
Generalized Multilevel Models 
for Non-Normal Outcomes
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• Topics:
 3 parts of a generalized (multilevel) model
 Models for binary, proportion, and categorical outcomes
 Complications for generalized multilevel models
 A brief tour of other generalized models: 

 Models for count outcomes
 Models for not-normal but continuous outcomes



Dimensions for Organizing Models
• Outcome type: General (normal) vs. Generalized (not normal)
• Dimensions of sampling: One (so one variance term per outcome) vs. 

Multiple (so multiple variance terms per outcome)  OUR WORLD

• General Linear Models: conditionally normal outcome distribution, 
fixed effects (identity link; only one dimension of sampling)

• Generalized Linear Models: any conditional outcome distribution, 
fixed effects through link functions, no random effects (one dimension)

• General Linear Mixed Models: conditionally normal outcome distribution, 
fixed and random effects (identity link, but multiple sampling dimensions)

• Generalized Linear Mixed Models: any conditional outcome distribution,
fixed and random effects through link functions (multiple dimensions)

• “Linear” means fixed effects predict the link-transformed conditional mean 
of DV in a linear combination: (effect*predictor) + (effect*predictor)…
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Note: Least 
Squares is 
only for GLM



Generalized Linear Models
• Generalized linear models: link-transformed Y is predicted 

instead of actual Y; ML estimator uses not-normal distributions
 Single-level models  residuals follow some not-normal distribution
 Multilevel models  level-1 residuals follow some not-normal 

distribution, but level-2 random effects are almost always still MVN

• Many kinds of non-normally distributed outcomes have some 
kind of generalized linear model to go with them via ML:
 Binary (dichotomous)
 Unordered categorical (nominal)
 Ordered categorical (ordinal)
 Counts (discrete, positive values)
 Censored (piled up and cut off at one end)
 Zero-inflated (pile of 0’s, then some distribution after)
 Continuous but skewed data (long tail)

These two are often called 
“multinomial” inconsistently
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3 Parts of Generalized Multilevel Models

1. Link Function (different from general): How a non-normal 
outcome is transformed into an unbounded outcome that 
the model fixed and random effects can predict linearly

 We can then convert the transformed prediction back into the Y scale
 This way the predicted outcomes will stay within the sample space 

(boundaries) of the observed data (e.g., 0/1 for binary outcomes—the 
model should not predict −1 or 2, so linear slopes need to shut off)

 Written as ࢍሺ⋅ሻ for link and ିࢍ૚ሺ⋅ሻ for inverse link (to go back to data)
 For outcomes with residuals that are already normal, general linear 

models are just a special case with an “identity” link function (Y * 1)
 So general linear models are a special case of generalized linear models, and 

general linear mixed models are a special case of generalized linear mixed models
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2. Fixed (and Random) 
Effects of Predictors=1. Link 

Function
3. Actual 

Data



3 Parts of Generalized Multilevel Models
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2. Linear Predictor (same as in general): How the model 
predictors linearly relate to the outcome conditional mean

 This works the same as usual, except the linear predictor model 
directly predicts the link-transformed conditional mean, which we 
then can convert (inverse link) back into the scale of original outcome

 That way we can still use the familiar “one-unit change” language to 
describe the effects of model predictors (on the conditional mean)

 You can think of this as “model for the means” still, but it also includes 
the level-2 random effects for dependency of level-1 observations

 Fixed effects are no longer determined: they now have to be found 
through the ML algorithm, the same as the variance parameters

2. Fixed (and Random) 
Effects of Predictors=1. Link 

Function
3. Actual 

Data



3 Parts of Generalized Multilevel Models
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3. Model for Level-1 Residuals (different than general): how 
level-1 residuals should be distributed given the sample 
space of the actual outcome

 Many alternative distributions that map onto what the distribution of 
residuals could possibly look like (and kept within sample space)

 Why? To get the most correct standard errors for fixed effects 

 You can think of this as “model for the variance” still, but not all 
distributions will actually have an estimated residual variance

 Let’s start with models for binary data to illustrate these 3 parts…

2. Fixed (and Random) 
Effects of Predictors=1. Link 

Function
3. Actual 

Data



Normal GLM for Binary Outcomes?
• Let’s say we have a single binary (0 or 1) outcome…

(concepts for multilevel data will proceed similarly)
 Conditional mean is proportion of people who have a 1, so 

the probability of having a 1 is what we’re trying to predict 
for each person, given the predictor values: ࢖ሺܑܡ ൌ ૚ሻ

 General linear model: ࢖ሺܑܡ ൌ ૚ሻ ൌ ઺૙ ൅ ઺૚ܑ܆ ൅ ઺૛ܑ܈	 ൅ ܑ܍
 ઺૙ = expected probability when all predictors are 0
 ઺’s = expected change in ࢖ሺܑܡ ൌ ૚ሻ for a one-unit ∆ in predictor
 ܑ܍ = difference between observed and predicted binary values

 Model becomes ܑܡ	 ൌ 	 ሺ܌܍ܜ܋ܑ܌܍ܚܘ	ܡܜܑܔܑ܊܉܊ܗܚܘ	܎ܗ	૚ሻ 	൅ ܑ܍	
 What could possibly go wrong?
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Normal GLM for Binary Outcomes?
• Problem #1: A linear relationship between X and Y??? 
• Probability of a 1 is bounded between 0 and 1, but predicted 

probabilities from a linear model aren’t going to be bounded 
• Linear relationship needs to shut off  made nonlinear
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We have this… But we need this…
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Generalized Models for Binary Outcomes
• Solution #1: Rather than predicting ࢖ሺܑܡ ൌ ૚ሻ	directly, we must 

transform it into an unbounded variable with a link function:
 Transform probability into an odds ratio: ௣

ଵି௣
ൌ ୮୰୭ୠ ୷ୀଵ

୮୰୭ୠሺ୷ୀ଴ሻ
 If ݌ y୧ ൌ 1 ൌ .7 then Oddsሺ1ሻ 	ൌ 	2.33; Oddsሺ0ሻ 	ൌ 	 .429
 But odds scale is skewed, asymmetric, and ranges from 0 to +∞  Not helpful

 Take natural log of odds ratio called “logit” link:  ܏ܗۺ ࢖
૚ି࢖

 If ݌ y୧ ൌ 1 ൌ .7, then Logitሺ1ሻ 	ൌ 	 .846; Logitሺ0ሻ ൌ െ.846
 Logit scale is now symmetric about 0, range is ±∞ DING
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Solution #1:  Probability into Logits
• A Logit link is a nonlinear transformation of probability:

