Interpreting Linear Models (Especially Interactions)

- Today's Class:
 - Representing effects of categorical predictors
 - > Decomposing interactions among continuous predictors
 - > (see example for interactions among categorical predictors)

The Two Sides of a Model

$$y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + e_i$$

Model for the Means (Predicted Values):

Our focus today

- Each person's expected (predicted) outcome is a weighted linear function of his/her values on *X* and *Z* (and here, their interaction), each measured once per person (i.e., this is a between-person model)
- Estimated parameters are called fixed effects (here, β_0 , β_1 , β_2 , and β_3)
- The number of fixed effects will show up in formulas as **k** (so **k** = 4 here)

Model for the Variance ("Piles" of Variance):

- $e_i \sim N(0, \sigma_e^2) \rightarrow \text{ONE}$ residual (unexplained) deviation
- e_i has a mean of 0 with some estimated constant variance σ_e^2 , is normally distributed, is unrelated to X and Z, and is unrelated across people (across all observations, just people here)
- Estimated parameter is the residual variance only (in above model)

Representing the Effects of Predictors

- From now on, we will think carefully about exactly <u>how</u> the predictor variables are entered into the model for the means (i.e., by which a predicted outcome is created for each person)
- Why don't people always care? Because the scale of predictors:
 - > Does NOT affect the amount of outcome variance accounted for (R²)
 - Does NOT affect the outcomes values predicted by the model for the means (so long as the same predictor fixed effects are included)
- Why should this matter to us?
 - > Because the Intercept = expected outcome value when X = 0
 - Can end up with nonsense values for intercept if X = 0 isn't in the data, so we need to change the scale of the predictors to include 0
 - Scaling becomes more important once interactions are included or once random intercepts are included (i.e., variability around fixed intercept)

Adjusting the Scale of Predictors

- For continuous (quantitative) predictors, <u>we</u> will make the intercept interpretable by centering:
 - Centering = subtract a constant from each person's variable value so that the 0 value falls within the range of the new centered predictor variable
 - ▶ Typical → Center around predictor's mean: Centered $X_1 = X_1 \overline{X_1}$
 - Intercept is then expected outcome for "average X₁ person"
 - > Better → Center around meaningful constant C: Centered $X_1 = X_1 C$
 - Intercept is then expected outcome for person with that constant (even 0 may be ok)
- For categorical (grouping) predictors, <u>either we or the program</u> will make the intercept interpretable by creating a reference group:
 - Reference group is given a 0 value on all predictor variables created from the original grouping variable, such that the intercept is the expected outcome for that reference group specifically
 - Accomplished via "dummy coding" (aka, "reference group coding")
 Two-group example using Gender: 0 = Men, 1 = Women(or 0 = Women, 1 = Men)

Adjusting the Scale of Predictors

- For more than two groups, need: *dummy codes = #groups 1*
 - "Treatgroup" variable: Control=0, Treat1=1, Treat2=2, Treat3=3
 - Variables:

SAS CLASS statement can do this for you ☺

- $d1=0, 1, 0, 0 \rightarrow$ difference between Control and T1 $d2=0, 0, 1, 0 \rightarrow$ difference between Control and T2 $d3=0, 0, 0, 1 \rightarrow$ difference between Control and T3
- <u>Potential pit-falls:</u>
 - All predictors for the effect of group (e.g., d1, d2, d3) MUST be in the model at the same time for these specific interpretations to be correct!
 - Model parameters resulting from these dummy codes will not *directly* tell you about differences among non-reference groups (but they can)
- Other examples of things people do to categorical predictors:
 - > "Contrast/effect coding" \rightarrow Gender: -0.5 = Men, 0.5 = Women
 - > Test other contrasts among multiple groups → four-group example: contrast1 = -1, 0.33, 0.33, 0.34 → Control vs. Any Treatment?

