Considerations in Selecting Amongst Alternative Metrics of Time

Lesa Hoffman, PhD

Associate Professor and Director
Cognitive and Quantitative Program
Department of Psychology
University of Nebraska-Lincoln

Presented 3/27/13 at the 9th International Multilevel Conference at Utrecht University, the Netherlands

Goals of Longitudinal* Modeling

- 5 rationales of longitudinal research
 - Baltes & Nesselroade, 1979
 - Chapter 1: Longitudinal Research in the Study of Behavior and Development
- 7 levels of longitudinal analysis
 - > Hofer & Sliwinski, 2006
 - Chapter 2: Handbook of the Psychology of Aging (6th edition)
- 7+ steps in longitudinal modeling
 - Singer & Willett, 2003
 - Chapter 4: Applied Longitudinal Data Analysis

*Applicable to both the MLM and SEM analytic frameworks

Steps in Longitudinal Analysis

- 1. Decompose **BP and WP variation**—Intraclass Correlation
 - > **ICC** = proportion of outcome variance that is *constant* over time, and that results from *cross-sectional* differences
- Describe pattern of average change over time (fixed effects) and individual differences therein (random effects)
 - Piecewise slopes models—Phases of discontinuous change
 - > Polynomial models—Approximate nonlinear continuous change
 - > Truly nonlinear models—Exponential or logistic change
 - > Latent basis models—Estimate shape of nonlinear change

Steps in Longitudinal Analysis

- 4. Predict inter-individual differences in change
 - > Why do people need their own intercepts and slopes?
- 5. Predict intra-individual variation from predicted change
 - > Why are you off your line today (time-specific influences)?
- 6. Examine multivariate relationships
 - > Between-person correlations among intercepts and slopes
 - Within-person covariation of residuals (or lead-lag associations)
- 7. Examine other sources of underlying **heterogeneity**
 - > Mixture models for discrete types of individual differences
 - > Predict individual differences in within-person variability

Road Map

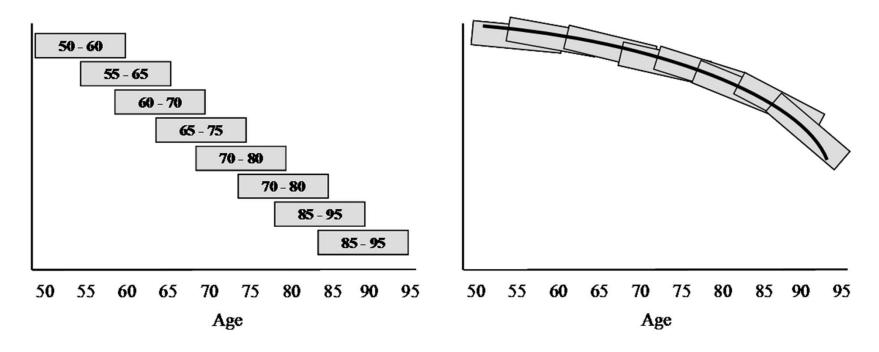
Steps in longitudinal analysis

The missing step #2

Example: Alternative metrics of "time"

What about just time?

What else contributes to "time"?


The Missing Step 2

- **Summary across steps**: The goal of creating statistical models of change is to describe the overall pattern of and predict individual differences in **change over time**.
- These models employ an often unrecognized assumption that we know exactly what "time" should be.
- So the missing Step 2 is a pre-cursor to every other step in longitudinal analysis, and involves 2 related concerns:
 - What should "time" be?
 - > How should "time" be modeled when people differ in "time"?
 - > Concerns apply specifically to accelerated longitudinal designs

Accelerated Longitudinal Designs

Want to do a longitudinal study but just don't have the time?

Accelerate: Model trajectories over a wider span of time than would be possible using only the observed longitudinal info...

The Missing Step 2

First: What should "time" be?

- Which metric of time best matches the causal process thought to be responsible for observed change?
- > Do **alternative metrics of time** for **multiple processes** create different pictures of change and individual differences therein?
- Relevant for aligning different persons onto same time trajectory, but this distinction is **not relevant within persons**
- Second: What do we do when people differ in "time"?
 - > How should "time" be modeled in accelerated designs?
 - When people begin a study at different points in time, how should we distinguish effects of between-person differences in time from effects of within-person changes in time?

Road Map

- Steps in longitudinal analysis
- The missing step #2
- Example: Alternative metrics of "time"
- What about just time?
- What else contributes to "time"?

Example Data: Octogenarian (Twin) Study of Aging

• 173 persons (65% women)

- > Measured up to **5 occasions** over 8 years
- Known dates of birth and death
- > **Estimated** dates of dementia diagnosis (91 Alz., 50 Vas., 32 Mixed)

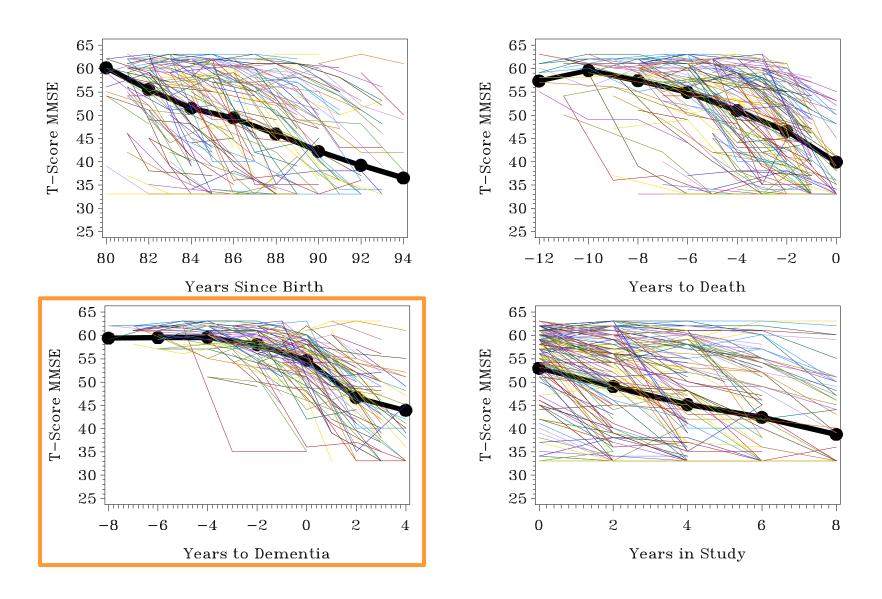
Baseline occasion "time" variability:

