Time-Varying Predictors in Models of Within-Person Fluctuation

- Today's Class:
 - > Effects of Time-Varying Predictors
 - > Person-Mean-Centering (PMC)
 - > Grand-Mean-Centering (GMC)
 - Model Extensions under PMC vs. GMC

The Joy of Time-Varying Predictors

• TV predictors predict leftover **WP (residual) variation:**

- Modeling time-varying predictors is complicated because they represent an **aggregated effect**:
 - > Effect of the *between-person* variation in the predictor x_{ti} on Y
 - $\succ\,$ Effect of the within-person variation in the predictor x_{ti} on Y
 - > Here we are assuming the predictor x_{ti} only **fluctuates** over time...
 - We will need a different model if x_{ti} changes systematically over time...

The Joy of Time-Varying Predictors

- Time-varying (TV) predictors usually carry 2 kinds of effects because they are really 2 predictor variables, not 1
- Example: Stress measured daily
 - > Some days are worse than others:
 - WP variation in stress (represented as deviation from own mean)
 - > Some people just have more stress than others all the time:
 - **BP variation in stress** (represented as person mean predictor over time)
- Can quantify each source of variation with an ICC
 - > ICC = (BP variance) / (BP variance + WP variance)
 - > ICC > 0? TV predictor has BP variation (so it *could* have a BP effect)
 - > ICC < 1? TV predictor has WP variation (so it *could* have a WP effect)

Between-Person vs. Within-Person Effects

- Between-person and within-person effects in <u>SAME</u> direction
 - > Stress \rightarrow Health?
 - BP: People with more chronic stress than other people may have worse general health than people with less chronic stress
 - WP: People may feel <u>worse</u> than usual when they are currently under more stress than usual (regardless of what "usual" is)
- Between-person and within-person effects in <u>OPPOSITE</u> directions
 - > Exercise \rightarrow Blood pressure?
 - BP: People who exercise more often generally have <u>lower</u> blood pressure than people who are more sedentary
 - WP: During exercise, blood pressure is <u>higher</u> than during rest
- Variables have different **meanings** at different levels!
- Variables have different **scales** at different levels

3 Kinds of Effects for TV Predictors

• Is the Between-Person (BP) effect significant?

> Are people with higher predictor values <u>than other people</u> (*on average over time*) also higher on Y <u>than other people</u> (*on average over time*), such that the person mean of the TV predictor accounts for level-2 random intercept variance $(\tau_{U_0}^2)$?

• Is the Within-Person (WP) effect significant?

> If you have higher predictor values <u>than usual</u> (*at this occasion*), do you also have higher outcomes values <u>than usual</u> (*at this occasion*), such that the within-person deviation of the TV predictor accounts for level-1 residual variance (σ_e^2)?

• Are the BP and WP effects different sizes: Is there a contextual effect?

- > After controlling for the absolute value of TV predictor at each occasion, is there still an incremental contribution from having a higher person mean of the TV predictor (i.e., does one's general tendency predict $\tau_{U_0}^2$ above and beyond)?
- If there is no contextual effect, then the BP and WP effects of the TV predictor show <u>convergence</u>, such that their effects are of equivalent magnitude

Modeling TV Predictors (labeled as x_{ti})

• Level-2 effect of x_{ti}:

- > The level-2 effect of x_{ti} is usually represented by the person's mean of time-varying x_{ti} across time (labeled as **PMx**_i or \overline{X}_i)
- PMx_i should be centered at a <u>CONSTANT</u> (grand mean or other) so that
 0 is meaningful, just like any other time-invariant predictor

• Level-1 effect of x_{ti} can be included two different ways:

- ➤ "Group-mean-centering" → "person-mean-centering" in longitudinal, in which level-1 predictors are centered using a <u>level-2 VARIABLE</u>
- ➤ "Grand-mean-centering" → level-1 predictors are centered using a CONSTANT (not necessarily the grand mean; it's just called that)
- > Note that these 2 choices do NOT apply to the level-2 effect of x_{ti} !
 - But the interpretation of the level-2 effect of x_{ti} WILL DIFFER based on which centering method you choose for the level-1 effect of x_{ti} !