Categorical Predictors: Manual Coding

• Model: $y_i = \beta_0 + \beta_1 d1_i + \beta_2 d2_i + \beta_3 d3_i + e_i$

"Treatgroup" variable: Control=0, Treat1=1, Treat2=2, Treat3=3

- New variables $d1=0, 1, 0, 0 \rightarrow$ difference between Control and T1 to be created $d2=0, 0, 1, 0 \rightarrow$ difference between Control and T2 for the model: $d3=0, 0, 0, 1 \rightarrow$ difference between Control and T3
- How does the model give us all possible group differences?
 By determining each group's mean, and then the difference...

Control Mean	Treatment 1	Treatment 2	Treatment 3
(Reference)	Mean	Mean	Mean
β ₀	$\beta_0 + \beta_1 d1_i$	$\beta_0 + \beta_2 d2_i$	$\beta_0 + \beta_3 d3_i$

 The model for the 4 groups directly provides 3 differences (control vs. each treatment), and indirectly provides another 3 differences (differences between treatments)

Group Differences from Dummy Codes

• Model: $y_i = \beta_0 + \beta_1 d1_i + \beta_2 d2_i + \beta_3 d3_i + e_i$

	Control Mean (Reference)	Treatment 1 Mean	Treatment 2 Mean	Treatment 3 Mean
	β_0	$\beta_0 + \beta_1 d1_i$	$\beta_0 + \beta_2 d2_i$	$\beta_0 + \beta_3 d3_i$
		<u>Alt Group</u>	<u>Ref Group</u>	<u>Difference</u>
• Co	ontrol vs. T1	$= (\beta_0 + \beta_1) -$	- (β_0)	$= \beta_1$
• Co	ontrol vs. T2	$= (\beta_0 + \beta_2) -$	- (β_0)	$=\beta_2$
• Co	ontrol vs. T3	$= (\beta_0 + \beta_3) -$	- (β_0)	$=\beta_3$
• T1	L vs. T2 =	(eta_0+eta_2) –	- $(\beta_0 + \beta_1)$	$= \beta_2 - \beta_1$
• T1	L vs. T3 =	(eta_0+eta_3) –	- $(\beta_0 + \beta_1)$	$= \beta_3 - \beta_1$
• T2	2 vs. T3 =	(eta_0+eta_3) –	- $(\beta_0 + \beta_2)$	$=\beta_3-\beta_2$

ESTIMATEs when using dummy codes

	Alt Group	Ref Group	Difference	Note	the order of the equations:
• Control vs. T1 =	$(\beta_0 + \beta_1) -$	(β_0)	$= \beta_1$	t	ne reference group mean
• Control vs. T2 =	$(\beta_0 + \beta_1) = (\beta_0 + \beta_2) =$	(β_0)	$= \beta_2$	<i>is subtracted from</i> the alternative group mean.	
• Control vs. T3 =	$(\beta_0+\beta_3)$ –	(β_0)	$=\beta_3$		
• T1 vs. T2 =	$(\beta_0+\beta_2)$ –	$(\beta_0 + \beta_1)$	$= \beta_2 - \beta_1$		
• T1 vs. T3 =	$(\beta_0+\beta_3)$ –	$(\beta_0 + \beta_1)$	$= \beta_3 - \beta_1$		
• T2 vs. T3 =	$(\beta_0+\beta_3)$ –	$(\beta_0+\beta_2)$	$=\beta_3-\beta_2$]	in ESTIMATE statements, the variables refer to their betas;
TITLE "Manual PROC MIXED DA	Contrast TA=datana	s for 4-Gr me ITDETAI	oup Diffs"; LS METHOD=MI	.;	the numbers refer to the operations of their betas.
MODEL y = d1	d2 d3 / <mark>S</mark> trol Mean	OLUTION;	+ 1 d1 0 d2	_ 	0.
ESTIMATE "T1 ESTIMATE "T2 ESTIMATE "T3	Mean" Mean" Mean"	intercep intercep intercep intercep	$\begin{array}{c} t & 1 & 0 & 12 \\ t & 1 & d1 & 1 & d2 \\ t & 1 & d1 & 0 & d2 \\ t & 1 & d1 & 0 & d2 \end{array}$	0 d3 1 d3 0 d3	0; 1; Intercepts are used <u>only</u> 1; in predicted values.
ESTIMATE "Con ESTIMATE "Con ESTIMATE "Con	trol vs. trol vs. trol vs.	T1" d1 T2" d1 T3" d1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0; 0; 1;	Positive values indicate
ESTIMATE "TI	VS. TZ"	ar		U;	audition, negative values

