Multivariate Growth Models for Older and Younger Sibling Risky Behavior

SAS Data Set-Up:

```
* Multivariate set-up;
DATA work.BivFamily; SET work.Family;
      risky=orisky; age=siboage; boy=Oboy; DV="SibO"; dvO=1; dvY=0; OUTPUT;
      risky=yrisky; age=sibyage; boy=Yboy; DV="SibY"; dvO=0; dvY=1; OUTPUT;
RUN;
* Centering older and younger at different place;
DATA work.BivFamily; SET work.BivFamily;
      IF DV="SibO" THEN endtime=age-17; * Up to 6 occasions (12-17);
      IF DV="SibY" THEN endtime=age-15; * Up to 3 occasions (13-15);
      LABEL endtime= "Time in Study (0=17 for O, 0=15 for Y)";
RUN;
```

With this coding we have created a time-in-study model (given that age=time within each) where age is centered at the last measurement occasion separately for each sibling (approximately age 17 for Sib O and 15 for Sib Y). Time is treated as continuous from these points (i.e., an exact age model). The differing centering points allows us to put each DV on its own metric, and to not assume age-based convergence. Thus, the intercept for dvO (Sib O) represents expected risky behaviors at age 17, and the intercept for dvY (Sib Y) represents expected risky behaviors at age 15. We can now examine the extent to which intercepts, slopes, and residuals are related across time of study.

	<pre>TITLE1 "SAS Method #1 Direct Effects Unconditional Multivariate Growth Model for Risky Behavior"; PROC MIXED DATA=BivFamily COVTEST NOCLPRINT NOITPRINT MAXITER=1000 IC NAMELEN=100 METHOD=ML; CLASS family phase DV; MODEL risky = dvO dvY dvO*endtime dvY*endtime dvO*endtime*endtime dvY*endtime*endtime</pre>									
	Dimension	IS								
Covari	ance Parameters	;	13							
Column	s in X		6							
Column	s in Z Per Subj	ect	4							
Subjec	ts		200 # Famil:	ies						
Max Ob	s Per Subject		12 # Obs pe	er family (2	sibs * 6 ti	mes)				
Number Number	Number of ObservationsNumber of Observations Read2400Number of Observations Used1627Number of Observations Not Used773R and RCORR matrices were not printed! I think it has to do with the unbalanced data									
		E	stimated G Ma	atrix						
Row	Effect	FAMILY	Col1	Col2	Col3	Col4				
1	dv0	1	64.8158	24.5476	10.3524	4.6851				
2	dvY	1	24.5476	50.0280	3.8068	10.2330				
3	dvO*endtime	1	10.3524	3.8068	1.7883	0.7835				
4	dvY*endtime	1	4.6851	10.2330	0.7835	2.0165				
Row	Effect	Estimat FAMILY	ed G Correlat Col1	tion Matrix Col2	Co13	Col4				
1100	2.1000	, / WHIE	0011	0012	0010	0014				
1	dv0	1	1.0000	0.4311	0.9616	0.4098				
2	dvY	1	0.4311	1.0000	0.4025	1.0000				
3	dvO*endtime	1	0.9616	0.4025	1.0000	0.4126				
4	dvY*endtime	1	0.4098	1.0000	0.4126	1.0000				

