
Interpreting Linear Models 
(Especially Interactions)
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• Today’s Class:
 Representing effects of categorical predictors
 Decomposing interactions among continuous predictors
 (see example for interactions among categorical predictors)



The Two Sides of a Model

௜ ଴ ଵ ௜ ଶ ௜ ଷ ௜ ௜ ௜

• Model for the Means (Predicted Values):
• Each person’s expected (predicted) outcome is a weighted linear 

function of his/her values on ܺ and ܼ (and here, their interaction), 
each measured once per person (i.e., this is a between-person model)

• Estimated parameters are called fixed effects (here, ߚ଴, ߚଵ, ߚଶ, and ߚଷ)
• The number of fixed effects will show up in formulas as k (so k = 4 here)

• Model for the Variance (“Piles” of Variance):
• ݁௜ ∼ ܰ 0, ௘ଶߪ  ONE residual (unexplained) deviation
• ݁௜ has a mean of 0 with some estimated constant variance ߪ௘ଶ, 

is normally distributed, is unrelated to ܺ and ܼ, and is unrelated across 
people (across all observations, just people here)

• Estimated parameter is the residual variance only (in above model)
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Our focus today



Representing the Effects of Predictors
• From now on, we will think carefully about exactly how the 

predictor variables are entered into the model for the means 
(i.e., by which a predicted outcome is created for each person)

• Why don’t people always care? Because the scale of predictors:
 Does NOT affect the amount of outcome variance accounted for (R2)

 Does NOT affect the outcomes values predicted by the model for the means
(so long as the same predictor fixed effects are included)

• Why should this matter to us? 
 Because the Intercept = expected outcome value when X = 0

 Can end up with nonsense values for intercept if X = 0 isn’t in the data, 
so we need to change the scale of the predictors to include 0

 Scaling becomes more important once interactions are included or once 
random intercepts are included (i.e., variability around fixed intercept)
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Adjusting the Scale of Predictors
• For continuous (quantitative) predictors, we will make the intercept 

interpretable by centering:
 Centering = subtract a  constant from each person’s variable value so that 

the 0 value falls within the range of the new centered predictor variable
 Typical  Center around predictor’s mean: ݀݁ݎ݁ݐ݊݁ܥ	 ଵܺ ൌ ଵܺ െ ଵܺ

 Intercept is then expected outcome for “average X1 person”

 Better  Center around meaningful constant C: ݀݁ݎ݁ݐ݊݁ܥ	 ଵܺ ൌ ଵܺ െ ܥ
 Intercept is then expected outcome for person with that constant (even 0 may be ok)

• For categorical (grouping) predictors, either we or the program
will make the intercept interpretable by creating a reference group:
 Reference group is given a 0 value on all predictor variables created from 

the original grouping variable, such that the intercept is the expected 
outcome for that reference group specifically

 Accomplished via “dummy coding” (aka, “reference group coding”) 
 Two-group example using Gender:    0 = Men, 1 = Women 

(or  0 = Women, 1 = Men)
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Adjusting the Scale of Predictors
• For more than two groups, need: dummy codes = #groups − 1

 “Treatgroup” variable: Control=0, Treat1=1, Treat2=2, Treat3=3

 Variables: d1= 0, 1, 0, 0   difference between Control and T1 
d2= 0, 0, 1, 0   difference between Control and T2
d3= 0, 0, 0, 1   difference between Control and T3

• Potential pit-falls:
 All predictors for the effect of group (e.g., d1, d2, d3) MUST be in the 

model at the same time for these specific interpretations to be correct!

 Model parameters resulting from these dummy codes will not directly tell 
you about differences among non-reference groups (but they can) 

• Other examples of things people do to categorical predictors:
 “Contrast/effect coding” Gender: −0.5 = Men, 0.5 = Women

 Test other contrasts among multiple groups  four-group example: 
contrast1= −1, 0.33, 0.33, 0.34  Control vs. Any Treatment?
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SAS CLASS statement 
can do this for you 



Categorical Predictors: Manual Coding
• Model:  ௜ ଴ ଵ ௜ ଶ ௜ ଷ ௜ ௜

 “Treatgroup” variable:  Control=0, Treat1=1, Treat2=2, Treat3=3

 New variables d1= 0, 1, 0, 0   difference between Control and T1 
to be created d2= 0, 0, 1, 0   difference between Control and T2
for the model: d3= 0, 0, 0, 1   difference between Control and T3

• How does the model give us all possible group differences? 
By determining each group’s mean, and then the difference…

• The model for the 4 groups directly provides 3 differences 
(control vs. each treatment), and indirectly provides another 
3 differences (differences between treatments)
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Control Mean
(Reference)

Treatment 1 
Mean

Treatment 2 
Mean

Treatment 3
Mean
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Group Differences from Dummy Codes
• Model:  ௜ ଴ ଵ ௜ ଶ ௜ ଷ ௜ ௜

Alt Group Ref Group Difference
• Control vs. T1 = ଴ ଵ ଴ ଵ
• Control vs. T2 = ଴ ଶ ଴ ଶ
• Control vs. T3 = ଴ ଷ ଴ ଷ
• T1 vs. T2 =         ଴ ଶ ଴ ଵ ଶ ଵ
• T1 vs. T3 =         ଴ ଷ ଴ ଵ ଷ ଵ
• T2 vs. T3 =         ଴ ଷ ଴ ଶ ଷ ଶ
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ESTIMATEs when using dummy codes
Alt Group Ref Group Difference

