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Goals of Longitudinal* Modeling

• 5 rationales of longitudinal research
 Baltes & Nesselroade, 1979

 Chapter 1:  Longitudinal Research in the Study of Behavior and Development

• 7 levels of longitudinal analysis
 Hofer & Sliwinski, 2006

 Chapter 2:  Handbook of the Psychology of Aging (6th edition)

• 7+ steps in longitudinal modeling
 Singer & Willett, 2003

 Chapter 4:  Applied Longitudinal Data Analysis

*Applicable to both the MLM and SEM analytic frameworks

PSYC 944: Lecture 11 2



Steps in Longitudinal Analysis

1. Decompose BP and WP variation—Intraclass Correlation
 ICC = proportion of outcome variance that is constant over time, 

and that results from cross-sectional differences

3. Describe pattern of average change over time (fixed effects)
and individual differences therein (random effects)

 Piecewise slopes models—Phases of discontinuous change

 Polynomial models—Approximate nonlinear continuous change

 Truly nonlinear models—Exponential or logistic change

 Latent basis models—Estimate shape of nonlinear change 
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Steps in Longitudinal Analysis
4. Predict inter-individual differences in change

 Why do people need their own intercepts and slopes?

5. Predict intra-individual variation from predicted change
 Why are you off your line today (time-specific influences)?

6. Examine multivariate relationships
 Between-person correlations among intercepts and slopes

 Within-person covariation of residuals (or lead-lag associations)

7. Examine other sources of underlying heterogeneity
 Mixture models for discrete types of individual differences

 Predict individual differences in within-person variability
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Road Map

• Steps in longitudinal analysis

• The missing step #2

• Example:  Alternative metrics of “time”

• What about just time?

• What else contributes to “time”?
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The Missing Step 2

• Summary across steps: The goal of creating statistical 
models of change is to describe the overall pattern of and 
predict individual differences in change over time.

• These models employ an often unrecognized assumption 
that we know exactly what “time” should be.

• So the missing Step 2 is a pre-cursor to every other step 
in longitudinal analysis, and involves 2 related concerns:
 What should “time” be?
 How should “time” be modeled when people differ in “time”?
 Concerns apply specifically to accelerated longitudinal designs
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Accelerated Longitudinal Designs
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Want to do a longitudinal study but just don’t have the time?

Accelerate: Model trajectories over a wider span of time than 
would be possible using only the observed longitudinal info…



The Missing Step 2

• First: What should “time” be?
 Which metric of time best matches the causal process 

thought to be responsible for observed change?
 Do alternative metrics of time for multiple processes create 

different pictures of change and individual differences therein? 
 Relevant for aligning different persons onto same time trajectory, 

but this distinction is not relevant within persons

• Second: What do we do when people differ in “time”? 
 How should “time” be modeled in accelerated designs?
 When people begin a study at different points in time, how 

should we distinguish effects of between-person differences in 
time from effects of within-person changes in time?
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Road Map

• Steps in longitudinal analysis

• The missing step #2

• Example:  Alternative metrics of “time”

• What about just time?

• What else contributes to “time”?
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Example Data: 
Octogenarian (Twin) Study of Aging

• 173 persons (65% women)
 Measured up to 5 occasions over 8 years
 Known dates of birth and death 
 Estimated dates of dementia diagnosis (91 Alz., 50 Vas., 32 Mixed)

• Baseline occasion “time” variability:
 79 to 100 years of age (M = 84, SD = 3) 
 −16 to 0 years from death (M = −6, SD = 4)
 −12 to 18 years from diagnosis (M = 0, SD = 5)

• Cognition outcomes (each T-scored): 
 General: Mini-Mental Status Exam
 Memory: Object Recall
 Spatial Reasoning: Block Design
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#Persons per #Occasions
1 2 3 4 5
28 37 36 36 35
29 31 39 29 18
37 32 31 22 19

.23Death

.52.17Dementia

DeathAgeCorrelation



Alternative Metrics of Time (and ICC)