Person-Mean-Centering (P-MC)

- In P-MC, we decompose the TV predictor x_{ti} into 2 variables that directly represent its BP (level-2) and WP (level-1) sources of variation, and include those variables as the predictors instead:
- Level-2, PM predictor = person mean of x_{ti}
 - $\mathbf{P}\mathbf{M}\mathbf{x}_{i} = \overline{\mathbf{X}}_{i} C$
 - > PMx_i is centered at a constant *C*, chosen so 0 is meaningful
 - > PMx_i is positive? Above sample mean \rightarrow "more than other people"
 - > PMx_i is negative? Below sample mean \rightarrow "less than other people"
- Level-1, WP predictor = deviation from person mean of x_{ti}
 - > $WPx_{ti} = x_{ti} \overline{X}_i$ (note: uncentered person mean \overline{X}_i is used to center x_{ti})
 - \succ WPx_{ti} is NOT centered at a constant; is centered at a VARIABLE
 - > WPx_{ti} is positive? Above your own mean → "more than usual"
 - > WPx_{ti} is negative? Below your own mean \rightarrow "less than usual"

Within-Person Fluctuation Model with **Person-Mean-Centered Level-1** x_{ti}

 \rightarrow WP and BP Effects directly through <u>separate</u> parameters

 x_{ti} is person-mean-centered into WPx_{ti}, with PMx_i at L2:

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(WPx_{ti}) + e_{ti}$$

WPx_{ti} =
$$x_{ti} - \overline{X}_i \rightarrow$$
 it has
only Level-1 WP variation

evel 2:
$$\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$$

 $\beta_{1i} = \gamma_{10}$
 $\gamma_{10} = WP main$
effect of having
more x_{ti} than usual $\gamma_{01} = BP main effect$
of having more \overline{X}_i
than other people

 $PMx_i = \overline{X}_i - C \rightarrow it has$ only Level-2 BP variation

Because WPx_{ti} and PMx_i are uncorrelated, each gets the <u>total</u> effect for its level (WP=L1, BP=L2)

<u>ALL</u> Between-Person Effect, <u>NO</u> Within-Person Effect

9

NO Between-Person Effect, ALL Within-Person Effect

Between-Person Effect > Within-Person Effect

Within-Person Fluctuation Model with **Person-Mean-Centered Level-1** x_{ti}

 \rightarrow WP and BP Effects directly through <u>separate</u> parameters

 x_{ti} is person-mean-centered into WPx_{ti}, with PMx_i at L2:

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(WPx_{ti}) + e_{ti}$$

Level 2: $\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_{i}) + U_{0i}$
 $\beta_{1i} = \gamma_{10} + \gamma_{11}(PMx_{i}) + U_{1i}$
 $WPx_{ti} = x_{ti} - x_{i} \rightarrow it has only Level-1 WP variation$
 $PMx_{i} = \overline{X}_{i} - C \rightarrow it has only Level-2 BP variation$
 U_{1i} is a random slope for the WP effect of x_{ti}

 γ_{10} = WP simple main effect of having more x_{ti} than usual for $PMx_i = 0$ $\begin{array}{l} \mathbf{\gamma_{01}} = \text{BP simple main} \\ \text{effect of having more } \overline{X}_i \\ \text{than other people for} \\ \text{people at their own mean} \\ (\text{WPx}_{ti} = x_{ti} - \overline{X}_i \rightarrow 0) \end{array}$

 γ_{11} = BP*WP interaction: how the effect of having more x_{ti} than usual differs by how much \overline{X}_i you have

X7

\ '1 |....