d1 -1 d2 0 d3 1;

0 d2 -1 d3 1;

d1

Positive values indicate addition; negative values indicate subtraction.

RUN;

ESTIMATE "T1 vs. T3"

ESTIMATE "T2 vs. T3"

Using the CLASS statement instead

- If you let SAS do the dummy coding instead via CLASS, then the **highest/last group is the reference**
- **Manual** model: $y_i = \beta_0 + \beta_1 d1_i + \beta_2 d2_i + \beta_3 d3_i + e_i$
 - "Treatgroup" variable: Control=0, Treat1=1, Treat2=2, Treat3=3
 - New variables you created for the model: d1=0, 1, 0, 0 → difference between Control and T1<math display="block">d2=0, 0, 1, 0 → difference between Control and T2d3=0, 0, 0, 1 → difference between Control and T3
 - When including d1, d2, and d3, SAS doesn't understand they are part of one 4-group variable, and so does not provide omnibus (df=3) F-tests
- **CLASS** model: $y_i = \beta_0 + \beta_1 g 0_i + \beta_2 g 1_i + \beta_3 g 2_i + e_i$
 - New variables $g0=1, 0, 0, 0 \rightarrow difference between T3 and Control created by <math>g1=0, 1, 0, 0 \rightarrow difference between T3 and T1 using CLASS:
 <math display="block">g0=1, 0, 0, 0 \rightarrow difference between T3 and T1$
 - If SAS does the coding, it will provide 4-group (df=3) omnibus F-tests (and compute all cell means and differences using LSMEANS)

Using the CLASS statement instead

- CLASS model: $y_i = \beta_0 + \beta_1 g 0_i + \beta_2 g 1_i + \beta_3 g 2_i + e_i$

New variables created by using CLASS: g0=1, 0, 0, 0 → difference between T3 and Controlg1=0, 1, 0, 0 → difference between T3 and T1g2=0, 0, 1, 0 → difference between T3 and T2

TITLE "CLASS Contrasts for 4-Group Differences"; PROC MIXED DATA=dataname ITDETAILS METHOD=ML; CLASS treatgroup;		Note that treatgroup is the only predictor.	
<pre>MODEL y = treatgroup / SOLUTION; LSMEANS treatgroup / DIFF=ALL;</pre>	This LSMEANS line information as all s	provides tatemen	the same ts below!
ESTIMATE "Control Mean"	intercept 1 treatgr	roup 1 (0 0 0;
ESTIMATE "T1 Mean"	intercept 1 treatgr	roup 0 1	L 0 0;
ESTIMATE "T2 Mean"	intercept 1 treatgr	roup 0 (0 1 0;
ESTIMATE "T3 Mean"	intercept 1 treatgr	roup 0 (0 0 1;
ESTIMATE "Control vs. T1"	treatgroup -1 1	0 0;	
ESTIMATE "Control vs. T2"	treatgroup -1 0	1 0;	Treatgroup has 4
ESTIMATE "Control vs. T3"	treatgroup -1 0	1 0;	possible levels,
ESTIMATE "T1 vs. T2"	treatgroup 0-1	1 0;	so 4 values must be
ESTIMATE "T1 vs. T3"	treatgroup 0 -1	01;	given in ESTIMATES
ESTIMATE "T2 vs. T3"	treatgroup 0 0 -	-1 1;	given in ESTIMATES.
RUN;			

To CLASS or not to CLASS?