• Chronological Age as Time (47% BP)
 Individual differences are organized around the mean level for a given 

distance from birth (84 years) and change with distance from birth

• Years to Death as Time (24% BP)
 Individual differences are organized around the mean level for a given 

distance from death (−7 years) and change with distance from death

• Years to Dementia Diagnosis as Time (70% BP)
 Individual differences are organized around the mean level for a given 

distance from diagnosis (=0) and change with distance from diagnosis

• Years in Study as Time (0% BP)
 Individual differences are organized around the mean level for a given 

distance from baseline (=0) and change with distance from baseline
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General Cognition: MMSE
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Memory: Object Recall
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Spatial Reasoning: Block Design
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Level-1:  yti = β0i + β1i(Ageti−84) + β2i(Ageti−84)2 + eti

Level-2 Equations  Fixed and Random Effects:
β0i = γ00 +      U0i  predicted Y when age=84

β1i = γ10 +      U1i  rate of ∆ when age=84

β2i = γ20 +      U2i ½ rate of ∆ in ∆ per year

First Option: Age-as-Time
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First Option: Age-as-Time

• If people differ in initial age, measuring change as a 
function of age requires assuming age convergence:
 Younger people and older people differ only by age
 Effects of between-person, cross-sectional age differences are 

equivalent to effects of within-person, longitudinal age changes

• Age convergence is not likely to hold when:
 Initial age range is large (47% of age is BP here)
 Cohort differences and selection effects are large

• Is exactly the same problem as not fully separating 
the BP and WP effects of ANY time-varying predictor
 i.e., conflated, convergence, composite, or smushed effect
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Examining Age Convergence Effects
Can use a variant of grand-mean-centering to test 
equivalence of BP and WP age effects empirically

Level-1 Age-Based Change:  

yti = β0i + β1i(Ageti – 84) 

+ β2i(Ageti – 84)2 + eti

Level-2 Equations:

β0i = γ00 + γ01(AgeT1i – 84) + U0i

β1i = γ10 + γ11(AgeT1i – 84) + U1i 

β2i = γ20 + γ21(AgeT1i – 84) + U2i

PSYC 944: Lecture 11 17

AgeT1 Incremental effect of 
cross-sectional age (cohort)

Use age at time 1 (or birth year) 
instead of mean age to lessen bias 
from attrition-related missing data

Significance  Nonconvergence
It matters WHEN you were 84 

Persons create contextual effects



Age-Based Models: MMSE
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Age-Based Models: Object Recall
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Age-Based Models: Spatial Reasoning
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So if age is just a time-varying predictor…

• Because years to death and years to diagnosis 
also have BP variation (24%, 70%), the same concerns 
about testing convergence apply to them, too

• If the level-2 effects in these models are significant, then:
 Years to death: it matters WHEN you were 7 years from death 
 Years to diagnosis: it matters WHEN you were at diagnosis
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• Years to death
 Level 1: YTdeathti + 7
 Level 2: YTdeathT1i + 7 

• Years to diagnosis
 Level 1: YTdemti – 0
 Level 2: YTdemT1i – 0

WHEN = cohort difference



Death-Based and Dementia-Based 
Models: MMSE
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Death-Based and Dementia-Based 
Models: Object Recall



Death-Based and Dementia-Based 
Models of Spatial Reasoning
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Death-Based and Dementia-Based 
Models: Spatial Reasoning



Comparing Models by Fit…

The fit of these alternative metrics of time to the data 
can be compared using their information criteria…
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ML AIC ML BIC



Comparing Models by Variances…

The fit of these alternative metrics of time to the data
can also be compared using their variance components…
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Residual Variance Intercept Variance



Comparing Models By Data…
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Road Map

• Steps in longitudinal analysis

• The missing step #2

• Example:  Alternative metrics of “time”

• What about just time?

• What else contributes to “time”?
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What about just time as “Time”?