	Covar	iance Paramet	er Estimates	i			
			Standard	Z			
Cov Parm	Subject	Estimate	Error	Value	Pr Z		
UN(1,1)	FAMILY	64.8158	7.4630	8.68	<.0001		
UN(2,1)	FAMILY	24.5476	5.3952	4.55	<.0001	Intercept	t covariance
UN(2,2)	FAMILY	50.0280	6.8576	7.30	<.0001		
UN(3,1)	FAMILY	10.3524	1.3195	7.85	<.0001		
UN(3,2)	FAMILY	3.8068	0.9745	3.91	<.0001		
UN(3,3)	FAMILY	1.7883	0.2555	7.00	<.0001		
UN(4,1)	FAMILY	4.6851	1.7595	2.66	0.0078		
UN(4,2)	FAMILY	10.2330	2.0845	4.91	<.0001		
UN(4,3)	FAMILY	0.7835	0.3139	2.50	0.0126	Slope cov	variance
UN(4,4)	FAMILY	2.0165	0.7060	2.86	0.0021		
UN(1,1)	FAMILY*phase	13.9353	0.7586	18.37	<.0001		
UN(2,1)	FAMILY*phase	-0.7855	0.7540	-1.04	0.2975	Residual	covariance
UN(2,2)	FAMILY*phase	14.1744	1.2213	11.61	<.0001		
		Informatio	n Criteria				
Neg2LogLike	Parms	AIC	AICC F		BIC	CAIC	
9811.1		9849.1 98	49.6 987	4.5 991	1.8 99	930.8	
	S	olution for F	ived Effects				
	0		ndard				
Effect	Fs			F t Value	e Pr>	1+1	
dv0			.6107 19				int at age 17
dv0*endtime			.1988 71				linear at age 17
		1.3304 0	1300 /1	5 5.0		001 0100	TTHEAT AL AYE IT

dvO*endtime*endtime	0.08846	0.03297	911	2,68	0.0074 SibO quad at any age
dvY	26.3777	0.5890	165	44.78	<.0001 SibY int at age 15
endtime*dvY	1.5046	0.3218	267	4.68	<.0001 SibY linear at age 15
endtime*endtimevdvY	0.04982	0.08117	123	0.61	0.5405 SibY quad at any age

Because the time metrics cover different ages, it is most appropriate to leave the growth terms separate for each Sib. We can remove the nonsignificant quadratic effect of time for Sib Y (not surprising given only 3 time points).

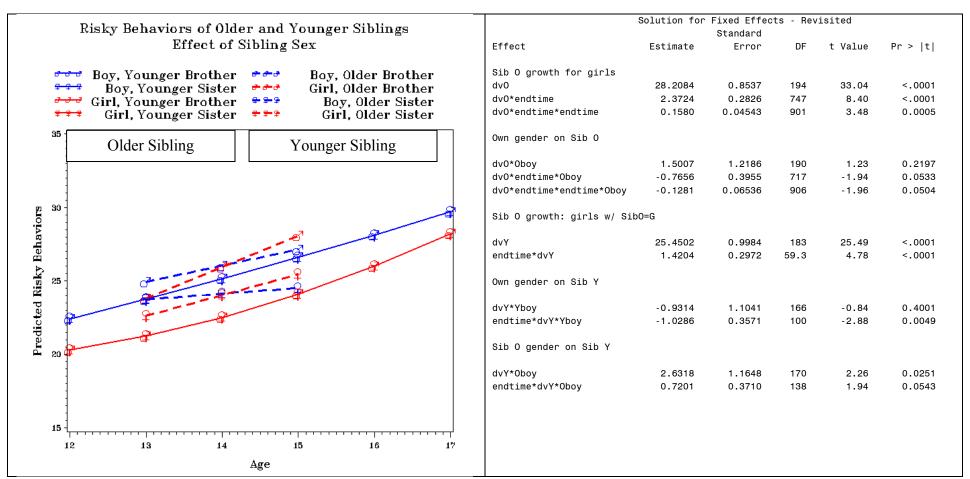
Examining own and unidirectional effects of sibling sex $(O \rightarrow Y)$ on growth in risky behavior:

	TITLE1 "Adding Effects of Gender: Self and O>Y"; PROC MIXED DATA=BivFamily COVTEST NOCLPRINT NOITPRINT MAXITER=1000 IC NAMELEN=100 METHOD=ML;											
	CLASS family phase DV;											
	MODEL risky = dvO dvO*endtime dvO*endtime*endtime dvY dvY*endtime											
	dv0*0boy dv0*0boy*endtime dv0*0boy*endtime*endtime											
	dvY*Yboy dvY*Yboy*endtime dvY*Oboy dvY*Oboy*endtime / NOINT SOLUTION DDFM=Satterthwaite;											
	<pre>/ NOINT SOLUTION DDFM=Satterthwaite; RANDOM dvO dvY dvO*endtime dvY*endtime / G GCORR TYPE=UN SUBJECT=family; * Level 2 family;</pre>											
					-			vel 1 crossed time*DV;				
RUN;					•	.,						
			E	stimated G Ma	trix							
Row	Effect	t	FAMILY	Col1	Col2	Col3	Col4					
1	dv0		1	64.4248	22.1749	10.4961	4.2930					
2	dvY		1	22.1749	49.3236	3.6434	10.2545					
3	<pre>3 dv0*endtime</pre>		1	10.4961	3.6434	1.7983	0.7672					
4	endtin	ne*dvY	1	4.2930	10.2545	0.7672	1.9310					
			Estimate	ed G Correlat	ion Matrix							
Row	Effect	t	FAMILY	Col1	Col2	Col3	Col4					
1	dv0		1	1.0000	0.3934	0.9751	0.3849					
2	dvY		1	0.3934	1.0000	0.3869	1.0000					
3	dv0*er	ndtime	1	0.9751	0.3869	1.0000	0.4117					
4	endtin	ne*dvY	1	0.3849	1.0000	0.4117	1.0000					
			Info	ormation Crit	eria							
Neg2Lo	gLike	Parms	AIC	AICC	HQIC	BIC	CAIC					
g	766.6	25	9816.6	9817.4	9850.0	9899.1	9924.1					

	Solution for	Fixed Effec	ts		
		Standard			
Effect	Estimate	Error	DF	t Value	Pr > t
dv0	28.2084	0.8537	194	33.04	<.0001 Sib 0 growth for girls
dvO*endtime	2.3724	0.2826	747	8.40	<.0001
dvO*endtime*endtime	0.1580	0.04543	901	3.48	0.0005
dvY	25.4502	0.9984	183	25.49	<.0001 Sib O growth: girls w/ SibO=G
endtime*dvY	1.4204	0.2972	59.3	4.78	<.0001
dv0*0boy	1.5007	1.2186	190	1.23	0.2197 Own gender on Sib O
dvO*endtime*Oboy	-0.7656	0.3955	717	-1.94	0.0533
dvO*endtime*endtime*Oboy	-0.1281	0.06536	906	-1.96	0.0504
dvY*Yboy	-0.9314	1.1041	166	-0.84	0.4001 Own gender on Sib Y
endtime*dvY*Yboy	-1.0286	0.3571	100	-2.88	0.0049
dvY*0boy	2.6318	1.1648	170	2.26	0.0251 Sib O gender on Sib Y
endtime*dvY*Oboy	0.7201	0.3710	138	1.94	0.0543

Equation for final multivariate model with gender:

L1:	Risk _{tfs} = dvO [$\beta_{0fO} + \beta_{1fO}(age_{tfO} - 17) + \beta_{2fO}(age_{tfO} - 17)^2 + e_{tfO}$] +
	$dvY \left[\beta_{0fY} + \beta_{1fO}(age_{tfY} - 15) + e_{tfY} \right]$
L2:	$\beta_{0fO} = \gamma_{00O} + \gamma_{01O}(OlderBoy_f) + U_{0fO}$
	$\beta_{1fO} = \gamma_{10O} + \gamma_{11O}(OlderBoy_f) + U_{1fO}$
	$\beta_{2fO} = \gamma_{20O} + \gamma_{21O}(OlderBoy_f)$
	$\beta_{0 fY} = \gamma_{00Y} + \gamma_{01Y} (OlderBoy_f) + \gamma_{02Y} (YoungerBoy_f) + U_{0 fY}$
	$\beta_{1fY} = \gamma_{10Y} + \gamma_{11Y}(OlderBoy_f) + \gamma_{12Y}(YoungerBoy_f) + U_{1fY}$


Creating fake families for all combinations of sibling gender in excel: NOTE: YOU MUST HAVE VALUES FOR <u>ALL</u> VARIABLES IN THE MODEL TO DO THIS.