- Letting SAS create dummy codes for categorical predictors (instead of creating manual dummy codes) does the following:
 - > Allows use of LSMEANS (for cell means and differences)
 - > Provides omnibus (multiple df) group F-tests
 - Marginalizes the group effect across interacting predictors

 Image: Omnibus F-tests represent marginal main effects (instead of simple)
 - e.g., MODEL y = Treatgroup Gender Treatgroup*Gender (in which Treatgroup is always on CLASS statement)

Type 3 Tests of Fixed Effects	Interpretation if using dummy code for Gender	Interpretation if CLASS statement for Gender
Gender	Marginal gender diff	Marginal gender diff
Treatgroup	Group diff if gender=0	Marginal group diff
Treatgroup*Gender	Interaction	Interaction

Continuous Predictors

- For continuous (quantitative) predictors, <u>we</u> (not SAS) will make the intercept interpretable by centering
 - Centering = subtract a constant (e.g., sample mean, other meaningful reference value) from each person's variable value so that the 0 value falls within the range of the new centered predictor variable
 - Continuous predictors do not go on the CLASS statement
 - Predicted group means **at** specific levels of continuous predictors can be found using LSMEANS (e.g., if X1 SD=5, means at ±1 SD):

```
    CLASS treatgroup;
MODEL y = treatgroup x1 treatgroup*x1 / SOLUTION;
LSMEANS treatgroup / AT (x1)=(-5) DIFF=ALL;
LSMEANS treatgroup / AT (x1)=( 0) DIFF=ALL;
LSMEANS treatgroup / AT (x1)=( 5) DIFF=ALL;
```

> Continuous predictors cannot be used on LSMEANS otherwise

Interactions: $y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + e_i$

- **Interaction = Moderation:** the effect of a predictor depends on the value of the interacting predictor
 - > Either predictor can be "the moderator" (interpretive distinction only)
- Interactions can always be evaluated for any combination of categorical and continuous predictors, although traditionally...
 - > In "ANOVA": By default, all possible interactions are estimated
 - Software does this for you; oddly enough, nonsignificant interactions usually still are kept in the model (even if only significant interactions are interpreted)
 - ➢ In "ANCOVA": Continuous predictors ("covariates") do not get to be part of interaction terms → "homogeneity of regression assumption"
 - There is no reason to assume this it is a testable hypothesis!
 - > In "Regression": No default effects of predictors are as you specify
 - Requires most thought, but gets annoying because in regression programs you usually have to manually create the interaction as an observed variable:
 - e.g., XZinteraction = centeredX * centeredZ

Interaction variables are created for you in SAS PROC GLM, MIXED, and GLIMMIX ©

Main Effects of Predictors within Interactions

- Main effects of predictors within interactions should remain in the model regardless of whether or not they are significant
 - An interaction is an over-additive (enhancing) or under-additive (dampening) effect, so *what it is additive to* must be included
- The role of a two-way interaction is to adjust its main effects...
- However, the idea of a "main effect" no longer applies... each main effect is *conditional* on the interacting predictor = 0
- e.g., Model of Y = W, X, Z, X*Z:
 - > The effect of W is still a "main effect" because it is not part of an interaction
 - > The effect of X is now the conditional main effect of X specifically when Z=0
 - > The effect of Z is now the conditional main effect of Z specifically when X=0
- The trick is keeping track of what 0 means for every interacting predictor, which depends on the way each predictor is being represented, as determined by you, or by the software without you!

