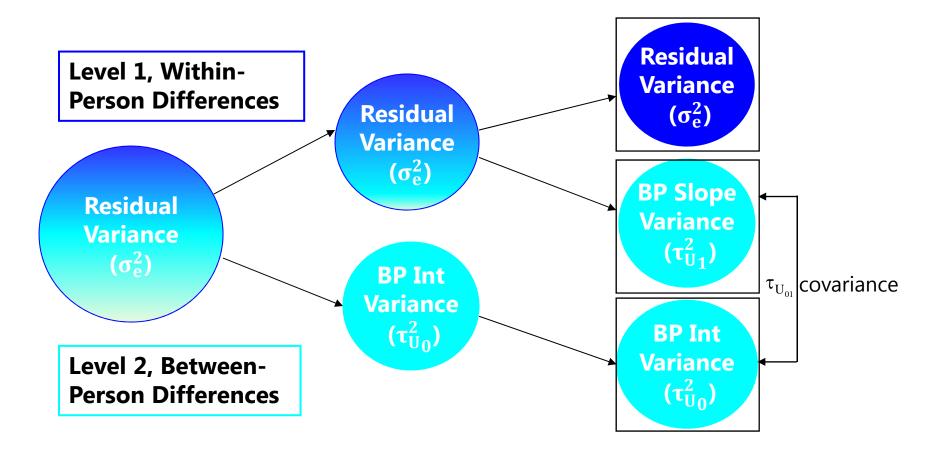
• Now let's see what happens in an empty means, random intercept 3-level model of time within person within groups:

ICCs in a 3-Level Random Intercept Model Example: Time within Person within Group

• ICC for level 2 (and level 3) relative to level 1:

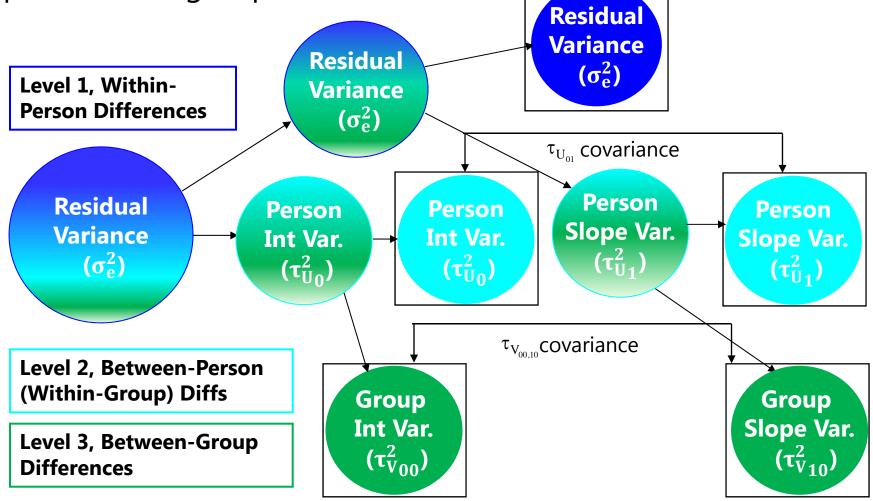
• ICC_{L2} =
$$\frac{\text{Between-Person}}{\text{Total}} = \frac{\text{L3+L2}}{\text{L3+L2+L1}} = \frac{\tau_{V_{00}}^2 + \tau_{U_0}^2}{\tau_{V_{00}}^2 + \tau_{U_0}^2 + \sigma_e^2}$$

→ This ICC expresses similarity of occasions from same person (and by definition, from the same group) → of the **total variation in Y**, how much of it is **between persons, or not due to time**?