- > 79 to 100 years of age (M = 84, SD = 3)
- \rightarrow -16 to 0 years from death (M = -6, SD = 4)
- > -12 to 18 years from diagnosis (M = 0, SD = 5)

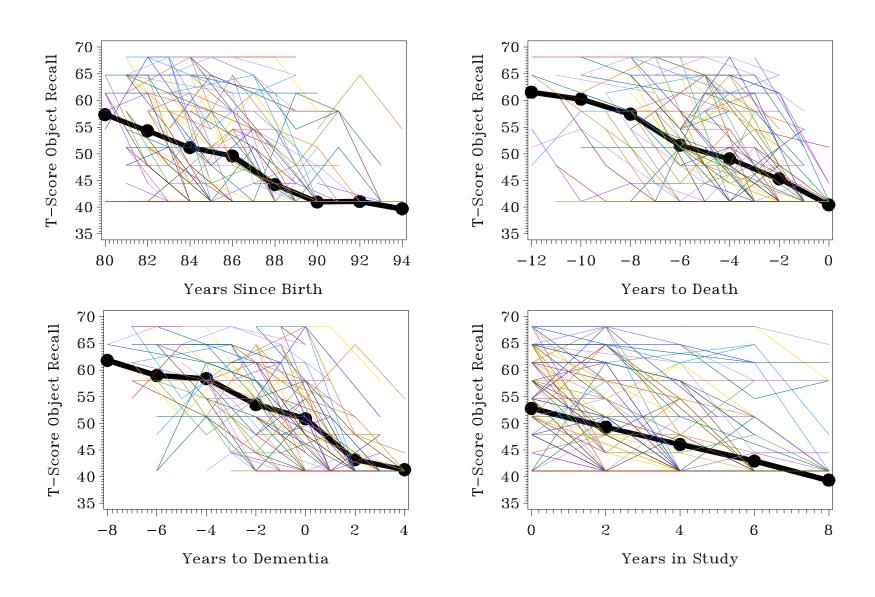
Correlation	Age	Death
Death	.23	
Dementia	.17	.52

Cognition outcomes (each T-scored):

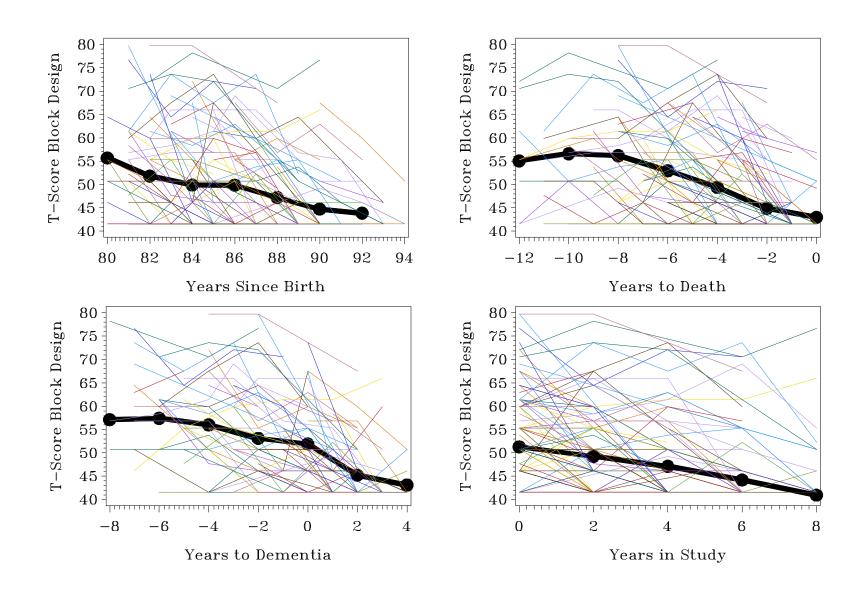
- > General: Mini-Mental Status Exam
- Memory: Object Recall
- Spatial Reasoning: Block Design


#Persons per #Occasions				
1	2	3	4	5
28	37	36	36	35
29	31	39	29	18
37	32	31	22	19

Alternative Metrics of Time (and ICC)


- Chronological Age as Time (47% BP)
 - > Individual differences are organized around the mean level for a given **distance from birth** (84 years) and change with distance from birth
- Years to Death as Time (24% BP)
 - > Individual differences are organized around the mean level for a given **distance from death** (–7 years) and change with distance from death
- Years to Dementia Diagnosis as Time (70% BP)
 - > Individual differences are organized around the mean level for a given **distance from diagnosis** (=0) and change with distance from diagnosis
- Years in Study as Time (0% BP)
 - > Individual differences are organized around the mean level for a given distance from baseline (=0) and change with distance from baseline

PSYC 944: Lecture | |


General Cognition: MMSE

Memory: Object Recall

Spatial Reasoning: Block Design

First Option: Age-as-Time

Level-1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(Age_{ti} - 84) + \beta_{2i}(Age_{ti} - 84)^2 + e_{ti}$$

<u>Level-2 Equations → Fixed and Random Effects:</u>

$$\beta_{0i}$$
 =

Intercept
for person i

$$\beta_{1i} =$$
Linear Slope for person i

$$\beta_{2i}$$
 = Quad Slope for person i

Y₀₀
Fixed
Intercept
(mean)

+

+

Fixed
Linear Slope
(mean)