Note: this model should also test γ_{02} for PMx_i * PMxi (stay tuned)

Between-Person x Within-Person Interaction

3 Kinds of Effects for TV Predictors

- What Person-Mean-Centering tells us <u>directly</u>:
- Is the Between-Person (BP) effect significant?
 - > Are people with higher predictor values <u>than other people</u> (*on average over time*) also higher on Y <u>than other people</u> (*on average over time*), such that the person mean of the TV predictor accounts for level-2 random intercept variance $(\tau_{U_0}^2)$?
 - > This would be indicated by a significant fixed effect of PMx_i
 - > Note: this is NOT controlling for the absolute value of x_{ti} at each occasion

• Is the Within-Person (WP) effect significant?

- > If you have higher predictor values <u>than usual</u> (*at this occasion*), do you also have higher outcomes values <u>than usual</u> (*at this occasion*), such that the within-person deviation of the TV predictor accounts for level-1 residual variance (σ_e^2)?
- > This would be indicated by a significant fixed effect of WPx_{ti}
- > Note: this is represented by the <u>relative</u> value of x_{ti} , NOT the <u>absolute</u> value of x_{ti}

3 Kinds of Effects for TV Predictors

• What Person-Mean-Centering DOES NOT tell us <u>directly</u>:

• Are the **BP** and **WP** effects different sizes: Is there a **contextual** effect?

- > After controlling for the absolute value of the TV predictor at each occasion, is there still <u>an incremental contribution from having a higher person mean of the</u> <u>TV predictor</u> (i.e., does one's general tendency predict $\tau_{U_0}^2$ above and beyond just the time-specific value of the predictor)?
- If there is no contextual effect, then the BP and WP effects of the TV predictor show *convergence*, such that their effects are of equivalent magnitude
- To answer this question about the contextual effect for the incremental contribution of the person mean, we have two options:
 - Ask for the contextual effect via an ESTIMATE statement in SAS (or TEST in SPSS, or NEW in Mplus, or LINCOM in STATA): WPx_{ti} -1 PMx_i 1
 - > Use "grand-mean-centering" for time-varying x_{ti} instead: $TVx_{ti} = x_{ti} C$ \rightarrow centered at a CONSTANT, NOT A LEVEL-2 VARIABLE
 - Which constant only matters for what the reference point is; it could be the grand mean or other

Remember Regular Old Regression?

- In this model: $Y_i = \beta_0 + \beta_1(X_{1i}) + \beta_2(X_{2i}) + e_i$
 - If X_{1i} and X_{2i} **ARE NOT** correlated:
 - β_1 is **ALL the relationship** between X_{1i} and Y_i
 - β_2 is **ALL the relationship** between X_{2i} and Y_i
 - If X_{1i} and X_{2i} **ARE** correlated:
 - β_1 is **different than** the full relationship between X_{1i} and Y_i
 - "Unique" effect of X_{1i} controlling for X_{2i} or holding X_{2i} constant
 - β_2 is **different than** the full relationship between X_{2i} and Y_i
 - "Unique" effect of X_{2i} controlling for X_{1i} or holding X_{1i} constant
 - Hang onto that idea...

Person-MC vs. Grand-MC for Time-Varying Predictors

Level 2		Original	Person-MC Level 1	Grand-MC Level 1
X _i	$\mathbf{PMx}_i = \overline{\mathbf{X}}_i - 5$	xti	$\mathbf{WPx_{ti}} = \mathbf{x_{ti}} - \ \overline{\mathbf{X}}_{\mathbf{i}}$	$TVx_{ti} = x_{ti} - 5$
3	-2	2	-1	-3
3	-2	4	1	-1
7	2	6	-1	1
7	2	8	1	3
Same PMx _i goes into the model using either way of centering the level-1 variable x _{ti}			Using Person-MC , WPx _{ti} has NO level-2 BP variation, so it is not correlated with PMx _i	Using Grand-MC , TVx _{ti} STILL has level-2 BP variation, so it is STILL CORRELATED with PMx _i

So the effects of PMx_i and TVx_{ti} when included together under Grand-MC will be different than their effects would be if they were by themselves...