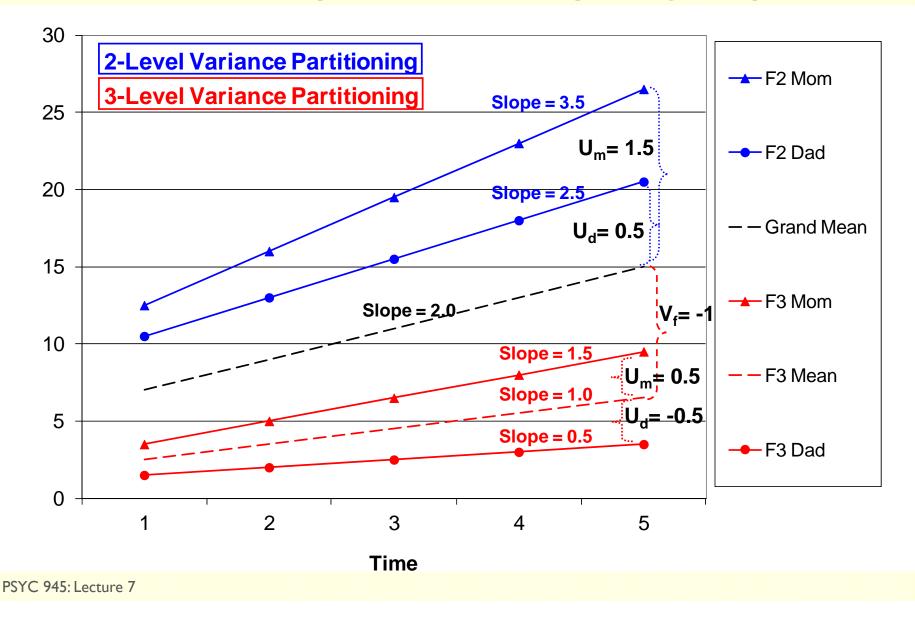

• ICC for level 3 relative to level 2 (ignoring level 1):

• ICC_{L3} =
$$\frac{\text{Between-Group}}{\text{Between-Person}} = \frac{\text{L3}}{\text{L3+L2}} = \frac{\tau_{V_{00}}^2}{\tau_{V_{00}}^2 + \tau_{U_0}^2}$$

→ This ICC expresses similarity of persons from same group (ignoring within-person variation over time) → of **that total betweenperson variation in Y**, how much of that is actually **between groups**?


2-Level Random Slope Model

• What about time? After adding fixed effects of time, we can add random effects of time over persons in a 2-level model:



3-Level Random Slope Model

• In a 3-level model, we can have random effects of time over persons and groups:

Random Time Slopes at both Levels 2 AND 3? An example with family as group:

3-Level Random Time Slope Model

Notation: t = level-1 time, i = level-2 person, j = level-3 group

Level 1:
$$y_{tij} = \beta_{0ij} + \beta_{1ij}$$
 (Time_{tij}) + $e_{tij} \leftarrow \frac{\text{Residual}}{\text{deviation from person's predicted growth line } (\sigma_e^2)$

Level 2:
$$\beta_{0ij} = \delta_{00j} + U_{0ij}$$

 $\beta_{1ij} = \delta_{10j} + U_{1ij}$
Person Random Intercept and Slope =
person-specific deviations from group's
predicted intercept, slope ($\tau_{U_0}^2, \tau_{U_1}^2, \tau_{U_01}$)

Level 3:
$$\delta_{00j} = \gamma_{000} + V_{00j}$$

 $\delta_{10j} = \gamma_{100} + V_{10j}$
Group Random Intercept and Slope = group-specific deviations from fixed intercept, slope ($\tau^2_{V_{00}}, \tau^2_{V_{10}}, \tau_{V_{00,10}}$)

Fixed Intercept, Fixed Linear Time Slope

Composite equation (9 parameters):

$$y_{tij} = (\gamma_{000} + V_{00j} + U_{0ij}) + (\gamma_{100} + V_{10j} + U_{1ij}) (Time_{tij}) + e_{tij}$$