 Equal intervals in logits are NOT equal intervals of probability

 The logit goes from ±∞ and is symmetric about prob = .5 (logit = 0)

 Now we can use a linear model  The model will be linear with respect to 
the predicted logit, which translates into a nonlinear prediction with respect to 
probability  the outcome conditional mean shuts off at 0 or 1 as needed

Probability:
ܑܡሺ࢖ ൌ ૚ሻ

Logit:
܏ܗۺ ࢖

૚ି࢖

Zero-point on 
each scale:

Prob = .5
Odds = 1
Logit = 0
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Normal GLM for Binary Outcomes?
• General linear model:  ࢖ሺܑܡ ൌ ૚ሻ ൌ ઺૙ ൅ ઺૚ܑ܆ ൅ ઺૛ܑ܈ ൅ ܑ܍
• If ܑܡ is binary, then ܑ can only be 2 things:  ܑ܍ ൌ ܑܡ െ ොܑܡ

 If ܑܡ ൌ 0 then (predicted probability − 0) =	ܑ܍

 If ܑܡ ൌ 1 then (predicted probability − 1) =ܑ܍

• Problem #2a: So the residuals can’t be normally distributed
• Problem #2b: The residual variance can’t be constant over X as 

in GLM because the mean and variance are dependent
 Variance of binary variable: ܚ܉܄ ܑܡ ൌ 	࢖ ∗ ሺ૚ െ ሻ࢖
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Mean (݌)
Variance

Mean and Variance of a Binary Variable



Solution #2:  Bernoulli Distribution
• Rather than using a normal distribution for our residuals, we will use 

a Bernoulli distribution a special case of a binomial distribution 
for only one binary outcome

PSYC 945:  Lecture 6 12

 2

i i
i 22

ee

Univariate Normal PDF: 

y y1 1f (y ) *exp *
22

       

Li
ke

lih
oo

d 
(y

i)

   i iy 1 y
i i i

Bernoulli PDF: 

f (y ) p 1 p  

2 
parameters

 Only 1 :࢖
parameter

 ,if 1 (1)࢖ =
if 0 (0)࢖



Predicted Binary Outcomes
• Logit:  ࢖

૚ି࢖ ૙ ૚ ܑ ૛ ܑ

 Predictor effects are linear and additive like in GLM, 
but ઺ = change in logit(y) per one-unit change in predictor

• Odds:  ࢖
૚ି࢖ ૙ ૚ ܑ ૛ ܑ

or ࢖
૚ି࢖ ૙ ૚ ܑ ૛ ܑ 

• Probability: ܑ
ܘܠ܍ ઺૙ା઺૚ܑ܆ା઺૛ܑ܈

૚ାܘܠ܍ ઺૙ା઺૚ܑ܆ା઺૛ܑ܈

or           ܑ
૚

૚ାܘܠ܍ ି૚ሺ઺૙ା઺૚ܑ܆ା઺૛ܑ܈ሻ
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“Logistic Regression” for Binary Data
• This model is sometimes expressed by calling the logit(y୧) a 

underlying continuous (“latent”) response of ܑܡ∗ instead:

∗ܑܡ ൌ ࢊ࢒࢕ࢎ࢙ࢋ࢘ࢎ࢚ ൅ ܔ܍܌ܗܕ	ܚܝܗܡ	 ൅ ܑ܍
 In which ܑܡ ൌ ૚ if y୧∗ ൐ ݈݀݋݄ݏ݁ݎ݄ݐ , or ܑܡ ൌ ૙ if y୧∗ ൑ ݈݀݋݄ݏ݁ݎ݄ݐ

So if predicting ࢏࢟∗, then

e୧	~	Logistic 0, σୣଶ ൌ  3.29

Logistic Distribution:
Mean = μ, Variance = ஠

మ

ଷ
 ,ଶݏ

where s = scale factor that 
allows for “over-dispersion” 
(must be fixed to 1 in logistic 
regression for identification)

Logistic 
Distributions
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݈݀݋݄ݏ݁ݎ݄ݐ ൌ ଴ߚ ∗ െ1 is given 
in Mplus, not intercept



Other Models for Binary Data
• The idea that a “latent” continuous variable underlies an observed 

binary response also appears in a Probit Regression model:

 A probit link, such that now your model predicts a different transformed ௣ܻ: 
Probit y୧ ൌ 1 ൌ Φିଵܲ y୧ ൌ 1 ൌ ݈݁݀݋݉	ݎݑ݋ݕ

 Where Φ	= standard normal cumulative distribution function, so the transformed 
௜ݕ is the z-score that corresponds to the value of standard normal curve below 
which observed probability is found (requires integration to transform back)

 Same binomial (Bernoulli) distribution for the binary e୧ residuals, in which 
residual variance cannot be separately estimated (so no e୧ in the model)
 Probit also predicts “latent” response: y୧∗ ൌ threshold ൅ 	your	model ൅ e୧

 But Probit says e୧	~	Normal 0, σୣଶ ൌ 1.00 , whereas Logit	σୣଶ = ஠
మ

ଷ
ൌ 3.29

 So given this difference in variance, probit estimates are on a different scale 
than logit estimates, and so their estimates won’t match… however…

ሺ⋅ሻ܏
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Probit vs. Logit: Should you care? Pry not.

• Other fun facts about probit:
 Probit = “ogive” in the Item Response Theory (IRT) world
 Probit has no odds ratios (because it’s not based on odds)

• Both logit and probit assume symmetry of the probability 
curve, but there are other asymmetric options as well…

Probit ો܍૛ ൌ 1.00
(SD=1)

Logit 
૛ࢋ࣌ ൌ 3.29
(SD=1.8)

Rescale to equate 
model coefficients: 
࢚࢏ࢍ࢕࢒ࢼ ൌ
࢚࢏࢈࢕࢘࢖ࢼ ∗ ૚. ૠ

You’d think it would 
be 1.8 to rescale, 
but it’s actually 1.7…

y୧ ൌ 0
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Pr
ob
ab
ili
ty
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Transformed	y୧ (y୧∗) 

Pr
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Transformed	y୧ (y୧∗) 
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ૄ ൌ ܔ܍܌ܗܕ Logit Probit Log-Log Complement. Log-Log

gሺ⋅ሻ for 
new y୧:

Log ௣
ଵି௣

= μ Φିଵ ݌ = μ െLog െLog ݌ = μ Log െLog 1 െ ݌ = μ

gିଵሺ⋅ሻ to
get back to 
probability:

݌ ൌ
exp μ

1 ൅ exp μ
݌ ൌ Φ μ ݌ ൌ exp െexp െμ ݌ ൌ 1 െ exp െexp μ

In SAS LINK= LOGIT PROBIT LOGLOG CLOGLOG

Other Link Functions for Binary Outcomes
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Logit = Probit*1.7
which both assume 
symmetry of prediction

Log-Log is for outcomes in 
which 1 is more frequent

Complementary 
Log-Log is for outcomes in 
which 0 is more frequent

e୧~extreme	value െγ? , σୣଶ ൌ
πଶ

6
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Too Logit to Quit: Predicting Proportions
• The logit link can also be useful in predicting proportions:

 Range between 0 and 1, so model needs to “shut off” predictions for 
conditional mean as they approach those ends, just as in binary data

 Data to model:  μ in logits ൌ Log ௣
ଵି௣

 Model to data  ݌ ൌ ୣ୶୮ ஜ
ଵାୣ୶୮ ஜ

• However, because the outcome values aren’t just 0 or 1, 
a Bernoulli residual distribution won’t work for proportions

• Two distributions: Binomial (discrete) vs. Beta (continuous)
 Binomial: Less flexible (just one hump), but can include 0 and 1 values

 Beta: Way more flexible (????), but cannot directly include 0 or 1 values
 I *think* it’s ok to cheat by rescaling to fit between 0 and 1, though
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ሺ⋅ሻ܏ Link

૚ି܏ ⋅ Inverse-Link



Binomial Distribution for Proportions
• The discrete binomial distribution can be used to predict 

correct responses given trials
 Bernoulli for binary = special case of binomial when ݊=1

 ܾ݋ݎܲ ݕ ൌ ܿ 	ൌ ௡!
௖! ௡ି௖!

௖݌ 1 െ ݌ ௡ି௖
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݌ = probability of 1

As ݌ gets closer to 
.5 and n gets larger, 
the binomial pdf
will look more like a 
normal distribution.

But if many people 
show floor/ceiling 
effects, a normal 
distribution is not 
likely to work well… 
so use a binomial!

Mean = ݊݌
Variance = ሺ1݌݊ െ ሻ݌



Binomial Distribution for Proportions
• SAS PROC GLIMMIX allows the outcome variable to be 

defined as #events/#trials on MODEL statement
 LINK=LOGIT so that the conditional mean stays bounded 

between 0 and 1 as needed (or alternatively, CLOGLOG/LOGLOG)
 DIST=BINOMIAL so variance (and SEs) are determined by that 

mean, as they should be assuming independent events

• Be careful of overdispersion
 Overdispersion = more variability than the mean would predict 

(cannot happen in binary outcomes, but it can for binomial)
 Indicated by Pearson χଶ/df ൐ 1 in SAS output
 Can be caused by an improperly specified linear predictor model 

(e.g., forgot some interaction terms) or correlated observations 
(i.e., due to nesting, clustering, multivariate, and so forth)
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Beta Distribution for Proportions
• The continuous beta distribution (LINK=LOGIT, DIST=BETA) 

can predict percentage correct ࢖ (must be 0 ൏ ࢖ ൏ 1)

 ܨ ,ߙ|ݕ ߚ ൌ ୻ ఈାఉ
୻ ఈ ୻ ఉ

yఈିଵ	 1 െ y ఉିଵ
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ߙ and ߚ are ”shape” parameters (> 0)
Mean = μ = ஑

஑ାஒ

“Scale” = ϕ = α ൅ β

Variance = ஜ ଵିஜ
ଵାம

SAS GLIMMIX will 
provide a fixed 
intercept as logit(μ) 
and the “scale” ϕ



Too Logit to Quit…http://www.youtube.com/watch?v=Cdk1gwWH-Cg

• The logit is the basis for many other generalized models for 
categorical (ordinal or nominal; polytomous) outcomes

• Next we’ll see how ܥ possible response categories can be 
predicted using ܥ െ 1 binary “submodels” that involve carving 
up the categories in different ways, in which each binary 
submodel uses a logit link to predict its outcome

• Types of categorical outcomes:
 Definitely ordered categories: “cumulative logit”

 Maybe ordered categories: “adjacent category logit” (not used much)

 Definitely NOT ordered categories: “generalized logit”
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Logit-Based Models for C Ordinal Categories
• Known as “cumulative logit” or “proportional odds” model in generalized 

models; known as “graded response model” in IRT
 LINK=CLOGIT, (DIST=MULT) in SAS GLIMMIX

• Models the probability of lower vs. higher cumulative categories via ܥ െ 1
submodels (e.g., if ܥ ൌ 4 possible responses of ܿ ൌ 0,1,2,3): 

0 vs. 1, 2,3 0,1 vs. 2,3 0,1,2 vs. 3

• In SAS, what the binary submodels predict depends on whether the model 
is predicting DOWN ܑܡ) ൌ ૙, the default) or UP (ܑܡ ൌ ૚) cumulatively

• Example predicting UP in an empty model (subscripts=parm,submodel)

• Submodel 1: Logit y୧ ൐ 0 ൌ β଴ଵ 	P y୧ ൐ 0 ൌ exp β଴ଵ / 1 ൅ exp β଴ଵ
• Submodel 2: Logit y୧ ൐ 1 ൌ β଴ଶ 	P y୧ ൐ 1 ൌ exp β଴ଶ / 1 ൅ exp β଴ଶ
• Submodel 3: Logit y୧ ൐ 2 ൌ β଴ଷ    	P y୧ ൐ 2 ൌ exp β଴ଷ / 1 ൅ exp β଴ଷ

Submodel3Submodel2Submodel1

I’ve named these submodels 
based on what they predict, 
but SAS will name them its 
own way in the output.
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Logit-Based Models for C Ordinal Categories
• Models the probability of lower vs. higher cumulative categories via ܥ െ 1

submodels (e.g., if ܥ ൌ 4 possible responses of ܿ ൌ 0,1,2,3): 

0 vs. 1,2,3 0,1 vs. 2,3 0,1,2 vs. 3

• In SAS, what the binary submodels predict depends on whether the model 
is predicting DOWN ܑܡ) ൌ ૙, the default) or UP (ܑܡ ൌ ૚) cumulatively
 Either way, the model predicts the middle category responses indirectly

• Example if predicting UP with an empty model:

 Probability of 0 =       1 – Prob1
Probability of 1 = Prob1– Prob2
Probability of 2 = Prob2– Prob3
Probability of 3 = Prob3– 0

Submodel3
 Prob3

Submodel2
 Prob2

Submodel1
 Prob1

The cumulative submodels that create these 
probabilities are each estimated using all the 
data (good, especially for categories not chosen 
often), but assume order in doing so (may be 
bad or ok, depending on your response format).