• When the accelerated time metrics do not show 
convergence of their BP and WP time effects, an 
alternative model specification may be more useful

• Time-in-study models separate BP and WP effects
 Accelerated time (age, death…) model  Grand-mean-centering 
 Time-in-study model  Person/group-mean-centering

• Time-in-study models can be made equivalent to 
models with accelerated time metric in their fixed effects, 
but not in their random effects (as shown shortly)
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Just Time as “Time”
Time: BP 

Age
Original 
Age

WP 
Age

BP Years 
to Death

Original 
YTD

WP Years 
to Death

Years in 
Study

AgeT1i Ageti Ageti –
AgeT1i

YTdeathT1i YTdeathti YTdeathti –
YTdeathT1i

0 80 80 0 ‐12 ‐12 0

2 80 82 2 ‐12 ‐10 2

4 80 84 4 ‐12 ‐8 4

0 80 80 0 ‐8 ‐8 0

2 80 82 2 ‐8 ‐6 2

4 80 84 4 ‐8 ‐4 4

0 84 84 0 ‐12 ‐12 0

2 84 86 2 ‐12 ‐10 2

4 84 88 4 ‐12 ‐8 4

0 84 84 0 ‐8 ‐8 0

2 84 86 2 ‐8 ‐6 2

4 84 88 4 ‐8 ‐4 4
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Just Time as “Time”
Time: BP 

Age
Original 
Age

WP 
Age

BP Years 
to Death

Original 
YTD

WP Years 
to Death

Years in 
Study

AgeT1i Ageti Ageti –
AgeT1i

YTdeathT1i YTdeathti YTdeathti –
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4 80 84 4 ‐8 ‐4 4

0 84 84 0 ‐12 ‐12 0

2 84 86 2 ‐12 ‐10 2

4 84 88 4 ‐12 ‐8 4

0 84 84 0 ‐8 ‐8 0

2 84 86 2 ‐8 ‐6 2

4 84 88 4 ‐8 ‐4 4
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Just Time as “Time”
Time: BP 

Age
Original 
Age

WP 
Age

BP Years 
to Death

Original 
YTD

WP Years 
to Death

Years in 
Study

AgeT1i Ageti Ageti –
AgeT1i

YTdeathT1i YTdeathti YTdeathti –
YTdeathT1i
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2 80 82 2 ‐8 ‐6 2

4 80 84 4 ‐8 ‐4 4

0 84 84 0 ‐12 ‐12 0

2 84 86 2 ‐12 ‐10 2

4 84 88 4 ‐12 ‐8 4

0 84 84 0 ‐8 ‐8 0

2 84 86 2 ‐8 ‐6 2

4 84 88 4 ‐8 ‐4 4
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Just Time as “Time”
Time: BP 

Age
Original 
Age

WP 
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to Death

Original 
YTD
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Just Time as “Time”
Time: BP 

Age
Original 
Age

WP 
Age

BP Years 
to Death

Original 
YTD

WP Years 
to Death

Years in 
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Model Variants Using Age
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Level-1 Age-Based (Grand-MC): 
yti = β0i + β1i(Ageti – 84) + eti

Level-1 Time-Based (Person-MC):  
yti = β0i + β1i(Ageti – AgeT1i) + eti

Same Level-2 Equations:
β0i = γ00 + γ01(AgeT1i – 84)+U0i

β1i = γ10 + γ11(AgeT1i – 84)+U1i 

Level-2 AgeT1 effects:

Age-Based: Incremental
effect of cross-sectional age 
(contextual age cohort effect)

Time-Based: Total effect 
of cross-sectional age 
(between-person age effect)

Same pattern would 
result in any other 
accelerated time 
metric (such as
years to death)



Effect of Age Cohort on Intercept
(Fixed Level-1 Linear Age Slope)

Time-in-Study ≈ Person-MC:
Level 1:  yti = β0i + β1i(Ageti−AgeT1i) + eti

Level 2: β0i = γ00 + γ01(AT1i) + U0i

β1i = γ10

yti = γ00+γ01(AT1i)+γ10(Ageti−AT1i)+U0i+eti

yti = γ00+(γ01−γ10)(AT1i)+γ10(Ageti)+U0i+eti

Age-Based ≈ Grand-MC:
Level 1:  yti = β0i + β1i(Ageti) + eti

Level 2:  β0i = γ00 + γ01(AT1i) + U0i

β1i = γ10

 yti = γ00+γ01(AT1i)+γ10(Ageti)+U0i+eti
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AgeTimeTerm

γ01γ01−γ10Contextual

γ01+γ10γ01BP Effect

γ10γ10WP Effect

γ00γ00Intercept

In terms of Time

In terms of Age



Effect of Age Cohort on Level-1 Age Slope
(Fixed Level-1 Linear Age Slope)

On left below: Time-in-Study ≈ Person-MC: 