Within-Person Fluctuation Model with x_{ti} represented at Level 1 Only: → WP and BP Effects are <u>Smushed Together</u>

 x_{ti} is grand-mean-centered into TVx_{ti}, <u>WITHOUT</u> PMx_i at L2:

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(\mathbf{TVx_{ti}}) + \mathbf{e_{ti}}$$

Level 2:
$$\beta_{0i} = \gamma_{00} + U_{0i}$$

 $\beta_{1i} = \gamma_{10}$
 $\gamma_{10} = *smushed*$
WP and BP effects

A *smushed* effect is also referred to as the convergence, conflated, or composite effect TVx_{ti} = $x_{ti} - C \rightarrow$ it still has both Level-2 BP and Level-1 WP variation

Because TVx_{ti} still contains its original 2 different kinds of variation (BP and WP), its 1 fixed effect has to do the work of 2 predictors! Convergence (Smushed) Effect of a Time-Varying Predictor

- The convergence effect will often be closer to the within-person effect (due to larger level-1 sample size and thus smaller SE)
- It is the rule, not the exception, that between and within effects differ (Snijders & Bosker, 1999, p. 52-56, and personal experience!)
- However—when grand-mean-centering a time-varying predictor, convergence is testable by including a contextual effect (carried by the person mean) for how the BP effect differs from the WP effect...

Within-Person Fluctuation Model with Grand-Mean-Centered Level-1 x_{ti}

 \rightarrow Model tests difference of WP vs. BP effects (It's been fixed!)

 x_{ti} is grand-mean-centered into TV x_{ti} , <u>WITH</u> PM x_i at L2:

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(\mathbf{TVx_{ti}}) + \mathbf{e_{ti}}$$

 $TVx_{ti} = x_{ti} - C \rightarrow it still$ has both Level-2 BP and Level-1 WP variation

Level 2:
$$\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$$

 $\beta_{1i} = \gamma_{10}$

$$PMx_i = \overline{X}_i - C \rightarrow it has$$

only Level-2 BP variation

 γ_{10} becomes the WP effect \rightarrow unique level-1 effect after controlling for PMx_i γ_{01} becomes the contextual effect that indicates how the BP effect differs from the WP effect \Rightarrow unique level-2 effect after controlling for TVx_{ti} \Rightarrow does usual level matter beyond current level?

Person-MC and Grand-MC Models are Equivalent Given a Fixed Level-1 Main Effect Only

 $\rightarrow y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti}$

P-MC vs. G-MC: Interpretation Example

Summary: 3 Effects for TV Predictors

• Is the Between-Person (BP) effect significant?

- > Are people with higher predictor values <u>than other people</u> (*on average over time*) also higher on Y <u>than other people</u> (*on average over time*), such that the person mean of the TV predictor accounts for level-2 random intercept variance $(\tau_{U_0}^2)$?
- Given directly by level-2 effect of PMx_i if using Person-MC for the level-1 predictor (or can be requested via ESTIMATE if using Grand-MC for the level-1 predictor)

• Is the Within-Person (WP) effect significant?

- > If you have higher predictor values <u>than usual</u> (*at this occasion*), do you also have higher outcomes values <u>than usual</u> (*at this occasion*), such that the within-person deviation of the TV predictor accounts for level-1 residual variance (σ_e^2)?

• Are the BP and WP Effects different sizes: Is there a contextual effect?