Y₁₀

U_{0i}
Random
Intercept
Deviation

U_{1i}
Random
Linear Slope
Deviation

→ predicted Y when age=84

 \rightarrow rate of \triangle when age=84

 $\rightarrow \frac{1}{2}$ rate of Δ in Δ per year

First Option: Age-as-Time

- If people differ in initial age, measuring change as a function of age requires assuming age convergence:
 - Younger people and older people differ only by age
 - > Effects of between-person, cross-sectional age differences are equivalent to effects of within-person, longitudinal age changes
- Age convergence is not likely to hold when:
 - > Initial **age range** is large (47% of age is BP here)
 - Cohort differences and selection effects are large
- Is exactly the same problem as not fully separating the BP and WP effects of ANY time-varying predictor
 - > i.e., conflated, convergence, composite, or smushed effect

Examining Age Convergence Effects

Can use a variant of **grand-mean-centering** to test equivalence of BP and WP age effects empirically

Level-1 Age-Based Change:

$$y_{ti} = \beta_{0i} + \beta_{1i}(Age_{ti} - 84) + \beta_{2i}(Age_{ti} - 84)^2 + e_{ti}$$

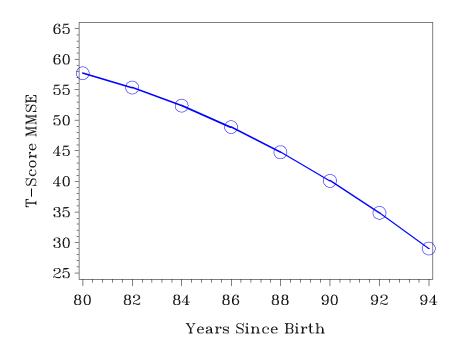
Level-2 Equations:

$$\beta_{0i} = \gamma_{00} + \gamma_{01}(AgeT1_i - 84) + U_{0i}$$

$$\beta_{1i} = \gamma_{10} + \gamma_{11}(AgeT1_i - 84) + U_{1i}$$

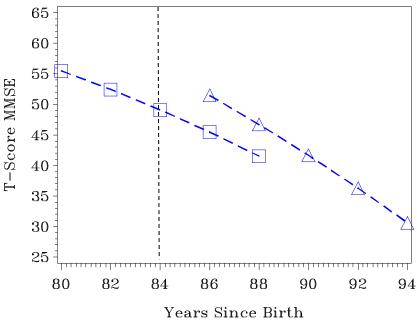
$$\beta_{2i} = \gamma_{20} + \gamma_{21}(AgeT1_i - 84) + U_{2i}$$

AgeT1 → Incremental effect of cross-sectional age (**cohort**)

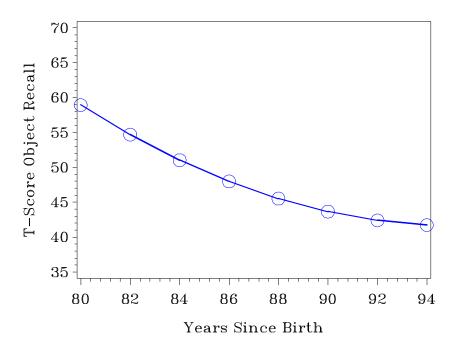

Use **age at time 1** (or birth year) instead of mean age to lessen bias from attrition-related missing data

Significance → Nonconvergence
It matters WHEN you were 84

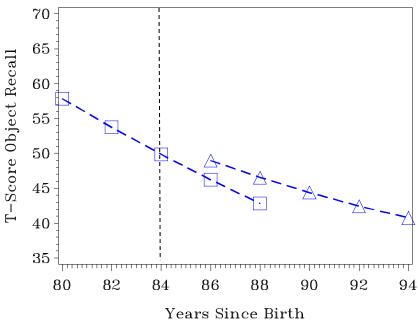
Persons create contextual effects


Age-Based Models: MMSE

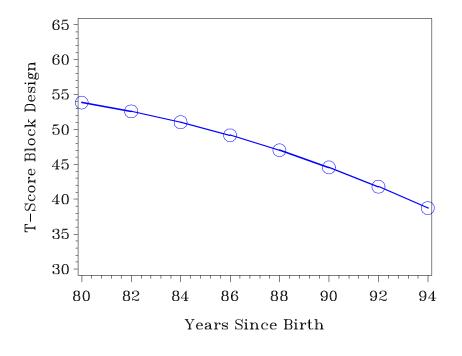
••• Age Convergence Model

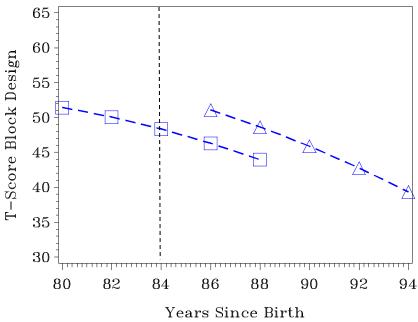

BBB Younger at Baseline Cohort

BBB Older at Baseline Cohort



Age-Based Models: Object Recall




₽₽₽ Younger at Baseline Cohort *** Older at Baseline Cohort

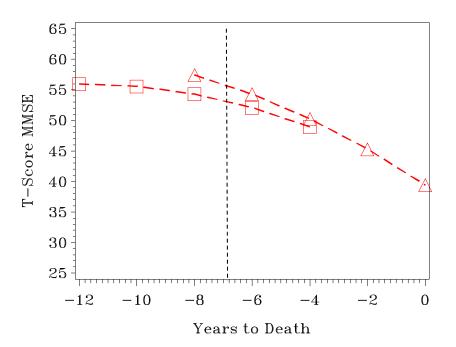
Age-Based Models: Spatial Reasoning

So if age is just a time-varying predictor...