Time as Time:   yti = γ00+γ10(Ageti−AT1i)+γ11(Ageti−AT1i)(AT1i)
+γ01(AT1i)+γ02(AT1i

2) +U0i+eti

Time as Age:    yti = γ00+γ10(Ageti)+γ11(Ageti)(AT1i) 
+(γ01−γ10)(AT1i)+(γ02−γ11)(AT1i

2) +U0i+eti

On right below: Age-Based ≈ Grand-MC:

yti = γ00+γ10(Ageti)+γ11(Ageti)(AT1i) 
+γ01(AT1i)+γ02(AT1i)2+U0i+eti

Intercept:  γ00 = γ00 BP Effect: γ01 = γ01+γ10          Cohort: γ01 = γ01−γ10 

WP Effect: γ10 = γ10 BP2 Effect: γ02 = γ02+γ11         Cohort2: γ02 = γ02−γ11 

BP*WP or Cohort*WP is the same: γ11 
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Adding AgeT12

creates equivalence



Add Quadratic Level-1 Age Slope
(Fixed Level-1 Age Slopes)

On left below: Time-in-Study ≈ Person-MC: 

Time as Time:  yti=γ00+γ10(Ageti−AT1i)+γ20(Ageti−AT1i)2

+γ11(Ageti−AT1i)(AT1i)+γ01(AT1i)+γ02(AT1i
2) +U0i+eti

Time as Age:  yti=γ00+γ10(Ageti)+γ20(Ageti
2) +(γ11−2γ20)(Ageti)(AT1i) 

+(γ01−γ10)(AT1i)+(γ02+γ20−γ11)(AT1i
2) +U0i+eti

On right below: Age-Based ≈ Grand-MC:

yti = γ00+γ10(Ageti) +γ20(Ageti)2+γ11(Ageti)(AT1i) 
+γ01(AT1i)+γ02(AT1i)2+U0i+eti

Intercept: γ00=γ00 BP Effect: γ01=γ01+γ10                  Cohort: γ01=γ01−γ10 

WP Effect: γ10=γ10 BP2 Effect: γ02=γ02+γ11+γ20 Cohort2: γ02=γ02−γ11+γ20 

WP2 Effect: γ20=γ20            BP*WP: γ11= γ11+2γ20 Cohort*WP: γ11= γ11−2γ20
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Time-in-Study Models so far…

• Specify WP change using only longitudinal information

• Are equivalent within persons across accelerated time metrics

• Because unique information from the alternative time metrics 
is really only available BP, it only shows up in the level-2 model

• Can (usually) be made equivalent in their fixed effects to 
models based in alternative accelerated time metrics 

• So why make a distinction? Different random effects…
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Random Slopes Across Models

Time-in-Study ≈ Person-MC:

as Time:   yti = γ00 + γ10(Ageti – AT1i) + γ01(AT1i) 

+ U0i + U1i(Ageti – AT1i) + eti

as Age:   yti = γ00 + γ10(Ageti) + (γ01 – γ10)(AT1i)

+ U0i + U1i(Ageti) – U1i(AT1i) + eti

Age-Based ≈ Grand-MC:
yti = γ00 + γ10(Ageti) + γ01(AT1i) 

+ U0i + U1i(Ageti) + eti

So which do we choose?
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Variance due to AT1i is still 
part of the random slope in 
the age-based model. So the 
time-based and age-based 

models cannot be made 
equivalent in terms of 

random effects variances.



Random Slopes Across Models
• Random intercepts mean different things under each model:

 Time: Person-MC Individual differences at time=0 (that everyone has)

 Age: Grand-MC  Individual differences at age=0 (that not everyone has)

• Differential shrinkage of the random intercepts results from 
differential reliability of the intercept data across models:
 Person-MCWon’t affect shrinkage of slopes unless highly correlated

 Grand-MCWill affect shrinkage of slopes due to forced extrapolation

• As a result, the random slope variance may be smaller
under grand-MC (age, death…) than under person-MC (time)
 Problem worsens with greater BP variation in time (more extrapolation)

 Anecdotal example of downward bias using clustered data was presented 
in Raudenbush & Bryk (2002; chapter 6), but what about in these data?
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Slope Variance in Example Models