Logit y୧ ൐ 2 ൌ β଴ଷ

	P y୧ ൐ 2 ൌ ୣ୶୮ ஒబయ
ଵାୣ୶୮ ஒబయ
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Logit-Based Models for C Ordinal Categories
• Ordinal models usually use a logit link transformation, but they can also use 

cumulative log-log or cumulative complementary log-log links
 LINK= CUMLOGLOG or CUMCLL, respectively, in SAS PROC GLIMMIX

• Almost always assume proportional odds, that effects of predictors are the 
same across binary submodels—for example (subscripts = parm, submodel)
 Submodel 1: Logit y୧ ൐ 0 ൌ ઺૙૚ ൅ βଵX୧ ൅ βଶZ୧ ൅ βଷX୧Z୧
 Submodel 2: Logit y୧ ൐ 1 ൌ ઺૙૛ ൅ βଵX୧ ൅ βଶZ୧ ൅ βଷX୧Z୧
 Submodel 3: Logit y୧ ൐ 2 ൌ ઺૙૜ ൅ βଵX୧ ൅ βଶZ୧ ൅ βଷX୧Z୧

• Proportional odds essentially means no interaction between submodel and 
predictor effects, which greatly reduces the number of estimated parameters
 Assumption for single-level data can be tested painlessly using PROC LOGISTIC, 

which provides a global SCORE test of equivalence of all slopes between submodels

 If the proportional odds assumption fails and ܥ ൐ 3, you’ll need to write your own 
model non-proportional odds ordinal model in PROC NLMIXED
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Logit-Based Models for C Categories
• Uses multinomial distribution, whose PDF for ܥ ൌ 4 categories 

of ܿ ൌ 0,1,2,3, an observed ݕ௜ ൌ ܿ, and indicators ܫ if ܿ ൌ ௜ݕ
݂ y୧ ൌ c ൌ p୧଴

୍ሾ୷౟ୀ଴ሿp୧ଵ
୍ሾ୷౟ୀଵሿp୧ଶ

୍ሾ୷౟ୀଶሿp୧ଷ
୍ሾ୷౟ୀଷሿ

 Maximum likelihood is then used to find the most likely parameters in 
the model to predict the probability of each response through the 
(usually logit) link function; probabilities sum to 1: ∑ p୧ୡେ

ୡୀଵ ൌ 1

• Other models for categorical data that use the multinomial:
 Adjacent category logit (partial credit): Models the probability of 

each next highest category via ܥ െ 1 submodels (e.g., if ܥ ൌ 4): 

0 vs. 1 1 vs. 2 2 vs. 3

 Baseline category logit (nominal): Models the probability of reference 
vs. other category via ܥ െ 1 submodels (e.g., if ܥ ൌ 4 and 0 ൌ ref): 

0 vs. 1 0 vs. 2 0 vs. 3

Only ݌௜௖ for the response 
௜ݕ ൌ ܿ	 gets used
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In nominal models, all 
parameters are estimated 
separately per submodel



One More Idea…
• Ordinal data can sometimes also be approximated with a logit

link and binomial distribution instead
 Example: Likert scale from 0−4  #	trials ൌ 4, #	correct ൌ yi
 Model predicts ݌ of binomial distribution, ݌ ∗ 	ݏ݈ܽ݅ݎݐ# ൌ 	݉݁ܽ݊
 ሺyiሻ݌ = proportion of sample expected in that ݅ݕ response category

• Advantages: 
 Only estimates one parameter that creates a conditional mean for each 

response category, instead of ܥ െ 1 cumulative intercepts or thresholds

 Can be used even if there is sparse data in some categories

 Results may be easier to explain than if using cumulative sub-models

• Disadvantages: 
 # persons in each category will not be predicted perfectly to begin with, 

so it may not fit the data as well without the extra intercept parameters
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Generalized Models: Summary
• Statistical models come from probability distributions
 Specifically, residuals are assumed to have some distribution
 The normal distribution is one choice, but there are lots of others: 

so far we’ve seen Bernoulli, binomial, beta, and multinomial
 ML estimation tries to maximize the height of the data using that 

distribution along with the model parameters

• Generalized models have three parts:
1. Link function: how bounded conditional mean of Y gets 

transformed into something unbounded we can predict linearly
 So far we’ve seen identity, logit, probit, log-log, and cumulative log-log

2. Linear predictor: how we predict that conditional mean
3. Residuals model: what kind of distribution they follow
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Multivariate Data in PROC GLIMMIX
• Multivariate models can be fitted in PROC GLIMMIX using 

stacked data, same as in MIXED… first, the bad news:
 There is no R matrix in true ML, only G, and V can’t be printed, either, 

which sometimes makes it hard to tell what structure is being predicted

 There is no easy way to allow different scale factors given the same link 
and distribution across multivariate outcomes (as far as I know)

 This means that a random intercept can be included to create constant 
covariance across outcomes, but that any differential variance (scale) or 
covariance must be included via RANDOM statement as well (to go in G)

• Now, the good news: 
 It allows different links and distributions across outcomes using 

LINK=BYOBS and DIST=BYOBS (Save new variables called “link” and 
“dist” to your data to tell GLIMMIX what to use per outcome)

 It will do −2∆LL tests for you using the COVTEST option! (not in MIXED)
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From Single-Level to Multilevel…
• Multilevel generalized models have the same 3 parts as 

single-level generalized models:
 Link function to transform bounded conditional mean into unbounded
 Linear model directly predicts link-transformed conditional mean 

instead
 Alternative distribution of level-1 residuals used (e.g., Bernoulli)

• But in adding random effects (i.e., additional piles of variance) 
to address dependency in longitudinal/clustered data:
 Piles of variance are ADDED TO, not EXTRACTED FROM, the original 

residual variance pile when it is fixed to a known value (e.g., 3.29), 
which causes the model coefficients to change scale across models

 ML estimation is way more difficult because normal random effects + 
not-normal residuals does not have a known distribution like MVN

 No such thing as REML for generalized multilevel models
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Empty Multilevel Model for Binary Outcomes

• Level 1:  Logit(yti) = β0i

• Level 2:            β0i = γ00 + U0i

• Composite: Logit(yti) = γ00 + U0i

• σୣଶ residual variance is not estimated  π2/3 = 3.29
 (Known) residual is in model for actual Y, not prob(Y) or logit(Y) 