- > After controlling for the absolute value of TV predictor value at each occasion, is there still <u>an incremental contribution from having a higher person mean of</u> the TV predictor (i.e., does one's general tendency predict $\tau_{U_0}^2$ above and beyond)?
- Given directly by level-2 effect of PMx_i if using Grand-MC for the level-1 predictor (or can be requested via ESTIMATE if using Person-MC for the level-1 predictor)

The Joy of Interactions Involving Time-Varying Predictors

- <u>Must consider interactions with both its BP and WP parts</u>:
- Example: Does time-varying stress (x_{ti}) interact with sex (Sex_i) ?
- <u>Person-Mean-Centering</u>:
 - > $WPx_{ti} * Sex_i \rightarrow$ Does the WP stress effect differ between men and women?
 - > $PMx_i * Sex_i \rightarrow$ Does the BP stress effect differ between men and women?
 - Not controlling for current levels of stress
 - If forgotten, then Sex_i moderates the stress effect only at level 1 (WP, not BP)
- <u>Grand-Mean-Centering</u>:
 - > $TVx_{ti} * Sex_i \rightarrow$ Does the WP stress effect differ between men and women?
 - > $PMx_i * Sex_i \rightarrow$ Does the *contextual* stress effect differ b/t men and women?
 - Incremental BP stress effect *after controlling for current levels of stress*
 - If forgotten, then although the level-1 main effect of stress has been un-smushed via the main effect of PMx_i , the interaction of $TVx_{ti} * Sex_i$ would still be smushed

Interactions with Time-Varying Predictors: Example: TV Stress (x_{ti}) by Gender (Sex_i)

$$\begin{array}{ll} \underline{Person-MC:} & WPx_{ti} = x_{ti} - PMx_{i} \\ \\ Level-1: & y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti} - PMx_{i}) + e_{ti} \\ \\ Level-2: & \beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_{i}) + \gamma_{02}(Sex_{i}) + \gamma_{03}(Sex_{i})(PMx_{i}) + U_{0i} \\ \\ & \beta_{1i} = \gamma_{10} + \gamma_{11}(Sex_{i}) \end{array}$$

Composite: $y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti} - PMx_i) + U_{0i} + e_{ti} + \gamma_{02}(Sex_i) + \gamma_{03}(Sex_i)(PMx_i) + \gamma_{11}(Sex_i)(x_{ti} - PMx_i)$

<u>Grand-MC:</u> $TVx_{ti} = x_{ti}$

Level-1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti}) + e_{ti}$$

Level-2: $\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{02}(Sex_i) + \gamma_{03}(Sex_i)(PMx_i) + U_{0i}$
 $\beta_{1i} = \gamma_{10} + \gamma_{11}(Sex_i)$

Composite: $y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti} + \gamma_{02}(Sex_i) + \gamma_{03}(Sex_i)(PMx_i) + \gamma_{11}(Sex_i)(x_{ti})$

Interactions Involving Time-Varying Predictors Belong at Both Levels of the Model

<u>On the left below \rightarrow Person-MC: WPx_{ti} = $x_{ti} - PMx_i$ </u>

$y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti} - PMx_i) + U_{0i} + e_{ti}$	÷
+ $\gamma_{02}(Sex_i)$ + $\gamma_{03}(Sex_i)(PMx_i)$ + $\gamma_{11}(Sex_i)(x_{ti} - PMx_i)$	wr

 $y_{ti} = \gamma_{00} + (\gamma_{01} - \gamma_{10})(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti} + \gamma_{02}(Sex_i) + (\gamma_{03} - \gamma_{11})(Sex_i)(PMx_i) + \gamma_{11}(Sex_i)(x_{ti})$

← Composite model written as Person-MC

← Composite model written as Grand-MC

<u>On the right below \rightarrow Grand-MC: TVx_{ti} = x_{ti}</u>

 $y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti} + \gamma_{02}(Sex_i) + \gamma_{03}(Sex_i)(PMx_i) + \gamma_{11}(Sex_i)(x_{ti})$

After adding an interaction for **Sex**_i with stress at both levels, then the Person-MC and Grand-MC models are equivalent