Interactions: Why 0 Matters

- Y = Student achievement (GPA as percentage out of 100)
 X = Parent attitudes about education (measured on 1-5 scale)
 Z = Father's education level (measured in years of education)
- $GPA_i = \beta_0 + (\beta_1 * Att_i) + (\beta_2 * Ed_i) + (\beta_3 * Att_i * Ed_i) + e_i$ $GPA_i = 30 + (1*Att_i) + (2*Ed_i) + (0.5*Att_i * Ed_i) + e_i$
- Interpret β₀:
- Interpret β₁:
- Interpret β₂:
- Interpret β₃: Attitude as Moderator:

Education as Moderator:

Predicted GPA for attitude of 3 and Ed of 12?
 75 = 30 + 1*(3) + 2*(12) + 0.5*(3)*(12)

Model-Implied Simple Main Effects

- Original: $GPA_i = \beta_0 + (\beta_1 * Att_i) + (\beta_2 * Ed_i) + (\beta_3 * Att_i * Ed_i) + e_i$ $GPA_i = 30 + (1 * Att_i) + (2 * Ed_i) + (0.5 * Att_i * Ed_i) + e_i$
- Given any values of the predictor variables, the model equation provides predictions for:
 - Value of outcome (model-implied intercept for non-zero predictor values)
 - > Any conditional (simple) main effects implied by an interaction term
 - Simple Main Effect = what it is + what modifies it
- Step 1: **Identify** all terms in model involving the predictor of interest
 - > e.g., Effect of Attitudes comes from: β_1 *Att_i + β_3 *Att_i*Ed_i
- Step 2: Factor out common predictor variable
 - > Start with $[\beta_1^*Att_i + \beta_3^*Att_i^*Ed_i] \rightarrow [Att_i (\beta_1 + \beta_3^*Ed_i)] \rightarrow Att_i (new \beta_1)$
 - > Value given by () is then the model-implied coefficient for the predictor
- Step 3: ESTIMATEs calculate model-implied simple effect and SE
 - Let's try it for a new reference point of attitude = 3 and education = 12

Model-Implied Simple Main Effects

- Old Equation using uncentered predictors: $\begin{aligned} \mathbf{GPA}_i &= \mathbf{\beta}_0 + (\mathbf{\beta}_1 * \mathbf{Att}_i) + (\mathbf{\beta}_2 * \mathbf{Ed}_i) + (\mathbf{\beta}_3 * \mathbf{Att}_i * \mathbf{Ed}_i) + \mathbf{e}_i \\ \mathbf{GPA}_i &= \mathbf{30} + (\mathbf{1} * \mathbf{Att}_i) + (\mathbf{2} * \mathbf{Ed}_i) + (\mathbf{0} \cdot \mathbf{5} * \mathbf{Att}_i * \mathbf{Ed}_i) + \mathbf{e}_i \end{aligned}$
- New equation using centered predictors (Att_i-3 and Ed_i-12):
 GPA_i = _ + __*(Att_i-3) + __*(Ed_i-12) + __*(Att_i-3)*(Ed_i-12)+e_i
- Intercept: expected value of GPA when Att_i=3 and Ed_i=12 $\beta_0 = 75$
- Simple main effect of Att if $Ed_i = 12$ $\beta_1 * Att_i + \beta_3 * Att_i * Ed_i \rightarrow Att_i (\beta_1 + \beta_3 * Ed_i) \rightarrow Att_i (1+0.5*12)$
- Simple main effect of Ed if $Att_i=3$ $\beta_2*Ed_i + \beta_3*Att_i*Ed_i \rightarrow Ed_i(\beta_2 + \beta_3*Att_i) \rightarrow Ed_i(2+0.5*3)$
- Two-way interaction of Att and Ed: (0.5*Att_i*Ed_i)