order	family	dv	dvO	dvY	phase	age	endtime	Oboy	Yboy
				-			_		
1	-99	SibO	1	0	2	12		1	1
1	-99	SibO	1	0	3	13		1	1
1	-99	SibO	1	0	4	14		1	1
1	-99	SibO	1	0	6	15	-2	1	1
1	-99	SibO	1	0	7	16		1	1
1	-99	SibO	1	0	8	17	0	1	1
2	-99	SibY	0	1	6	13	-2	1	1
2		SibY	0	1	7	13		1	1
2		SibY	0	1	8	14	-1	1	1
2	-33		0	1	0	15	0		
3	-98	SibO	1	0	2	12	-5	1	0
3	-98	SibO	1	0	3	13	-4	1	0
3	-98	SibO	1	0	4	14	-3	1	0
3	-98	SibO	1	0	6	15	-2	1	0
3	-98	SibO	1	0	7	16	-1	1	0
3		SibO	1	0	8	17		1	0
4	-98	SibY	0	1	6	13	-2	1	0
4	-98	SibY	0	1	7	14	-1	1	0
4	-98	SibY	0	1	8	15	0	1	0
5	-97	SibO	1	0	2	12	-5	0	1
5	-97	SibO	1	0	3	13	-4	0	1
5		SibO	1	0	4	14	-3	0	1
5		SibO	1	0	6	15	-2	0	1
5		SibO	1	0	7	16	-1	0	1
5		SibO	1	0	8	17	0	0	1

6	-97	SibY	0	1	6	13	-2	0	1
6	-97	SibY	0	1	7	14	-1	0	1
6	-97	SibY	0	1	8	15	0	0	1
7	-96	SibO	1	0	2	12	-5	0	0
7	-96	SibO	1	0	3	13	-4	0	0
7	-96	SibO	1	0	4	14	-3	0	0
7	-96	SibO	1	0	6	15	-2	0	0
7	-96	SibO	1	0	7	16	-1	0	0
7	-96	SibO	1	0	8	17	0	0	0
8	-96	SibY	0	1	6	13	-2	0	0
8	-96	SibY	0	1	7	14	-1	0	0
8	-96	SibY	0	1	8	15	0	0	0