• Logistic	ICC ൌ ୆୔
୆୔ା୛୔

ൌ
ૌ܃
૛
૙

ૌ܃
૛
૙ାો܍

૛ ൌ
ૌ܃
૛
૙

ૌ܃
૛
૙ା૜.૛ૢ

• Can do −2∆LL test to see if ૌ܃૛૙> 0, although the ICC is somewhat 
problematic to interpret due to non-constant residual variance
 Have not seen equivalent ICC formulas for other generalized models besides binary

Note what’s 
NOT in level 1…
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Random Linear Time Model 
for Binary Outcomes

• Level 1:  Logit(yti) = β0i + β1i(timeti)
• Level 2:      β0i = γ00 + U0i

β1i = γ10 + U1i

• Combined:     Logit(yti) = (γ00 + U0i) + (γ10 + U1i)(timeti)

• σୣଶ residual variance is still not estimated  π2/3 = 3.29
• Can test new fixed or random effects with −2∆LL tests 

(or Wald test p-values for fixed effects as usual)
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Random Linear Time Model 
for Ordinal Outcomes ( )

• L1:   Logit(yti1) = β0i1 + β1i1(timeti) 

Logit(yti2) = β0i2 + β1i2(timeti)

• L2:    β0i1 = γ001 + U0i1   β1i1 = γ101 + U1i1

β0i2 = γ002 + U0i2 β1i2 = γ102 + U1i2

• Assumes proportional odds 
γ001 ≠ γ002 and γ101 = γ102 and U0i1 = U0i2 and U1i1 = U1i2 
 Testable via nominal model (all unequal) or using NLMIXED to write a 

custom model in which some parameters can be constrained
 σୣଶ residual variance is still not estimated  π2/3 = 3.29
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New Interpretation of Fixed Effects
• In general linear mixed models, the fixed effects are 

interpreted as the “average” effect for the sample
 γ00 is “sample average” intercept 

 U0i is “individual deviation from sample average”

• What “average” means in generalized linear mixed models is 
different, because the natural log is a nonlinear function:
 So the mean of the logs ≠ log of the means

 Therefore, the fixed effects are not the “sample average” effect, they 
are the effect for specifically for Ui = 0
 Fixed effects are conditional on the random effects
 This gets called a “unit-specific” or “subject-specific” model
 This distinction does not exist for normally distributed outcomes 

PSYC 945:  Lecture 6 34



Comparing Results across Models
• NEW RULE: Coefficients cannot be compared across models, 

because they are not on the same scale! (see Bauer, 2009)
• e.g., if residual variance = 3.29 in binary models:

 When adding a random intercept variance to an empty model, the 
total variation in the outcome has increased the fixed effects will 
increase in size because they are unstandardized slopes

 Level-1 predictors cannot decrease the residual variance like usual, 
so all other models estimates have to INCREASE to compensate
 If Xti is uncorrelated with other X’s and is a pure level-1 variable (ICC ≈ 0), 

then fixed and SD(U0i) will increase by same factor

 Random effects variances can decrease, though, so level-2 effects 
should be on the same scale across models if level-1 is the same

0

2
U

mixed fixed

+3.29
γ  ( )

3.29


 
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A Little Bit about Estimation
• Goal: End up with maximum likelihood estimates for all model 

parameters (because they are consistent, efficient)
 When we have a V matrix based on multivariate normally

distributed eti residuals at level-1 and multivariate normally 
distributed Ui terms at level 2, ML is easy

 When we have a V matrix based on multivariate Bernoulli
distributed eti residuals at level-1 and multivariate normally 
distributed Ui terms at level 2, ML is much harder
 Same with any other kind model for “not normal” level 1 residual
 ML does not assume normality unless you fit a “normal” model!

• 3 main families of estimation approaches:
 Quasi-Likelihood methods (“marginal/penalized quasi ML”)

 Numerical Integration (“adaptive Gaussian quadrature”)

 Also Bayesian methods (MCMC, newly available in SAS or Mplus)
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2 Main Types of Estimation
• Quasi-Likelihood methods  older methods

 “Marginal QL”  approximation around fixed part of model
 “Penalized QL”  approximation around fixed + random parts
 These both underestimate variances (MQL more so than PQL)
 2nd-order PQL is supposed to be better than 1st-order MQL
 QL methods DO NOT PERMIT MODEL −2∆LL TESTS
 HLM program adds Laplace approximation to QL, which then does permit 

valid −2∆LL tests (also in SAS GLIMMIX and STATA xtmelogit)

• ML via Numerical Integration  gold standard
 Much better estimates and valid−2∆LL tests, but can take for-freaking-ever 

(can use PQL methods to get good start values)
 Will blow up with many random effects (which make the model 

exponentially more complex, especially in these models)
 Relies on assumptions of local independence, like usual  all level-1 

dependency has been modeled; level-2 units are independent
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ML via Numerical Integration
• Step 1: Select starting values for all fixed effects
• Step 2: Compute the likelihood of each observation given by the 

current parameter values using chosen distribution of residuals
 Model gives link-predicted outcome given parameter estimates, but the U’s 

themselves are not parameters—their variance is instead

 But so long as we can assume the U’s are MVN, we can still proceed

 Computing the likelihood for each set of possible parameters requires removing
the individual U values from the model equation—by integrating across 
possible U values for each Level-2 unit

 Integration is accomplished by “Gaussian Quadrature”  summing up rectangles 
that approximate the integral (area under the curve) for each Level-2 unit

• Step 3: Decide if you have the right answers, which occurs when the 
log-likelihood changes very little across iterations (i.e., it converges)

• Step 4: If you aren’t converged, choose new parameters values
 Newton-Rhapson or Fisher Scoring (calculus), EM algorithm (U’s =missing data)
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ML via Numerical Integration
• More on Step 2: Divide the U distribution into rectangles

  “Gaussian Quadrature” (# rectangles = # “quadrature points”)

 Can either divide the whole distribution into rectangles, then repeat, 
taking the most likely section for each level-2 unit and rectangling that
 This is “adaptive quadrature” and is computationally more demanding, but 

gives more accurate results with fewer rectangles (SAS will pick how many)

The likelihood of each level-2 unit’s 
outcomes at each U rectangle is then 
weighted by that rectangle’s 
probability of being observed (from 
the multivariate normal distribution). 
The weighted likelihoods are then 
summed across all rectangles… 

 ta da! “numerical integration”
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Example of Numeric Integration: Binary DV, 
Fixed Linear Time, Random Intercept Model 
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1. Start with values for fixed effects: intercept: γ00 = 0.5, time: γ10 = 1.5,

2. Compute likelihood for real data based on fixed effects and plausible U0i
(-2,0,2) using model: Logit(yti=1) = γ00 + γ10(timeti) + U0i