ICCs for Random Intercepts and Slopes

 Once random slopes are included at both level-3 and level-2, ICCs can be computed for the random intercepts and slopes specifically (which would be the level-3 type of ICC)

$$ICC_{Int} = \frac{Between - Group}{Between - Person} = \frac{L3 Int}{L3 Int + L2 Int} = \frac{\tau_{V_{00}}^2}{\tau_{V_{00}}^2 + \tau_{U_0}^2}$$
$$ICC_{Slope} = \frac{Between - Group}{Between - Person} = \frac{L3 Slope}{L3 Slope + L2 Slope} = \frac{\tau_{V_{10}}^2}{\tau_{V_{10}}^2 + \tau_{U_1}^2}$$

- Can be computed for any level-1 slope that is random at both levels (e.g., linear and quadratic time, time-varying predictors)
- Be careful when the model is uneven across levels, though $\frac{\text{Random Level 2: int, linear, quad}}{\text{Random Level 3: int, linear}} \rightarrow \frac{\text{Linear is when time} = 0}{\text{Linear is at any occasion}}$

More on Random Slopes in 3-Level Models

- Any level-1 predictor can have a random effect over level 2, level 3, or over both levels, but I recommend working your way
 UP the higher levels for assessing random effects...
 - > e.g., Does the effect of time vary over persons?
 - > If so, does the effect of time vary over groups, too? \rightarrow Is there a commonality in how people from the same group change over time?
- ... because random effects at level 3 only are possible but unlikely (e.g., means everyone in the group changes the same)
- Level-2 predictors can also have random effects over level 3
 - > e.g., Does the effect of a person characteristic vary over groups?
- Level-1, level-2, and level-1 by level-2 cross-level interactions can all have random effects over level 3, too
 - But tread carefully! The more random effects you have, the more likely you are to have convergence problems ("not positive definite")

Conditional Model Specification

- Remember separating between- and within-person effects? <u>Now there are 3 potential effects for any level-1 predictor!</u>
 - Example: Effect of stress on wellbeing, both measured over time within person within families:
 - Level 1 (Time): During Times of more stress, people have lower (time-specific) wellbeing than in times of less stress
 - Level 2 (Person): People in the family who have more stress have lower (person average) wellbeing than people in the family who have less stress
 - Level 3 (Family): Families who have more stress have lower (family average) wellbeing than families who have less stress
- 2 potential effects for any level-2 predictor, also
 - > Example: Effect of baseline level of person coping skills in same design:
 - Level 2 (Person): People in the family who cope better have better (person average) wellbeing than people in the family who cope worse
 - Level 3 (Family): Families who cope better have better (family average) wellbeing than families who cope worse

Separate Total Effects Per Level Using Person/Group-Mean-Centering

• Level 1 (Time): Time-varying stress relative to person mean

→ WPstress_{tij} = Stress_{tij} – PersonMeanStress_{ij}

 \rightarrow Directly tests if within-person effect \neq 0?

 \rightarrow **Total** within-person effect of having more stress **than usual** \neq 0?

- Level 2 (Person): Person mean stress relative to family
 - → WFstress_{ii} = PersonMeanStress_{ii} FamilyMeanStress_i
 - \rightarrow Directly tests if within-family effect \neq 0?
 - → Total effect of having more stress *than other family members* ≠ 0?
- Level 3 (Family): Family mean stress relative to all families (from constant)
 - \rightarrow BFstress_i = FamilyMeanStress_i C
 - \rightarrow Directly tests if between-family effect \neq 0?
 - → **Total** effect of having more stress **than other families** \neq 0?

Separate Total Effects Per Level Using Person/Group-Mean-Centering

Notation: t = level-1 time, i = level-2 person, j = level-3 groupPM = person mean, FM = family mean, C = centering constant

Level 1: $y_{tij} = \beta_{0ij} + \beta_{1ij}$ (Time_{tij}) + β_{2ij} (Stress_{tij} – PMstress_{ij}) + e_{tij}