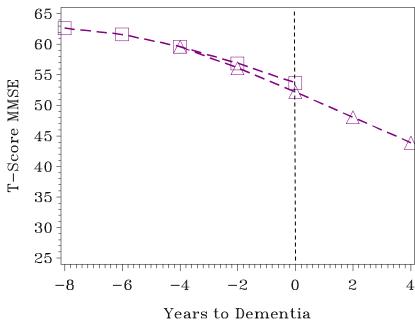
• Because **years to death** and **years to diagnosis** also have BP variation (24%, 70%), the same concerns about **testing convergence** apply to them, too

Years to death

- ▶ Level 1: YTdeath_{ti} + 7
- Level 2: YTdeathT1; + 7

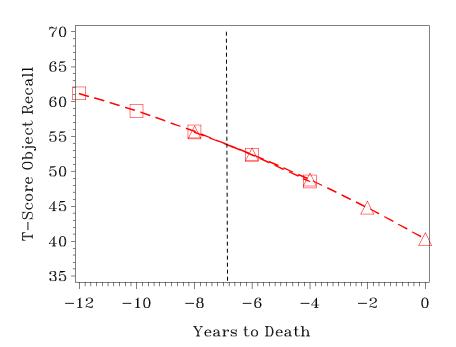

Years to diagnosis

- ▶ Level 1: YTdem_{ti} 0
- ➤ Level 2: YTdemT1_i 0
- If the level-2 effects in these models are significant, then:
 - > Years to death: it matters WHEN you were 7 years from death
 - > Years to diagnosis: it matters WHEN you were at diagnosis

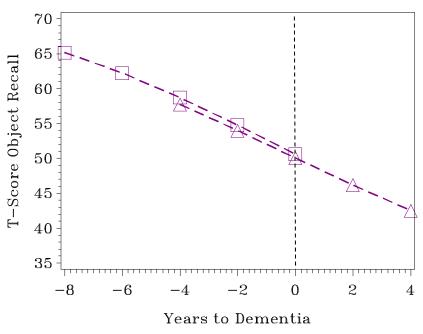

WHEN = cohort difference

Death-Based and Dementia-Based Models: MMSE

Further from Death Cohort
Closer to Death Cohort

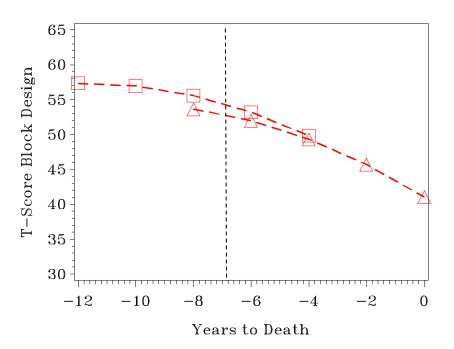


B B B BFurther from Diagnosis Cohort★ ★ ★ Closer to Diagnosis Cohort

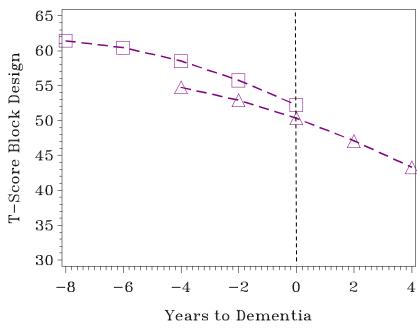


Death-Based and Dementia-Based Models: Object Recall

Further from Death Cohort
Closer to Death Cohort

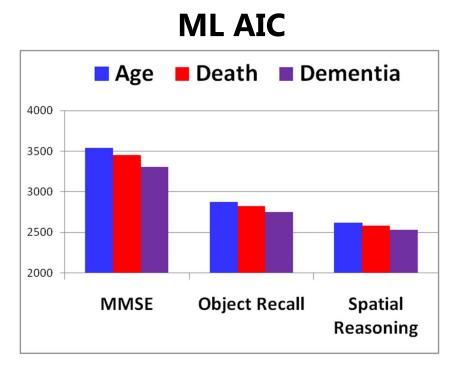


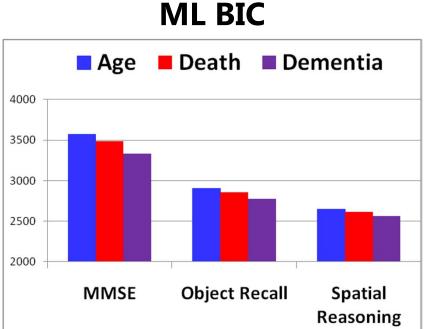
□□□ Further from Diagnosis Cohort△△△Closer to Diagnosis Cohort



Death-Based and Dementia-Based Models: Spatial Reasoning

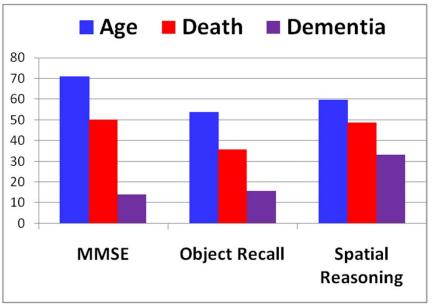
Further from Death Cohort
Closer to Death Cohort



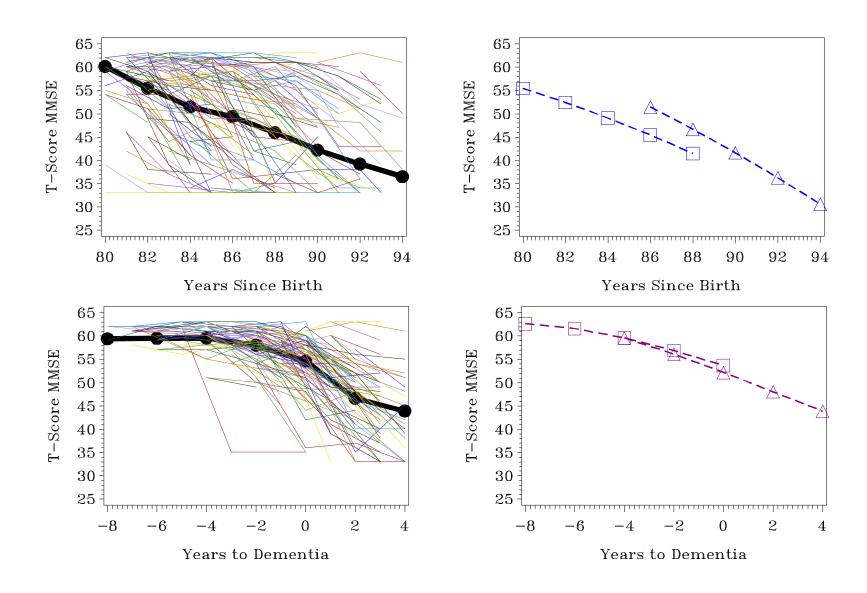

For ther from Diagnosis Cohort
Closer to Diagnosis Cohort

Comparing Models by Fit...