• Here for one person at two occasions with yti=1 at both occasions
IF yti=1 IF yti=0 Likelihood Theta Theta  Product

U0i = ‐2  Logit(yti) Prob  1‐Prob if both y=1 prob  width per Theta
Time 0  0.5 + 1.5(0) ‐ 2 ‐1.5  0.18  0.82     0.091213 0.05  2  0.00912
Time 1  0.5 + 1.5(1) ‐ 2 0.0  0.50  0.50 

U0i =  0  Logit(yti) Prob  1‐Prob
Time 0  0.5 + 1.5(0) + 0 0.5  0.62  0.38  0.54826  0.40  2  0.43861
Time 1  0.5 + 1.5(1) + 0 2.0  0.88  0.12 

U0i = 2  Logit(yti) Prob  1‐Prob
Time 0  0.5 + 1.5(0) + 2 2.5  0.92  0.08  0.90752  0.05  2  0.09075
Time 1  0.5 + 1.5(1) + 2 4.0  0.98  0.02                

Overall Likelihood (Sum of Products over All Thetas): 0.53848

(do this for each occasion, then multiply this whole thing over all people)
(repeat with new values of fixed effects until find highest overall likelihood) 
 



Summary: Generalized Multilevel Models
• Analyze link-transformed conditional mean of DV (e.g., via logit, log…)

 Linear relationship between X’s and transformed conditional mean of Y

 Nonlinear relationship between X’s and original Y
 Original eti residuals are assumed to follow some non-normal distribution

• In models for binary or categorical data, level-1 residual variance is fixed
 So it can’t go down after adding level-1 predictors, which means that the scale 

of everything else has to go UP to compensate

 Scale of model will also be different after adding random effects for the same 
reason—the total variation in the model is now bigger

 Fixed effects estimates may not be comparable across models as a result

• Estimation is trickier and takes longer
 Numerical integration is best but may blow up in complex models

 Start values are often essential (can get those with pseudo-likelihood estimators)
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A Taxonomy of Not-Normal Outcomes
• “Discrete” outcomes—all responses are whole numbers
 Categorical variables in which values are labels, not amounts

 Binomial (2 options) or multinomial (3+ options) distributions
 Question: Are the values ordered  which link? 

 Count of things that happened, so values < 0 cannot exist
 Sample space goes from 0 to positive infinity
 Poisson or Negative Binomial distributions (usually)
 Log link (usually) so predicted outcomes can’t go below 0
 Question: Are there extra 0 values? What to do about them?

• “Continuous” outcomes—responses can be any number
 Question: What does the residual distribution look like?

 Normal-ish? Skewed? Cut off? Mixture of different distributions?
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A Revised Taxonomy
• Rather than just separating into discrete vs. continuous, think 

about models based on their shape AND kinds of data they fit
 Note: You can use continuous models for discrete data (that only have 

integers), but not discrete models for continuous data (with decimals)

1. Skewed-looking distributions
 Discrete: Poisson, Generalized Poisson, Negative Binomial (NB)

 Continuous: Log-Normal, Beta, Gamma

2. Skewed with a pile of 0’s: Becomes  If 0 and How Much
 These models will differ in how they define the “If 0” part

 Discrete: Zero-Inflated Poisson or NB, Hurdle Poisson or NB

 Continuous: Two-Part (with normal or lognormal for the how much part) 
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Discrete Models for Count Outcomes
• Counts: non-negative integer unbounded responses

 e.g., how many cigarettes did you smoke this week?
 Traditionally uses natural log link so that predicted outcomes stay ≥ 0

• g ⦁ Log E y୧ ൌ Log μ୧ ൌ model predicts mean of y୧
• gିଵ ⦁ Eሺy୧ሻ ൌ expሺmodel)  to un-log it, use expሺmodelሻ

 e.g., if Log μ୧ ൌ model provides predicted Logሺμ୧ሻ ൌ 1.098, 
that translates to an actual predicted count of exp 1.098 ൌ 3

 e.g., if Log μ୧ ൌ model provides predicted Log(μ୧ሻ ൌ െ5, 
that translates to an actual predicted count of exp െ5 ൌ 0.006738

• So that’s how linear model predicts μ୧, the conditional mean 
for yi, but what about residual variance?
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Poisson Distribution for Residuals
• Poisson distribution has one parameter, ߣ, which is both its 

mean and its variance (so ߣ = mean = variance in Poisson)

• ݂ y୧|λ ൌ Prob y୧ ൌ y ൌ ஛౯∗ୣ୶୮ ି஛
୷!

• PDF: Prob y୧ ൌ y|β଴, βଵ, βଶ ൌ ஜ౟
౯∗ୣ୶୮ ିஜ౟

୷!

!ݕ is factorial of ݕ

The dots indicate that only 
integer values are observed.

Distributions with a small 
expected value (mean or ߣ) are 
predicted to have a lot of 0’s.

Once ߣ ൐ 6 or so, the shape of 
the distribution is close to a that 
of a normal distribution.ݕ
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3 potential problems for Poisson…
• The standard Poisson distribution is rarely sufficient, though

• Problem #1: When mean ≠ variance
 If variance < mean, this leads to “under-dispersion” (not that likely)
 If variance > mean, this leads to “over-dispersion” (happens frequently)

• Problem #2: When there are no 0 values
 Some 0 values are expected from count models, but in some contexts 
y୧ ൐ 0 always (but subtracting 1 won’t fix it; need to adjust the model)

• Problem #3: When there are too many 0 values
 Some 0 values are expected from the Poisson and Negative Binomial models 

already, but many times there are even more 0 values observed than that
 To fix it, there are two main options, depending on what you do to the 0’s

• Each of these problems requires a model adjustment to fix it…
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Problem #1: Variance > mean = over-dispersion
• To fix it, we must add another parameter that allows the variance to 

exceed the mean… becomes a Negative Binomial distribution
 Says residuals are a mixture of Poisson and gamma distributions, 

such that ߣ itself is a random variable with a gamma distribution
 So expected mean is still given by ߣ, but the variance will differ from Poisson

• Model: Log y୧ ൌ Logሺμ୧ሻ ൌ β଴ ൅ βଵX୧ ൅ βଶZ୧ ൅ e୧ୋ

• Negative Binomial PDF with a new ݇ dispersion parameter is now:

 Prob y୧ ൌ y|β଴, βଵ, βଶ ൌ
୻ ୷ାభೖ

୻ ୷ାଵ ∗୻ భ
ೖ
∗ ௞ஜ౟ ౯

ଵା௞ஜ౟
౯శభೖ

 ࢑ is dispersion, such that Var y୧ ൌ μ୧ ൅ μ୧ଶ࢑

 Can test whether ݇ ൐ 0 via −2LL test, although LL for ݇ ൌ 0	is undefined

• An alternative model with the same idea is the generalized Poisson:
 Mean: ఒ

ଵି௞
, Variance: ఓ

ଵି௞ మ, that way LL is defined for ݇ ൌ 0

 Is in SAS FMM (and in GLIMMIX through user-defined functions)

So ≈ Poisson if ݇ ൌ 0

DIST = NEGBIN in SAS 
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Negative Binomial (NB) = “Stretchy” Poisson…

• Because its ݇ dispersion parameter is fixed to 0, the Poisson model is 
nested within the Negative Binomial model—to test improvement in fit:

• Is െ2 ௉௢௜௦௦௢௡ܮܮ െ ே௘௚஻௜௡ܮܮ ൐ 3.84 for ݂݀ ൌ 1? Then ݌ ൏ .05, keep NB

Mean ൌ ߣ
Dispersion	ൌ	k

Var y୧ ൌ λ ൅ kλଶ

A Negative Binomial 
model can be useful 
for count residuals 
with extra skewness, 
but otherwise follow 
a Poisson distribution
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Problem #2: There are no 0 values
• “Zero-Altered” or “Zero-Truncated” Poisson or Negative 

Binomial: ZAP/ZANB or ZTP/ZTNB (used in hurdle models)
 Is usual count distribution, just not allowing any 0 values

 Poisson version is readily available within SAS PROC FMM using 
DIST=TRUNCPOISSON (next version should have TRUNCNEGBIN, too)

 Could be fitted in SAS NLMIXED or Mplus, too

• Poisson PDF was:  Prob y୧ ൌ y|μ୧	 ൌ
ஜ౟
౯∗ୣ୶୮ ିஜ౟

୷!

• Zero-Truncated Poisson PDF is: 

 Prob y୧ ൌ y|μ୧,y୧ ൐ 0 ൌ ஜ౟
౯∗ୣ୶୮ ିஜ౟

୷! ଵିୣ୶୮ ିஜ౟

 Prob y୧ ൌ 0 ൌ exp െμ୧ , so Prob y୧ ൐ 0 ൌ 1 െ exp െμ୧
 Divides by probability of non-0 outcomes so probability still sums to 1

PSYC 945:  Lecture 6 49



Software for Discrete Outcomes
• There are many choices for modeling not-normal discrete outcomes 

(that include integer values only); most use either an identity or log link

• Single-level, univariate generalized models in SAS:
 GENMOD: DIST= (and default link): Binomial (Logit), Poisson (Log), Zero-Inflated 

Poisson (Log), Negative Binomial (Log), Zero-Inflated Negative Binomial (Log)

 FMM: DIST= (and default link): Binomial (Logit), Poisson (Log), Generalized 
Poisson (Log), Truncated Poisson (Log), Negative Binomial (Log), Uniform

• Multilevel, multivariate generalized models in SAS through GLIMMIX:
 Binomial (Logit), Poisson (Log), Negative Binomial (Log)

 BYOBS, which allows multivariate models by which you specify DV-specific link 
functions and distributions estimated simultaneously

 User-defined variance functions for special cases (e.g., generalized Poisson)

• NLMIXED can also be used to fit any user-defined model

• Up next: models for skewed continuous outcomes…
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Log-Normal Distribution (Link=Identity)

• e୧~LogNormal 0, σୣଶ  log of residuals is normal
 Is same as log-transforming your outcome in this case…
 The log link keeps the predicted values positive, but slopes then 

have an exponential (not linear) relation with original outcome
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Log-Normal Distribution (Link=Identity)

• GLIMMIX parameterization gives ߤ (= intercept) and ݈݁ܽܿݏ = 
(variance) to convert back into original data as follows:
 Mean Y ൌ exp ߤ ∗ exp	ሺ݈݁ܽܿݏሻ

 Variance Y ൌ exp ߤ2 ∗ exp ݈݁ܽܿݏ ∗ ሾexp ݈݁ܽܿݏ െ 1ሿ
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Gamma Response Distribution

• GLIMMIX parameterization with LINK=LOG gives ߤ (= intercept) 
and ݈݁ܽܿݏ = (dispersion) to convert into original data as follows:
 Mean Y ൌ exp ߤ ൎ ሺshape*scaleሻ
 Variance Y ൌ exp ߤ ଶ ∗ ݊݋݅ݏݎ݁݌ݏ݅݀ ൎ shape ∗ scaleଶ
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Software for Continuous Outcomes
• There are many choices for modeling not-normal continuous outcomes 

(that can include non-integer values); most use either an identity or log link

• Single-level, univariate generalized models in SAS (not in Mplus):
 GENMOD: DIST= (and default link): Gamma (Inverse), Geometric (Log), Inverse 

Gaussian (Inverse2), Normal (Identity) 

 FMM: DIST= (and default link): Beta (Logit), Betabinomial (Logit), Exponential 
(Log), Gamma (Log), Normal (Identity), Geometric (Log), Inverse Gaussian 
(Inverse2), LogNormal (Identity), TCentral (Identity), Weibull (Log) 

• Multilevel or multivariate generalized models in SAS via GLIMMIX:
 Beta (Logit), Exponential (Log), Gamma (Log), Geometric (Log), Inverse Gaussian 

(Inverse2), Normal (Identity), LogNormal (Identity), TCentral (Identity) 

 BYOBS, which allows multivariate models by which you specify DV-specific link 
functions and distributions estimated simultaneously (e.g., two-part)

• NLMIXED can also be used to fit any user-defined model

• Up next: models for zero-inflated discrete or continuous outcomes…
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Modeling Not-Normal Outcomes
• Previously we examined models for skewed distributions

 Discrete: Poisson, Generalized Poisson, Negative Binomial (NB)

 Continuous: Log-Normal, Gamma (also Beta from Part 1)

• Now we will see additions to these models when the outcome 
also has a pile of 0’s: Model becomes  If 0 and How Much
 These models will differ in how they define the “If 0” part

 Discrete: Zero-Inflated Poisson or NB, Hurdle Poisson or NB

 Continuous: Two-Part (with normal or lognormal for how much)

 Many of these can be estimated directly in Mplus or SAS GLIMMIX, 
but some will need to be programed in SAS GLIMMIX or NLMIXED

 More options for single-level data in SAS PROC FMM 
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Problem #3: Too many 0 values, Option #1
• “Zero-Inflated” Poisson (DIST=ZIP) or Negative Binomial 