Contextual Effects Per Level Using Grand-Mean-Centering

- Level 1 (Time): Time-varying stress (relative to sample constant)
 - \rightarrow TVstress_{tij} = Stress_{tij} C
 - \rightarrow Directly tests if within-person effect \neq 0?
 - \rightarrow **Total** within-person effect of having more stress **than usual** \neq 0?
- Level 2 (Person): Person mean stress (relative to sample constant)
 - \rightarrow BPstress_{ij} = PersonMeanStress_{ij} C
 - \rightarrow Directly tests if within-person and within-family effects \neq ?
 - \rightarrow **Contextual** effect of having more stress **than other family members** \neq 0?
- Level 3 (Family): Family mean stress relative to all families (from constant)
 - \rightarrow BFstress_i = FamilyMeanStress_i C
 - \rightarrow Directly tests if within-family and between-family effects \neq ?
 - → **Contextual** effect of having more stress **than other families** ≠ 0?

Contextual Effects Per Level Using Grand-Mean-Centering

Notation: t = level-1 time, i = level-2 person, j = level-3 groupPM = person mean, FM = family mean, C = centering constant

Level 1: $y_{tij} = \beta_{0ij} + \beta_{1ij}$ (Time_{tij}) + β_{2ij} (Stress_{tij} - C) + e_{tij}

Level 2:
$$\beta_{0ij} = \delta_{00j} + \delta_{01j}$$
 (PMstress_{ij}-C)+U_{0ij}
 $\beta_{1ij} = \delta_{10j} + U_{1ij}$
 $\beta_{2ij} = \delta_{20j} + (U_{2ij})$
Level 3: $\delta_{00j} = \gamma_{000} + \gamma_{001}$ (FMstress_j-C) + V_{00j}
 $\delta_{01j} = \gamma_{010} + (V_{01j})$ Contextual within-family stress main effect
 $\delta_{10j} = \gamma_{100} + V_{10j}$ Time main effect
 $\delta_{20j} = \gamma_{200} + (V_{20j})$ Within-person stress main effect

What does it mean to omit higher-level effects under each centering method?

- Person-MC: Removing terms means the effect at that level does not exist (= 0)
 - Remove L3 effect? Assume L3 Between-Family effect = 0
 - L1 effect = Within-Person effect, L2 effect = Within-Family effect
 - > Then remove L2 effect? Assume L2 Within-Family effect = 0
 - L1 effect = Within-Person effect
- Grand-MC: Removing terms means the effect at that level is equivalent to the effect at the level beneath it
 - Remove L3 effect? Assume L3 Between-Family = L2 Within-Family effect
 - L1 effect = Within-Person effect, L2 effect = 'smushed' WF and BF effects
 - > Then remove L2 effect? Assume L2 Between-Person effect = L1 effect
 - L1 'smushed' = Within-Person, Within-Family, and Between-Family effects

Interactions belong at each level, too...

• Example: Is the effect of stress on wellbeing moderated by time-invariant person coping? Using person/group-MC...

<u>Stress Effects</u>

- > Level 1 (Time): WPstress_{tij} = Stress_{tij} PersonMeanStress_{ij}
- Level 2 (Person): WFstress_{ij} = PersonMeanStress_{ij} FamilyMeanStress_i
- Level 3 (Family): BFstress_i = FamilyMeanStress_i C

<u>Coping Effects</u>

- Level 2 (Person): WFcope_{ij} = Cope_{ij} FamilyMeanCope_j
- Level 3 (Family): BFcope_i = FamilyMeanCope_i C

Interaction Effects

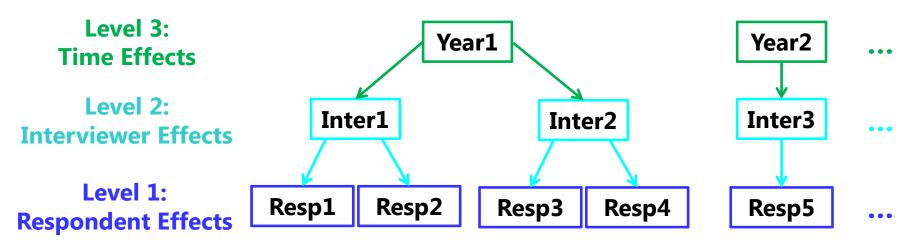
- With level 1 stress: WPstress_{tij} * WFcope_{ij}, WPstress_{tij} * BFcope_j
- With level 2 stress: WFstress_{ij} * WFcope_{ij}, (WFstress_{ij} * BFcope_j)
- With level 3 stress: BFstress_j * BFcope_j, (BFstress_j * WFcope_{ij})

Interactions belong at each level, too...