Intercept: $\gamma_{00} = \gamma_{00}$ BP Effect: $\gamma_{01} = \gamma_{01} + \gamma_{10}$ Contextual: $\gamma_{01} = \gamma_{01} - \gamma_{10}$ WP Effect: $\gamma_{10} = \gamma_{10}$ BP*Sex Effect: $\gamma_{03} = \gamma_{03} + \gamma_{11}$ Contextual*Sex: $\gamma_{03} = \gamma_{03} - \gamma_{11}$ Sex Effect: $\gamma_{20} = \gamma_{20}$ BP*WP or Contextual*WP is the same: $\gamma_{11} = \gamma_{11}$

PSYC 944: Lecture 9

Intra-variable Interactions

- Still must consider interactions with both its BP and WP parts!
- Example: Interaction of TV stress (x_{ti}) with person mean stress (PMx_i)
- <u>Person-Mean-Centering</u>:
 - > $WPx_{ti} * PMx_i \rightarrow$ Does the WP stress effect differ by overall stress level?
 - > $PMx_i * PMx_i \rightarrow$ Does the BP stress effect differ by overall stress level?
 - Not controlling for current levels of stress
 - If forgotten, then **PMx**_i moderates the stress effect only at level 1 (WP, not BP)
- Grand-Mean-Centering:
 - > $TVx_{ti} * PMx_i \rightarrow$ Does the WP stress effect differ by overall stress level?
 - > $PMx_i * PMx_i \rightarrow$ Does the *contextual* stress effect differ by overall stress?
 - Incremental BP stress effect after controlling for current levels of stress
 - If forgotten, then although the level-1 main effect of stress has been un-smushed via the main effect of PMx_i , the interaction of $TVx_{ti} * PMx_i$ would still be smushed

Intra-variable Interactions: Example: TV Stress (x_{ti}) by Person Mean Stress (PMx_i)

$$\begin{array}{ll} \underline{Person-MC:} & WPx_{ti} = x_{ti} - PMx_i \\ \\ Level-1: & y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti} - PMx_i) + e_{ti} \\ \\ Level-2: & \beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{02}(PMx_i)(PMx_i) + U_{0i} \\ \\ & \beta_{1i} = \gamma_{10} + \gamma_{11}(PMx_i) \end{array}$$

Composite: $y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti} - PMx_i) + U_{0i} + e_{ti} + \gamma_{02}(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti} - PMx_i)$

<u>Grand-MC</u>: $TVx_{ti} = x_{ti}$

Level-1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti}) + e_{ti}$$

Level-2: $\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{02}(PMx_i)(PMx_i) + U_{0i}$
 $\beta_{1i} = \gamma_{10} + \gamma_{11}(PMx_i)$

Composite:
$$y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti} + \gamma_{02}(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti})$$

Intra-variable Interactions: Example:TV Stress (x_{ti}) by Person Mean Stress (PMx_i)

<u>On the left below \rightarrow Person-MC: WPx_{ti} = $x_{ti} - PMx_i$ </u>

$$y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti} - PMx_i) + U_{0i} + e_{ti} + \gamma_{02}(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti} - PMx_i)$$

 $y_{ti} = \gamma_{00} + (\gamma_{01} - \gamma_{10})(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti} + (\gamma_{02} - \gamma_{11})(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti})$

<u>On the right below \rightarrow Grand-MC: TVx_{ti} = x_{ti}</u>

 $y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti} + \gamma_{02}(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti})$

After adding an interaction for **PMx**_i with stress at both levels, then the Person-MC and Grand-MC models are equivalent

Intercept: $\gamma_{00} = \gamma_{00}$ BP Effect: $\gamma_{01} = \gamma_{01} + \gamma_{10}$ Contextual: $\gamma_{01} = \gamma_{01} - \gamma_{10}$ WP Effect: $\gamma_{10} = \gamma_{10}$ BP² Effect: $\gamma_{02} = \gamma_{02} + \gamma_{11}$ Contextual²: $\gamma_{02} = \gamma_{02} - \gamma_{11}$ BP*WP or Contextual*WP is the same: $\gamma_{11} = \gamma_{11}$