The fit of these alternative metrics of time to the data can be compared using their **information criteria**...


Comparing Models by Variances...

The fit of these alternative metrics of time to the data can also be compared using their **variance** components...


Residual Variance

Intercept Variance

Comparing Models By Data...

Road Map

- Steps in longitudinal analysis
- The missing step #2
- Example: Alternative metrics of "time"
- What about just time?
- What else contributes to "time"?

What about just time as "Time"?

- When the accelerated time metrics do not show convergence of their BP and WP time effects, an alternative model specification may be more useful
- Time-in-study models separate BP and WP effects
 - > Accelerated time (age, death...) model -> Grand-mean-centering
 - > Time-in-study model -> Person/group-mean-centering
- Time-in-study models can be made equivalent to models with accelerated time metric in their fixed effects, but not in their random effects (as shown shortly)

Original

Age

Age_{ti}

BP Age	Original Age	WP Age
AgeT1 _i	Age _{ti}	Age _{ti} – AgeT1 _i
80	80	0
80	82	2
80	84	4
80	80	0
80	82	2
80	84	4
84	84	0
84	86	2
84	88	4
84	84	0
84	86	2
84	88	4

BP	Original	WP
Age	Age	Age
AgeT1 _i	Age _{ti}	Age _{ti} – AgeT1 _i
80	80	0
80	82	2
80	84	4
80	80	0
80	82	2
80	84	4
84	84	0
84	86	2
84	88	4
84	84	0
84	86	2
84	88	4

Original YTD
YTdeath _{ti}
-12
-10
-8
-8
-6
-4
-12
-10
-8
-8
-6
-4

BP Age	Original Age	WP Age	BP Years to Death	Original YTD	WP Years to Death
AgeT1 _i	Age _{ti}	Age _{ti} – AgeT1 _i	YTdeathT1 _i	YTdeath _{ti}	YTdeath _{ti} – YTdeathT1 _i
80	80	0	-12	-12	0
80	82	2	-12	-10	2
80	84	4	-12	-8	4
80	80	0	-8	-8	0
80	82	2	-8	-6	2
80	84	4	-8	-4	4
84	84	0	-12	-12	0
84	86	2	-12	-10	2
84	88	4	-12	-8	4
84	84	0	-8	-8	0
84	86	2	-8	-6	2
84	88	4	-8	-4	4

Time:	BP	Original Age	WP	BP Years to Death	Original YTD	WP Years to Death
	Age		Age			
Years in Study	AgeT1 _i	Age _{ti}	Age _{ti} – AgeT1 _i	YTdeathT1 _i	YTdeath _{ti}	YTdeath _{ti} – YTdeathT1 _i
0	80	80	0	-12	-12	0
2	80	82	2	-12	-10	2
4	80	84	4	-12	-8	4
0	80	80	0	-8	-8	0
2	80	82	2	-8	-6	2
4	80	84	4	-8	-4	4
0	84	84	0	-12	-12	0
2	84	86	2	-12	-10	2
4	84	88	4	-12	-8	4
0	84	84	0	-8	-8	0
2	84	86	2	-8	-6	2
4	84	88	4	-8	-4	4

Model Variants Using Age

<u>Level-1 Age-Based</u> (Grand-MC):

$$y_{ti} = \beta_{0i} + \beta_{1i}(Age_{ti} - 84) + e_{ti}$$

Level-1 Time-Based (Person-MC):

$$y_{ti} = \beta_{0i} + \beta_{1i}(Age_{ti} - AgeT1_i) + e_{ti}$$

Same pattern would result in any other accelerated time metric (such as years to death)

Same Level-2 Equations:

$$\beta_{0i} = \gamma_{00} + \gamma_{01}(AgeT1_i - 84) + U_{0i}$$

 $\beta_{1i} = \gamma_{10} + \gamma_{11}(AgeT1_i - 84) + U_{1i}$

Level-2 AgeT1 effects:

Age-Based: *Incremental* effect of cross-sectional age (*contextual* age cohort effect)

Time-Based: *Total* effect of cross-sectional age (*between-person* age effect)

Effect of Age Cohort on Intercept (Fixed Level-1 Linear Age Slope)

<u>Time-in-Study</u> ≈ <u>Person-MC</u>:

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(Age_{ti} - AgeT1_i) + e_{ti}$$

Level 2: $\beta_{0i} = \gamma_{00} + \gamma_{01}(AT1_i) + U_{0i}$
 $\beta_{1i} = \gamma_{10}$

Age-Based ≈ **Grand-MC**:

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(Age_{ti}) + e_{ti}$$

Level 2: $\beta_{0i} = \gamma_{00} + \gamma_{01}(AT1_i) + U_{0i}$
 $\beta_{1i} = \gamma_{10}$

$$\rightarrow y_{ti} = \gamma_{00} + \gamma_{01}(AT1_i) + \gamma_{10}(Age_{ti}) + U_{0i} + e_{ti}$$

Term	Time	Age
Intercept	γ ₀₀	Yoo
WP Effect	γ ₁₀	Y 10
Contextual	γ ₀₁ -γ ₁₀	Y 01
BP Effect	γ ₀₁	γ ₀₁ +γ ₁₀

Effect of Age Cohort on Level-1 Age Slope (Fixed Level-1 Linear Age Slope)

On left below: Time-in-Study ≈ Person-MC:

Time as Time:
$$y_{ti} = \gamma_{00} + \gamma_{10} (Age_{ti} - AT1_i) + \gamma_{11} (Age_{ti} - AT1_i) (AT1_i) + \gamma_{01} (AT1_i) + \gamma_{02} (AT1_i^2) + U_{0i} + e_{ti}$$