Notation: t = level-1 time, i = level-2 person, j = level-3 group PM = person mean, FM = family mean, C = centering constant

Level 1: $y_{tij} = \beta_{0ij} + \beta_{1ij}$ (Time_{tij}) + β_{2ij} (Stress_{tij} – PMstress_{ij}) + e_{tij}

Level 2:
$$\beta_{0ij} = \delta_{00j} + \delta_{01j}$$
 (PMstress_{ij}-FMstress_j)
+ δ_{02j} (Cope_{ij} - FMcope_j)
+ δ_{03j} (PMstress_{ij}-FMstress_j) (Cope_{ij} - FMcope_j) + U_{0ij}
 $\beta_{1ij} = \delta_{10j} + U_{1ij}$
 $\beta_{2ij} = \delta_{20j} + \delta_{21j}$ (Cope_{ij} - FMcope_j) + (U_{2ij})

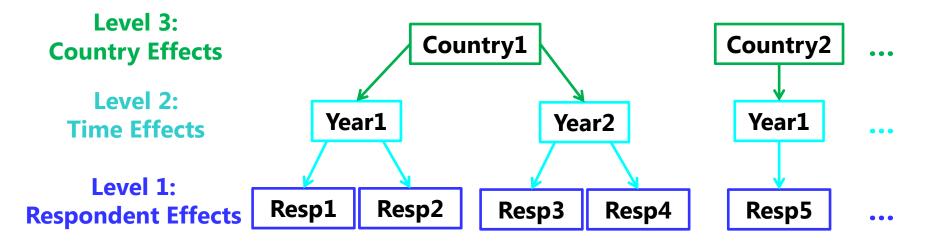

Level 3:
$$\delta_{00j} = \gamma_{000} + \gamma_{001}(FMstress_j - C) + \gamma_{002}(FMcope_j - C) + \gamma_{003}(FMstress_j - C)(FMcope_j - C) + V_{00j}$$

 $\delta_{01j} = \gamma_{010} + (V_{01j}) \quad \delta_{02j} = \gamma_{020} + (V_{02j}) \quad \delta_{03j} = \gamma_{030} + (V_{03j})$
 $\delta_{10j} = \gamma_{100} + V_{10j}$
 $\delta_{20j} = \gamma_{200} + \gamma_{202}(FMcope_j - C) + (V_{20j}) \quad \delta_{21j} = \gamma_{210} + (V_{21j})$

Summary: Clustered Longitudinal Models

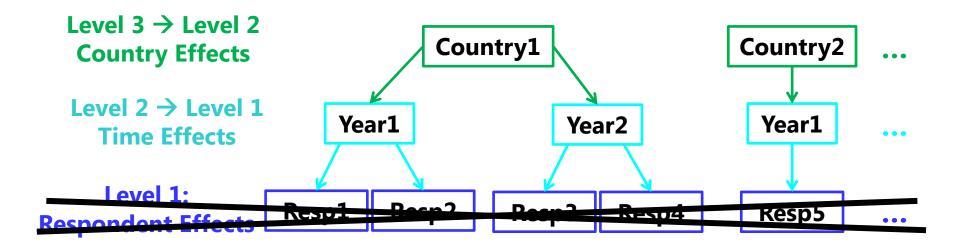
- Estimating 3-level models requires no new concepts, but everything is just at an order of complexity higher:
 - > Proportioning variance over 3 levels instead of 2 \rightarrow 2+ ICCs
 - > Random slope variance will come from term directly beneath:
 - Level-2 random slope comes from level-1 residual
 - Level-3 random slope comes from level-2 random slope (or residual)
 - > Level-1 effects can be random over level 2, level 3, or both
 - ICCs can be computed for level-1 slopes that are random over both level-2 and level-3 (assuming the L2 and L3 models match)
 - Convergence of level-1 effects should be tested over levels 2 AND 3
 - > Level-2 effects can be random over level 3
 - Convergence of level-2 effects should be tested over level 3
 - > Level-3 effects cannot be random; no convergence testing needed
 - > Phew....