Model-Implied Simple Main Effects

- Old Equation using uncentered predictors: $GPA_i = \beta_0 + (\beta_1 * Att_i) + (\beta_2 * Ed_i) + (\beta_3 * Att_i * Ed_i) + e_i$ $GPA_i = 30 + (1 * Att_i) + (2 * Ed_i) + (0.5 * Att_i * Ed_i) + e_i$
- Intercept: expected value of GPA when Att_i=3 and Ed_i=12
- Simple main effect of Att if $Ed_i = 12 \rightarrow Att_i(\beta_1 + \beta_3 * Ed_i)$
- Simple main effect of Ed if $Att_i=3 \rightarrow Ed_i(\beta_2 + \beta_3 * Att_i)$

```
TITLE "Calculating Model-Implied Parameters";
PROC MIXED DATA=dataname ITDETAILS METHOD=ML;
MODEL y = att ed att*ed / SOLUTION;
ESTIMATE "GPA if Att=3, Ed=12" intercept 1 att 3 ed 12 att*ed 36;
ESTIMATE "Effect of Att if Ed=12" att 1 att*ed 12;
ESTIMATE "Effect of Ed if Att=3" ed 1 att*ed 3;
RUN;
These estimates would be given
```

In ESTIMATE statements, the variables refer to their betas; the numbers refer to the operations of their betas. These estimates would be given directly by the model parameters instead if you re-centered the predictors as: Att-3, Ed-12.

More Generally...

- Can decompose a 2-way interaction by testing the simple effect of X at different levels of Z (and vice-versa)
 - > Use ESTIMATEs to request simple effects at any point of the interacting predictor
 - > Re-centering the interacting predictor at those points will also work
- More general rules, given a **3-way interaction**:
 - > Simple (main) effects move the intercept
 - 1 possible interpretation for each simple main effect
 - Each simple effect is conditional on other two variables = 0
 - > The 2-way interactions (3 of them in a 3-way model) move the simple effects
 - 2 possible interpretations for each 2-way interaction
 - Each 2-way interaction is conditional on third variable = 0
 - > The 3-way interaction moves each of the 2-way interactions
 - 3 possible interpretations of the 3-way interaction
 - Is highest-order term in model, so is unconditional (applies always)

Practice with 3-Way Interactions

- Intercept = 5, Effect of X = 1.0, Effect of Z = 0.50, Effect of W = 0.20
- X*Z = .10 (applies specifically when W is 0)
 - > #1: for every 1-unit ΔX ,
 - > #2: for every 1-unit ΔZ ,
- X*W = .01 (applies specifically when Z is 0)
 - > #1: for every 1-unit ΔX ,
 - > #2: for every 1-unit ΔW ,
- Z*W = .05 (applies specifically when X is 0)
 - > #1: for every 1-unit ΔZ ,
 - > #2: for every 1-unit ΔW ,
- X*Z*W = .001 (unconditional because is highest order)
 - > #1: for every 1-unit ΔX ,
 - > #2: for every 1-unit ΔZ ,
 - > #3: for every 1-unit ΔW ,

Practice with 3-Way Interactions

- Model: $y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 W_i + \beta_4 X_i W_i$ $+\beta_5 X_i Z_i + \beta_6 Z_i W_i + \beta_7 X_i Z_i W_i + e_i$
- Calculate simple main effects:
 - \succ For X \rightarrow
 - \succ For Z \rightarrow
 - \succ For W \rightarrow
- Calculate simple 2-way interactions:
 - ≻ For X*Z →
 - \succ For X*W \rightarrow
 - → For Z*W →

Interpreting Interactions: Summary

- Interactions represent "moderation" the idea that the effect of one variable depends upon the level of other(s)
- <u>The main effects WILL CHANGE in once an interaction with</u> <u>them is added, because they now mean different things:</u>
 - > Main effect \rightarrow Simple effect specifically when interacting predictor = 0
 - > Best to have 0 as a meaningful predictor value for that reason
- Conditional rules of parameter interpretation:
 - > Intercepts are conditional on (i.e., get moved by) main effects
 - Main effects are conditional on two-ways (become 'simple effects')
 - > Two-ways are conditional on three-ways... And so forth
 - > Highest-order term is unconditional same regardless of centering