Time as Age:
$$y_{ti} = \gamma_{00} + \gamma_{10}(Age_{ti}) + \gamma_{11}(Age_{ti})(AT1_i) + (\gamma_{01} - \gamma_{10})(AT1_i) + (\gamma_{02} - \gamma_{11})(AT1_i^2) + U_{0i} + e_{ti}$$

On right below: Age-Based ≈ Grand-MC:

$$y_{ti} = \gamma_{00} + \gamma_{10}(Age_{ti}) + \gamma_{11}(Age_{ti})(AT1_{i}) + \gamma_{01}(AT1_{i}) + \gamma_{02}(AT1_{i})^{2} + U_{0i} + e_{ti}$$

Adding AgeT1² creates equivalence

Intercept: $\gamma_{00} = \gamma_{00}$ BP Effect: $\gamma_{01} = \gamma_{01} + \gamma_{10}$ Cohort: $\gamma_{01} = \gamma_{01} - \gamma_{10}$

WP Effect: $\gamma_{10} = \gamma_{10}$ BP² Effect: $\gamma_{02} = \gamma_{02} + \gamma_{11}$ Cohort²: $\gamma_{02} = \gamma_{02} - \gamma_{11}$

BP*WP or Cohort*WP is the same: γ_{11}

Add Quadratic Level-1 Age Slope (Fixed Level-1 Age Slopes)

On left below: Time-in-Study ≈ Person-MC:

Time as Time:
$$y_{ti} = \gamma_{00} + \gamma_{10} (Age_{ti} - AT1_i) + \gamma_{20} (Age_{ti} - AT1_i)^2 + \gamma_{11} (Age_{ti} - AT1_i) (AT1_i) + \gamma_{01} (AT1_i) + \gamma_{02} (AT1_i^2) + U_{0i} + e_{ti}$$

Time as Age:
$$y_{ti} = \gamma_{00} + \gamma_{10} (Age_{ti}) + \gamma_{20} (Age_{ti}^2) + (\gamma_{11} - 2\gamma_{20}) (Age_{ti}) (AT1_i) + (\gamma_{01} - \gamma_{10}) (AT1_i) + (\gamma_{02} + \gamma_{20} - \gamma_{11}) (AT1_i^2) + U_{0i} + e_{ti}$$

On right below: Age-Based ≈ Grand-MC:

$$y_{ti} = \gamma_{00} + \gamma_{10}(Age_{ti}) + \gamma_{20}(Age_{ti})^{2} + \gamma_{11}(Age_{ti})(AT1_{i}) + \gamma_{01}(AT1_{i}) + \gamma_{02}(AT1_{i})^{2} + U_{0i} + e_{ti}$$

Intercept: $\gamma_{00} = \gamma_{00}$ BP Effect: $\gamma_{01} = \gamma_{01} + \gamma_{10}$ Cohort: $\gamma_{01} = \gamma_{01} - \gamma_{10}$

WP Effect: $\gamma_{10} = \gamma_{10}$ BP² Effect: $\gamma_{02} = \gamma_{02} + \gamma_{11} + \gamma_{20}$ Cohort²: $\gamma_{02} = \gamma_{02} - \gamma_{11} + \gamma_{20}$

WP² Effect: $\gamma_{20} = \gamma_{20}$ BP*WP: $\gamma_{11} = \gamma_{11} + 2\gamma_{20}$ Cohort*WP: $\gamma_{11} = \gamma_{11} - 2\gamma_{20}$

Time-in-Study Models so far...

- Specify WP change using only longitudinal information
- Are equivalent within persons across accelerated time metrics
- Because unique information from the alternative time metrics is really only available BP, it only shows up in the level-2 model
- Can (usually) be made equivalent in their fixed effects to models based in alternative accelerated time metrics
- So why make a distinction? Different random effects...

Random Slopes Across Models

<u>Time-in-Study</u> ≈ <u>Person-MC</u>:

as Time:
$$y_{ti} = \gamma_{00} + \gamma_{10}(Age_{ti} - AT1_i) + \gamma_{01}(AT1_i) + U_{0i} + U_{0i} + U_{1i}(Age_{ti} - AT1_i) + e_{ti}$$

as Age:
$$y_{ti} = \gamma_{00} + \gamma_{10}(Age_{ti}) + (\gamma_{01} - \gamma_{10})(AT1_i) + U_{0i} + U_{1i}(Age_{ti}) - U_{1i}(AT1_i) + e_{ti}$$

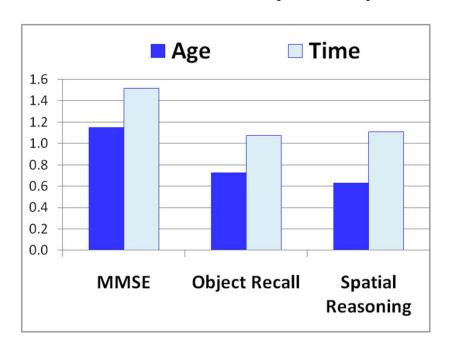
Age-Based ≈ **Grand-MC**:

$$y_{ti} = \gamma_{00} + \gamma_{10}(Age_{ti}) + \gamma_{01}(AT1_{i})$$

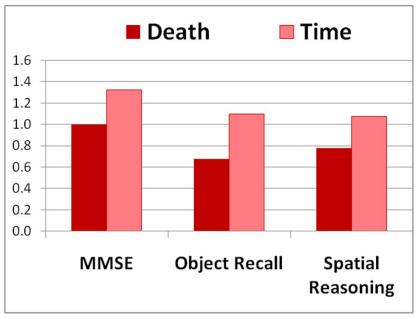
+ $U_{0i} + U_{1i}(Age_{ti}) + e_{ti}$

So which do we choose?

Variance due to AT1_i is still part of the random slope in the age-based model. So the time-based and age-based models cannot be made equivalent in terms of random effects variances.