Other 3-Level Designs


- The sampling design for the outcome (not the predictors) dictates what your levels will be, **so time may not always be level 1**
- Example: Predicting answer compliance in respondents nested in interviewers, collected over several years (<u>all different people</u>)

- Based on the sampling of time, time may be modeled...
 - > As fixed effects in the model for the means \rightarrow 2-level model instead
 - Best to use dummy codes for time if few occasions OR no time-level predictors of interest
 - > As a random effect in the model for the variance \rightarrow 3-level model
 - Then differences in compliance rates over time can be predicted by time-level predictors

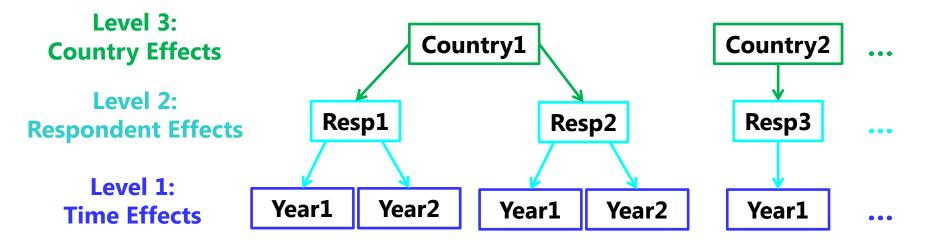
Other 3-Level Designs


 Another example: Predicting time-specific respondent outcomes for people nested in countries, collected over several years (<u>all different people</u>, but the <u>same countries</u> measured over time)

- Before including any fixed effects of time, country and time are actually crossed, not nested as shown here
 - Are nested after controlling for which occasion is which via fixed effects (using dummy codes per mean or a time trend that describes the means)
 - > Time is still a level because not all countries change the same way

3-Level Designs: Predictors vs. Outcomes

• Same example: What if, instead of respondent outcomes, we wanted to predict **time-varying country outcomes**?

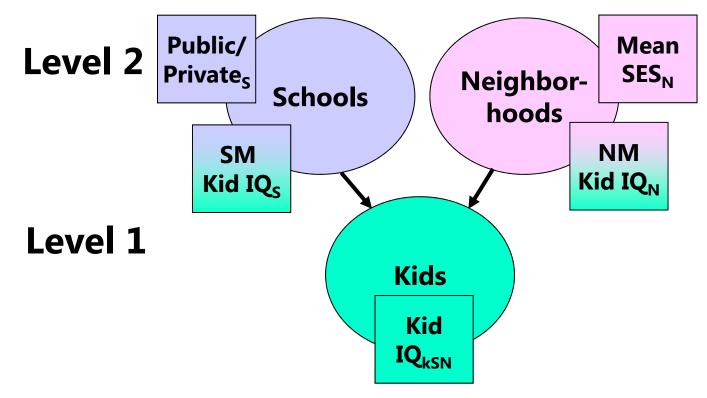


Because the outcome was measured at level 2 (country per time):

- Respondents are no longer a level at all (no outcomes for them)
- So there is nothing for respondent predictors to do, except at higher levels
 - > **Time-specific averages** of respondent predictors \rightarrow time-level outcome variation
 - > Across time, country averages of respondent predictors \rightarrow country-level outcome variation

Other 3-Level Designs: Predictors by Level

 Last example: Predicting time-specific respondent outcomes for people nested in countries, collected over several years (<u>all same people</u> and <u>same countries</u> are measured over time)