• Slope variance estimate was indeed 33-77% larger
in the time-based model versions across outcomes…
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Years-Since-Birth (47% BP) Years-to-Death (24% BP)



… Although model fit was the same

PSYC 944: Lecture 11 43

ML AIC ML BIC



Simulation Study Results
(Generated by Time, Analyzed by Age)

Percent Bias in Random Slope Variance
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Simulation Study Results
(Generated by Time, Analyzed by Age)
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And so the winner is… Time?
• Although seemingly the most non-informative choice, 

simply tracking change as a function of study duration:
 Represents WP changes as directly and parsimoniously as possible

 Seems to recover random slope variance better in accelerated designs

 Permits inclusion of persons who have not experienced events 
in an alternative time metric (e.g., death, dementia diagnosis)

• Time-in-study models make no assumptions about processes 
causing change, so these become testable hypotheses
 Do persons who are older start lower and decline faster? 

 Age main effect, Age*Time interaction

 After considering mortality, do older persons still decline faster?
 Competing YTdeath*Time and Age*Time interactions
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Road Map

• Steps in longitudinal analysis

• The missing step #2

• Example:  Alternative metrics of “time”

• What about just time?

• What else contributes to “time”?
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What about retest effects?
• Are estimates of age-related change too small without 

controlling for practice effects due to repeated testing?

• Can time-in-study index retest in age-based models?
yti = γ00 + γ10(Ageti)+ γ20(Ageti)2…

+ eti + U0i + U1i(Ageti)+ …
+ γ30(Retestti)
+ γ40(Retestti)(Ageti)…

• But not including age cohort assumes age convergence…
What if age cohort (AT1) and retest effects are BOTH included?
 Simulation results: missing cohort effects will masquerade as retest 

effects in the opposite direction—they are confounded by design
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Individual change due to age

Retest = Time = Difference due to 
which occasion of measurement



Conclusions
• When time has both BP and WP variation, one should always 

carefully consider what “time” could and should be
 Otherwise, aggregate trends may not actually describe any individuals
 Individual differences can be created artificially through the 

mis-alignment of different persons onto a single “time” trajectory

• Multiple processes may be at work simultaneously, but they 
have to be observed independently to be distinguishable
 Age vs. Mortality: can be distinguished if not everyone dies at same age
 But if aging and retest occur simultaneously within-persons, retest 

effects cannot be distinguished from effects of aging and age cohort
 Age/Cohort/Time in design  Age/Cohort/Retest in models

• Considering the effects of time is an important pre-cursor to 
making informed use of advances in longitudinal models…
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Thank you for your time…
• Questions or comments? Email me: Lesa@unl.edu
• Slides available at: 

http://psych.unl.edu/hoffman/Sheets/Talks.htm

• Works cited:
 Hoffman, L., Hofer, S. M., & Sliwinski, M. J. (2011). On the confounds among 

retest gains and age-cohort differences in the estimation of within-person 
change in longitudinal studies: A simulation study. Psychology and Aging, 
26(4), 778-791.

 Hoffman, L. (2012). Considering alternative metrics of time: Does anybody 
really know what “time” is? In J. Harring & G. Hancock (Eds.), Advances in 
Longitudinal Methods in the Social and Behavioral Sciences (pp. 255-287). 
Charlotte, NC: Information Age Publishing. 

 Hoffman, L., & Templin, J. L. (April, 2008). The impact of alternative 
specifications of time on examining individual differences in change. Poster 
presented at the Cognitive Aging Conference, Atlanta, GA.
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Time in Within-Person Fluctuation Models

• Even in longitudinal studies focused on within-person 
fluctuation rather than change, time may still be relevant

• For instance, in daily diary studies:

 Day of the Week (time metric could be day of week)

 Fatigue/Reactivity (time metric could be day of study)

• In these cases you’d be “controlling for change” instead of 
“modeling change” (same models, different emphasis)

 Some examples…
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Plans to Drink Alcohol: 
Time-in-Study vs. Time-to-Event

#Drinks by Interview Week Number #Drinks by Time to Spring Break

0

2

4

6

8

10

12

0
2
4
6
8

10
12
14
16

PSYC 944: Lecture 11 52



Change in Negative Affect over “Time” 
Stawski & Sliwinski, GSA 2005
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Measurement Burst Design