(DIST=ZINB); available within SAS PROC GENMOD (and Mplus)
 Distinguishes two kinds of 0 values: expected and inflated

(“structural”) through a mixture of distributions (Bernoulli + Poisson/NB)

 Creates two submodels to predict “if extra 0” and “if not, how much”?
 Does not readily map onto most hypotheses (in my opinion)
 But a ZIP example would look like this… (ZINB would add k dispersion, too)

• Submodel 1: Logit y୧ ൌ extra	0 ൌ 	β଴ଵ ൅ βଵଵX୧ ൅ βଶଵZ୧
 Predict being an extra 0 using Link = Logit, Distribution = Bernoulli

 Don’t have to specify predictors for this part, can simply allow an intercept
(but need ZEROMODEL option to include predictors in SAS GENMOD)

• Submodel 2: Log Eሺy୧ሻ ൌ β଴ଶ ൅ βଵଶX୧ ൅ βଶଶZ୧
 Predict rest of counts (including 0’s) using Link = Log, Distribution = Poisson 
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Example of Zero-Inflated Outcomes
Zero-inflated distributions 
have extra “structural 
zeros” not expected from 
Poisson or NB (“stretched 
Poisson”) distributions.

This can be tricky to 
estimate and interpret 
because the model 
distinguishes between 
kinds of zeros rather than 
zero or not...

Image borrowed 
from Atkins & 
Gallop, 2007
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Problem #3: Too many 0 values, Option #1

• The Zero-Inflated models get put back together as follows:
 ω୧ is the predicted probability of being an extra 0, from:

ω୧ ൌ
								exp Logit y୧ ൌ extra	0
1 ൅ exp Logit y୧ ൌ extra	0

 μ୧ is the predicted count for the rest of the distribution, from:
μ୧ ൌ exp Log y୧

 ZIP: Mean	 original	y୧ ൌ 1 െ ω୧ μ୧
 ZIP: Variance original	y୧ ൌ μ୧ ൅

ன౟
ଵିன౟

μ୧ଶ

 ZINB: Mean	 original	y୧ ൌ 1 െ ω୧ μ୧

 ZINB: Variance original	y୧ ൌ μ୧ ൅
ன౟

ଵିன౟
൅ ୩

ଵିன౟
μ୧ଶ
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Problem #3: Too many 0 values, Option #2
• “Hurdle” models for Poisson or Negative Binomial

 PH or NBH: Explicitly separates 0 from non-0 values through a mixture of 
distributions (Bernoulli + Zero-Altered Poisson/NB)

 Creates two submodels to predict “if any 0” and “if not 0, how much”?
 Easier to think about in terms of prediction (in my opinion)

• Submodel 1: Logit y୧ ൌ 0 ൌ 	β଴ଵ ൅ βଵଵX୧ ൅ βଶଵZ୧
 Predict being any 0 using Link = Logit, Distribution = Bernoulli
 Don’t have to specify predictors for this part, can simply allow it to exist

• Submodel 2: Log y୧|y୧ ൐ 0 ൌ β଴ଶ ൅ βଵଶX୧ ൅ βଶଶZ୧
 Predict rest of positive counts using Link = Log, Distribution = ZAP or ZANB 

• These models are not readily available in SAS, but NBH is in Mplus
 Could be fit in SAS NLMIXED (as could ZIP/ZINB)
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Two-Part Models for Continuous Outcomes
• A two-part model is an analog to hurdle models for zero-inflated count 

outcomes (and could be used with count outcomes, too)
 Explicitly separates 0 from non-0 values through a mixture of distributions 

(Bernoulli + Normal or LogNormal)
 Creates two submodels to predict “if any not 0” and “if not 0, how much”?

 Easier to think about in terms of prediction (in my opinion)

• Submodel 1: Logit y୧ ൐ 0 ൌ 	β଴ଵ ൅ βଵଵX୧ ൅ βଶଵZ୧
 Predict being any not 0 using Link = Logit, Distribution = Bernoulli
 Usually do specify predictors for this part

• Submodel 2: y୧|y୧ ൐ 0 ൌ β଴ଶ ൅ βଵଵX୧ ൅ βଶଵZ୧
 Predict rest of positive amount using Link = Identity, Distribution = Normal 

or Log-Normal (often rest of distribution is skewed, so log works better)

• Two-part is not readily available in SAS, but is in Mplus
 Can be estimated as a multivariate model in SAS GLIMMIX or NLMIXED
 Is related to “tobit” models for censored outcomes (for floor/ceiling effects)
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Pile of 0’s Taxonomy
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• What kind of amount do you want to predict?
 Discrete: Count  Poisson, Stretchy Count  Negative Binomial
 Continuous: Normal, Log-Normal, Gamma

• What kind of If 0 do you want to predict?
 Discrete: Extra 0 beyond predicted by amount?
 Zero-inflated Poisson or Zero-inflated Negative Binomial

 Discrete: Any 0 at all?
 Hurdle Poisson or Hurdle Negative Binomial

 Continuous: Any 0 at all?
 Two-Part with Continuous Amount (see above)

 Note: Given the same amount distribution, these alternative ways 
of predicting 0 will result in the same empty model fit



Comparing Generalized Models
• Whether or not a dispersion parameter is needed (to distinguish 

Poisson and NB) can be answered via a likelihood ratio test
 For the most fair comparison, keep the linear predictor model the same

• Whether or not a zero-inflation model is needed should, in theory, 
also be answerable via a likelihood ratio test…
 But people disagree about this 
 Problem? Zero-inflation probability can’t be negative, so is bounded at 0
 Other tests have been proposed (e.g., Vuong test—see SAS macro online)
 Can always check AIC and BIC (smaller is better)

• In general, models with the same distribution and different links can 
be compared via AIC and BIC, but one cannot use AIC and BIC to 
compare across alternative distributions (e.g., normal or not?)
 Log-Likelihoods are not on the same scale due to using different PDFs
 You can compute predicted values under different models to see how 

reasonably they approximate the data for some unofficial guidance
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Generalized Models Part 2: Summary
• There are many options for “amount” variables whose 

residuals may not be normally distributed
 Discrete: Poisson, Negative Binomial
 Continuous: Lognormal, Gamma, Beta
 Too many 0’s: Zero-inflated or hurdle for discrete; two-part

• Multivariate and multilevel versions of all the generalized 
models we covered can be estimated…
 But it’s harder to do and takes longer due to numeric integration (trying 

on random effects at each iteration) 
 But there are fewer ready-made options for modeling differential 

variance/covariance across DVs (no easy R matrix structures in true ML)

• Program documentation will always be your friend to 
determine exactly what a given model is doing!
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