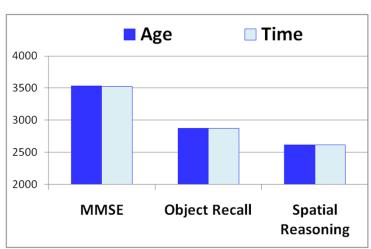

Random Slopes Across Models

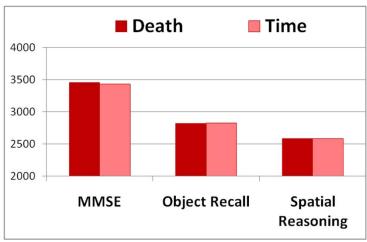
- Random intercepts mean different things under each model:
 - > Time: Person-MC -> Individual differences at time=0 (that everyone has)
 - ▶ Age: Grand-MC → Individual differences at age=0 (that not everyone has)
- **Differential shrinkage of the random intercepts** results from differential reliability of the intercept data across models:
 - ▶ Person-MC → Won't affect shrinkage of slopes unless highly correlated
 - ▶ Grand-MC → Will affect shrinkage of slopes due to forced extrapolation
- As a result, the random slope variance may be smaller under grand-MC (age, death...) than under person-MC (time)
 - > Problem worsens with greater BP variation in time (more extrapolation)
 - Anecdotal example of downward bias using clustered data was presented in Raudenbush & Bryk (2002; chapter 6), but what about in these data?

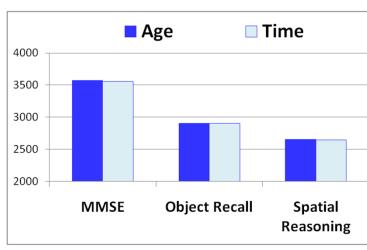

Slope Variance in Example Models

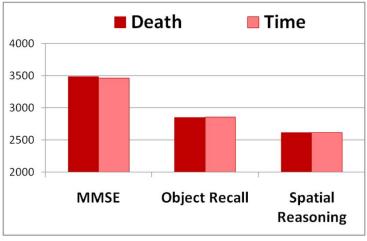
• Slope variance estimate was indeed **33-77% larger** in the time-based model versions across outcomes...

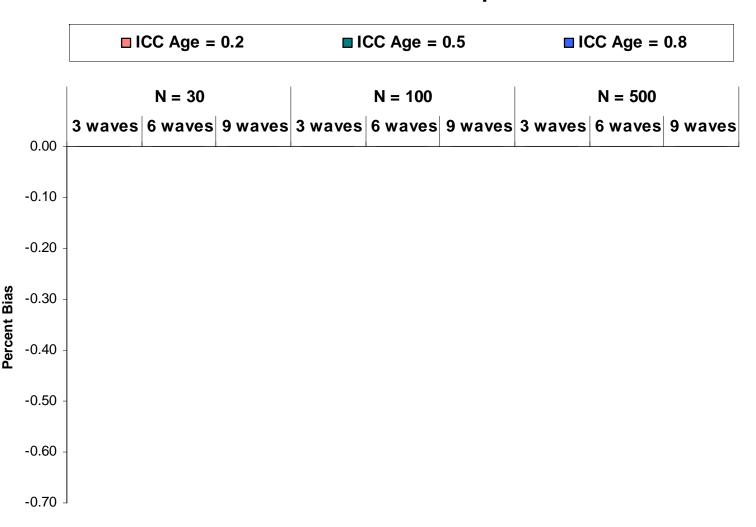
Years-Since-Birth (47% BP)

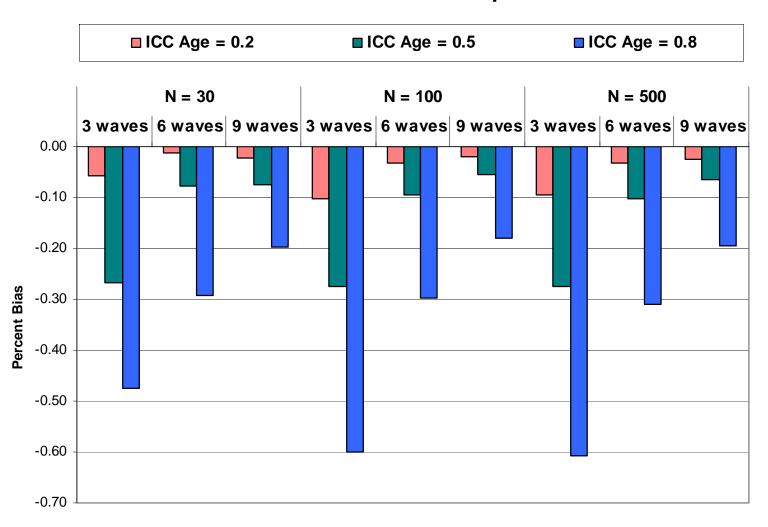



Years-to-Death (24% BP)


... Although model fit was the same




ML BIC


Simulation Study Results (Generated by Time, Analyzed by Age)

Percent Bias in Random Slope Variance

Simulation Study Results (Generated by Time, Analyzed by Age)

Percent Bias in Random Slope Variance

And so the winner is... Time?

- Although seemingly the most non-informative choice, simply tracking change as a function of study duration:
 - > Represents **WP changes** as directly and parsimoniously as possible
 - > Seems to recover **random slope variance** better in accelerated designs
 - > Permits inclusion of persons who have not experienced events in an alternative time metric (e.g., death, dementia diagnosis)
- Time-in-study models make no assumptions about processes causing change, so these become **testable hypotheses**
 - > Do persons who are older start lower and decline faster?
 - Age main effect, Age*Time interaction
 - > After considering mortality, do older persons *still* decline faster?
 - Competing YTdeath*Time and Age*Time interactions

Road Map

- Steps in longitudinal analysis
- The missing step #2
- Example: Alternative metrics of "time"
- What about just time?
- What else contributes to "time"?

What about retest effects?

- Are estimates of age-related change too small without controlling for practice effects due to repeated testing?
- Can time-in-study index retest in age-based models?