- Country predictors can be included at level 3 only (no random effects)
- Person predictors should be included at levels 2 and 3 (+random over 3)
- What about effects of <u>time-varying predictors</u>?
 - > For <u>People</u>: effects should be included at all 3 levels (+random over 2 and 3)
 - > For <u>Countries</u>: effects are only possible at levels 1 and 3 (+random over 3)

More Complex Multilevel Designs

- Multilevel models are specified based on the relevant dimensions by which observations differ each other, and how the units are organized
- Two-level models have at least two piles of variance, in which level-1 units are nested within level-2 units:
 - Longitudinal Data: Time nested within Persons
 - Students nested within Classes
- Three-level models have at least three piles of variance, in which level-2 units are nested within level-3 units:
 - > Time nested within Persons within Families
 - Student nested within Classes within Schools
- In other designs, multiple sources of systematic variation may be present, but the sampling may be crossed instead...
 - Same idea as crossed random effects (i.e., as for persons and items), but these are known as "cross-classified" models in the clustered data world
 - > Here are a few examples on when this might happen...

Kids, Schools, and Neighborhoods

- Kids are nested within schools AND within neighborhoods
- Not all kids from same neighborhood live in same school, so schools and neighborhoods are crossed at level 2
- Can include predictors for each source of variation

Kids, Schools, and Neighborhoods

 $\begin{aligned} y_{kSN} &= \mathbf{Y}_{000} & \rightarrow \text{fixed intercept (all } x's = 0) \\ &+ \mathbf{Y}_{010}(\text{Private}_{S}) + \mathbf{Y}_{020}(\text{SMIQ}_{S}) \rightarrow \text{school effects} \\ &+ \mathbf{Y}_{001}(\text{SES}_{N}) + \mathbf{Y}_{002}(\text{NMIQ}_{N}) & \rightarrow \text{neighborhood effects} \\ &+ \mathbf{Y}_{100}(\text{KidIQ}_{kSN}) & \rightarrow \text{kid effects} \\ &+ \mathbf{U}_{0S0} & \rightarrow \text{random effect of school} \\ &+ \mathbf{U}_{00N} & \rightarrow \text{random effect of neighborhood} \\ &+ \mathbf{e}_{kSN} & \rightarrow \text{residual kid-to-kid variation} \end{aligned}$

Time, Kids, and Classrooms

- Kids are nested within classroom at each occasion...
- But kids move into different classrooms across time...
 - > So Time is nested within Kid, Kid is crossed with Classroom
- How to model a time-varying random classroom effect?
 - > This is the basis of so-called "value-added models"
- (At least) Two options:
 - Temporary classroom effect: Random effect for classroom that operates only at the point when the kid is in that classroom
 - e.g., Classroom effect ← teacher bias
 - Once out of classroom, effect is no longer present
 - Cumulative classroom effect: Random effect for classroom that operates at the point when the kid is in that classroom forwards
 - e.g., Classroom effect ← differential learning
 - Effect stays with the kid in the future

More on Cross-Classified Models

- In crossed models, lower-level predictors can have random slopes of over higher levels AND random slopes of the other crossed factor at the same level
 - > Example: Kids, Schools, and Neighborhoods (data permitting)
 - Kid effects could vary over schools AND/OR neighborhoods
 - School effects could vary over neighborhoods (both level 2)
 - Neighborhood effects could vary over schools (both level 2)
- Concerns about smushing still apply over both level-2's
 - Separate contextual effects of kid predictors for schools and neighborhoods (e.g., after controlling for how smart you are, it matters incrementally whether you go to a smart school AND if you live in a neighborhood with smart kids)

Summary: Nested or Crossed Models

- Dimensions of sampling can result in systematic differences (i.e., dependency) that needs to be accounted for in the model for the variances
 - Sometimes this dependency is from nested sampling
 - Sometimes this dependency is from crossed sampling
- Multilevel models that include crossed random effects (or cross-classified models):
 - Can address this dependency (statistical motivation)
 - Can quantify and predict the amount of variation due to each source (substantive motivation)
 - Can include simultaneous hypothesis tests pertaining to each source of variation (substantive motivation)