When Person-MC ≠ Grand-MC: Random Effects of TV Predictors

 $\begin{array}{ll} \underline{Person-MC:} & WPx_{ti} = x_{ti} - PMx_{i} \\ \\ Level-1: & y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti} - PMx_{i}) + e_{ti} \\ \\ Level-2: & \beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_{i}) + U_{0i} \\ \\ \\ \beta_{1i} = \gamma_{10} + U_{1i} \end{array}$ $\begin{array}{l} Variance due to PMx_{i} \\ is removed from the random slope in \\ Person-MC. \end{array}$

<u>Grand-MC</u>: $TVx_{ti} = x_{ti}$ Level-1: $y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti}) + e_{ti}$ Level-2: $\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$ $\beta_{1i} = \gamma_{10} + U_{1i}$ $\Rightarrow y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + U_{1i}(x_{ti}) + e_{ti}$

Random Effects of TV Predictors

- Random intercepts mean different things under each model:
 - > **Person-MC** \rightarrow Individual differences at **WPx**_{ti} =0 (that everyone has)
 - > **Grand-MC** \rightarrow Individual differences at **TV** x_{ti} =**0** (that not everyone has)
- **Differential shrinkage of the random intercepts** results from differential reliability of the intercept data across models:
 - > Person-MC \rightarrow Won't affect shrinkage of slopes unless highly correlated
 - > Grand-MC \rightarrow Will affect shrinkage of slopes due to forced extrapolation
- As a result, the **random slope variance may be too small** when using Grand-MC rather than Person-MC
 - > Problem worsens with greater ICC of TV Predictor (more extrapolation)
 - Anecdotal example using clustered data was presented in Raudenbush & Bryk (2002; chapter 6)

Bias in Random Slope Variance

Modeling Time-Varying <u>Categorical</u> Predictors

- Person-MC and Grand-MC really only apply to *continuous* TV predictors, but the need to consider BP and WP effects applies to *categorical* TV predictors too
- Binary level-1 predictors do not lend themselves to Person-MC
 - ▶ e.g., $x_{ti} = 0$ or 1 per occasion, person mean = .50 across occasions → impossible values
 - > If $x_{ti} = 0$, then $WPx_{ti} = 0 .50 = -0.50$; If $x_{ti} = 1$, then $WPx_{ti} = 1 .50 = 0.50$
 - > Better: Leave x_{ti} uncentered and include person mean as level-2 predictor (results ~ Grand-MC)
- For >2 categories, person means of multiple dummy codes starts to break down, but we can think about types of people, and code BP effects accordingly
- Example: Dementia present/not at each time point?
 - > **BP effects** \rightarrow Ever diagnosed with dementia (no, yes)?
 - People who will eventually be diagnosed may differ prior to diagnosis (a BP effect)
 - > **TV effect** \rightarrow Diagnosed with dementia at each time point (no, yes)?
 - Acute differences of before/after diagnosis logically can only exist in the "ever" people
- Other examples: Mentor status, father absence, type of shift work (AM/PM)

Wrapping Up: Person-MC vs. Grand-MC

- Time-varying predictors carry at least two potential effects:
 - > Some people are higher/lower than other people \rightarrow BP, level-2 effect
 - > Some occasions are higher/lower than usual \rightarrow WP, level-1 effect
- BP and WP effects almost always need to be represented by two or more model parameters, using either:
 - > Person-mean-centering (WPx_{ti} and PMx_i): WP ≠ 0?, BP ≠ 0?
 - > *Grand-mean-centering* (TVx_{ti} and PMx_i): WP ≠ 0?, BP ≠ WP?
 - Both yield equivalent models if the level-1 WP effect is fixed, but not if the level-1 WP effect is random
 - Grand MC \rightarrow absolute effect of x_{ti} varies randomly over people
 - Person MC \rightarrow *relative* effect of x_{ti} varies randomly over people
 - Use prior theory and empirical data (ML AIC, BIC) to decide