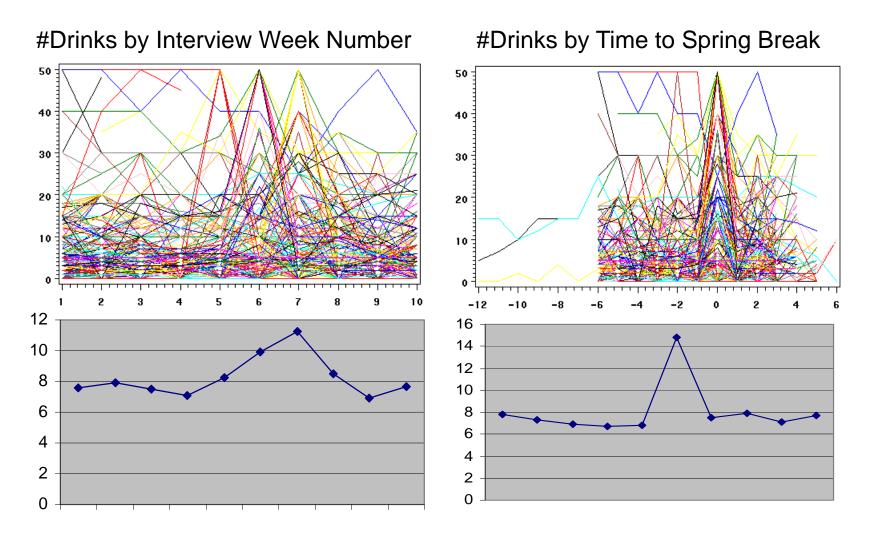
```
y_{ti} = \gamma_{00} + \gamma_{10}(Age_{ti}) + \gamma_{20}(Age_{ti})^{2}...
+ e_{ti} + U_{0i} + U_{1i}(Age_{ti}) + ...
+ \gamma_{30}(Retest_{ti})
+ \gamma_{40}(Retest_{ti})(Age_{ti})...
Retest = Time = Difference due to which occasion of measurement
```

- But not including age cohort assumes **age convergence**... What if age cohort (AT1) and retest effects are BOTH included?
 - Simulation results: missing cohort effects will masquerade as retest effects in the opposite direction—they are confounded by design

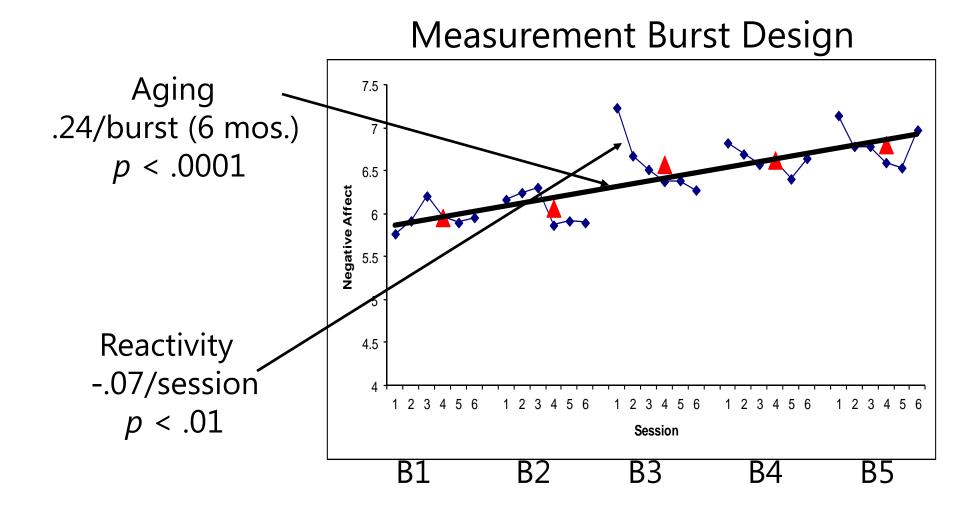
Conclusions

- When time has both BP and WP variation, one should always carefully consider what "time" could and should be
 - > Otherwise, aggregate trends may not actually describe any individuals
 - Individual differences can be created artificially through the mis-alignment of different persons onto a single "time" trajectory
- Multiple processes may be at work simultaneously, but they
 have to be observed independently to be distinguishable
 - > Age vs. Mortality: can be distinguished if not everyone dies at same age
 - > But if **aging and retest occur simultaneously within-persons**, retest effects <u>cannot</u> be distinguished from effects of aging and age cohort
 - ➤ Age/Cohort/Time in design → Age/Cohort/Retest in models
- Considering the effects of time is an important pre-cursor to making informed use of advances in longitudinal models...

Thank you for your time...


- Questions or comments? Email me: <u>Lesa@unl.edu</u>
- Slides available at: http://psych.unl.edu/hoffman/Sheets/Talks.htm
- Works cited:
 - Hoffman, L., Hofer, S. M., & Sliwinski, M. J. (2011). On the confounds among retest gains and age-cohort differences in the estimation of within-person change in longitudinal studies: A simulation study. *Psychology and Aging*, 26(4), 778-791.
 - > Hoffman, L. (2012). Considering alternative metrics of time: Does anybody really know what "time" is? In J. Harring & G. Hancock (Eds.), Advances in Longitudinal Methods in the Social and Behavioral Sciences (pp. 255-287). Charlotte, NC: Information Age Publishing.
 - > Hoffman, L., & Templin, J. L. (April, 2008). The impact of alternative specifications of time on examining individual differences in change. Poster presented at the Cognitive Aging Conference, Atlanta, GA.

Time in Within-Person Fluctuation Models


- Even in longitudinal studies focused on within-person fluctuation rather than change, time may still be relevant
- For instance, in daily diary studies:
 - > Day of the Week (time metric could be day of week)
 - Fatigue/Reactivity (time metric could be day of study)
- In these cases you'd be "controlling for change" instead of "modeling change" (same models, different emphasis)
 - Some examples...

PSYC 944: Lecture | |

Plans to Drink Alcohol: Time-in-Study vs. Time-to-Event

Change in Negative Affect over "Time" Stawski & Sliwinski, GSA 2005