* Where plot will go: %LET filesave=F:\Example Data\Penn State Data\SibOSibY; * Sort original datafile by ID variables for merging; PROC SORT DATA=work.BivFamily; BY family phase; RUN; * Importing fake people data from excel; PROC IMPORT DATAFILE = "&filesave.\CPlots.xls" OUT=work.CPlots DBMS=EXCEL REPLACE; SHEET="Gender"; GETNAMES=YES; RUN; * Sort fake people by ID variables for merging; PROC SORT DATA=work.CPlots; BY family phase; RUN; * Merging original datafile and fake people for prediction; DATA work.Mergedbiv; MERGE work.BivFamily work.CPlots; BY family phase; RUN; * Getting model-predicted values; TITLE1 "Adding Effects of Gender: Self and O-->Y"; PROC MIXED DATA=Mergedbiv COVTEST NOCLPRINT NOITPRINT MAXITER=1000 iC NAMELEN=100 METHOD=ML; CLASS family phase DV; MODEL risky = dvO dvO*endtime dvO*endtime*endtime dvY dvY*endtime dv0*Oboy dv0*Oboy*endtime dv0*Oboy*endtime*endtime dvY*Yboy dvY*Yboy*endtime dvY*Oboy dvY*Oboy*endtime / NOINT SOLUTION DDFM=Satterthwaite OUTPM=work.Gen_Plots; RANDOM dvO dvY dvO*endtime dvY*endtime / G GCORR TYPE=UN SUBJECT=family; * Level 2 family; REPEATED DV / R RCORR TYPE=UN SUBJECT=phase*family; * Level 1 crossed time*DV; RUN; * Renaming predicted outcome, keeping only fake people; DATA work.Gen_Plots; SET work.Gen_Plots; WHERE Order IS NOT MISSING; run; PROC SORT DATA=work.Gen_Plots; BY Order; run; * Setting generic plotting options for text, size, and joining lines; GOPTIONS NOBORDER FTEXT=Triplex FTITLE=Triplex VSIZE=7in HSIZE=7in INTERPOL=JOIN GSFNAME=outgraph DEV=BMP GSFMODE=replace; run; * Plot for Risky Behaviors by Sibling Gender; FILENAME outgraph "&filesave.\Risky by Gender.bmp"; TITLE1 JUSTIFY=CENTER HEIGHT=1.6 "Risky Behaviors of Older and Younger Siblings"; TITLE2 JUSTIFY=CENTER HEIGHT=1.6 "Effect of Sibling Sex"; PROC GPLOT DATA=work.Gen_Plots; *Settings for Y-axis: AXIS1 LABEL=(HEIGHT=1.3 ANGLE=90 "Risky Behaviors") LENGTH=4.7in ORDER=(15 TO 35 BY 5); *Settings for X-axis: AXIS2 LABEL=(HEIGHT=1.3 "Age") LENGTH=6.0in ORDER=(12 TO 17 BY 1); *Setting for legend - place at top, no frame around it, 2 values across; *Labels for series in order of Order; LEGEND1 NOFRAME POSITION=(CENTER TOP) ACROSS=2 LABEL=NONE VALUE=(HEIGHT=1.5 COLOR=Black "Boy, Younger Brother" "Boy, Older Brother" "Boy, Younger Sister" "Girl, Older Brother" "Girl, Younger Brother" "Boy, Older Sister" "Girl, Younger Sister" "Girl, Older Sister") ; SYMBOL1 COLOR=Blue VALUE=> HEIGHT=2 LINE=1 WIDTH=2; * > is boy symbol; SYMBOL2 COLOR=BlueVALUE=> HEIGHT=2 LINE=3 WIDTH=2; * line=3 is dashed;SYMBOL3 COLOR=BlueVALUE=> HEIGHT=2 LINE=1 WIDTH=2; * * is girl symbol;SYMBOL4 COLOR=RedVALUE=> HEIGHT=2 LINE=3 WIDTH=2; * line=3 is dashed;SYMBOL5 COLOR=RedVALUE=> HEIGHT=2 LINE=1 WIDTH=2; SYMBOL6 COLOR=BlueVALUE=* HEIGHT=2 LINE=3 WIDTH=2;SYMBOL7 COLOR=RedVALUE=* HEIGHT=2 LINE=1 WIDTH=2;SYMBOL8 COLOR=RedVALUE=* HEIGHT=2 LINE=3 WIDTH=2; PLOT pred*age=Order / VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;

RUN; QUIT;

Example Results Section: The extent to which gender predicted risky behavior in older and younger siblings was examined in a multivariate multilevel model in which time and sibling were crossed and nested within families. Based on the design of the study, exact age at each occasion was centered at age 17 for older siblings and age 15 for younger siblings. Preliminary analyses suggested a fixed quadratic, random linear age model was the best unconditional growth model for older siblings, whereas a random linear age model was best for younger siblings. The intercepts were significantly related across siblings (r = .43), indicating that in families in which older siblings engaged in more risky behavior at age 17 than their peers, younger siblings were also more likely to engage in more risky behavior more across adolescence than their peers were more likely to have younger siblings who did the same. However, there was no significant relationship among the time-specific residuals, indicating that after controlling for growth, on occasions where older siblings were engaging in more risky behavior than predicted, their younger siblings were not significantly more likely to do so as well. The effects of one's own gender and the gender of the older sibling on the younger sibling were then examined. As seen in Table 1 and Figure 1, although there was no significant effect of gender for the older siblings at age 17, older girls had marginally greater linear and quadratic rates of increase across age (i.e., greater acceleration). Similarly, having an older brother was related to significantly greater risky behavior for the younger girls had significantly greater linear rate of increase across age.