• Control vs. T1 = ሺߚ଴൅ߚଵሻ		െ		ሺߚ଴ሻ 																		ൌ ଵߚ
• Control vs. T2 = ሺߚ଴൅ߚଶሻ		െ		ሺߚ଴ሻ 																		ൌ ଶߚ
• Control vs. T3 = ሺߚ଴൅ߚଷሻ		െ		ሺߚ଴ሻ 																		ൌ ଷߚ
• T1 vs. T2 =         ሺߚ଴൅ߚଶሻ 	െ	ሺߚ଴൅ߚଵሻ 										ൌ ଶߚ െ ଵߚ
• T1 vs. T3 =         ሺߚ଴൅ߚଷሻ 	െ	ሺߚ଴൅ߚଵሻ 										ൌ ଷߚ െ ଵߚ
• T2 vs. T3 =         ሺߚ଴൅ߚଷሻ 	െ	ሺߚ଴൅ߚଶሻ 										ൌ ଷߚ െ ଶߚ

TITLE "Manual Contrasts for 4-Group Diffs";
PROC MIXED DATA=dataname ITDETAILS METHOD=ML;
MODEL y = d1 d2 d3 / SOLUTION;
ESTIMATE "Control Mean" intercept 1 d1 0 d2 0 d3 0;
ESTIMATE "T1 Mean" intercept 1 d1 1 d2 0 d3 0;
ESTIMATE "T2 Mean" intercept 1 d1 0 d2 1 d3 0;
ESTIMATE "T3 Mean" intercept 1 d1 0 d2 0 d3 1;
ESTIMATE "Control vs. T1" d1  1 d2  0 d3 0;
ESTIMATE "Control vs. T2" d1  0 d2  1 d3 0;
ESTIMATE "Control vs. T3" d1  0 d2  0 d3 1;
ESTIMATE "T1 vs. T2" d1 -1 d2  1 d3 0;
ESTIMATE "T1 vs. T3" d1 -1 d2  0 d3 1;
ESTIMATE "T2 vs. T3" d1  0 d2 -1 d3 1;
RUN;
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Note the order of the equations: 
the reference group mean 

is subtracted from
the alternative group mean.

In ESTIMATE statements, the 
variables refer to their betas; 

the numbers refer to the 
operations of their betas.

Positive values indicate 
addition; negative values 

indicate subtraction.

Intercepts are used only 
in predicted values.



Using the CLASS statement instead
• If you let SAS do the dummy coding instead via CLASS, 

then the highest/last group is the reference
• Manual model:  ௜ ଴ ଵ ௜ ଶ ௜ ଷ ௜ ௜

 “Treatgroup” variable: Control=0, Treat1=1, Treat2=2, Treat3=3

 New variables d1= 0, 1, 0, 0   difference between Control and T1 
you created d2= 0, 0, 1, 0   difference between Control and T2
for the model: d3= 0, 0, 0, 1   difference between Control and T3

 When including d1, d2, and d3, SAS doesn’t understand they are part of 
one 4-group variable, and so does not provide omnibus (df=3) F-tests

• CLASS model:  ௜ ଴ ଵ ௜ ଶ ௜ ଷ ௜ ௜
 New variables g0= 1, 0, 0, 0   difference between T3 and Control 

created by g1= 0, 1, 0, 0   difference between T3 and T1
using CLASS: g2= 0, 0, 1, 0  difference between T3 and T2

 If SAS does the coding, it will provide 4-group (df=3) omnibus F-tests 
(and compute all cell means and differences using LSMEANS)
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Using the CLASS statement instead
• CLASS model:  ௜ ଴ ଵ ௜ ଶ ௜ ଷ ௜ ௜

 New variables g0= 1, 0, 0, 0   difference between T3 and Control 
created by g1= 0, 1, 0, 0   difference between T3 and T1
using CLASS: g2= 0, 0, 1, 0   difference between T3 and T2

TITLE "CLASS Contrasts for 4-Group Differences";
PROC MIXED DATA=dataname ITDETAILS METHOD=ML;
CLASS treatgroup;
MODEL y = treatgroup / SOLUTION;
LSMEANS treatgroup / DIFF=ALL;

ESTIMATE "Control Mean" intercept 1 treatgroup 1 0 0 0;
ESTIMATE "T1 Mean" intercept 1 treatgroup 0 1 0 0;
ESTIMATE "T2 Mean" intercept 1 treatgroup 0 0 1 0;
ESTIMATE "T3 Mean" intercept 1 treatgroup 0 0 0 1;
ESTIMATE "Control vs. T1" treatgroup -1 1 0 0;
ESTIMATE "Control vs. T2" treatgroup -1 0 1 0;
ESTIMATE "Control vs. T3" treatgroup -1 0 1 0;
ESTIMATE "T1 vs. T2" treatgroup 0 -1 1 0;
ESTIMATE "T1 vs. T3" treatgroup 0 -1 0 1;
ESTIMATE "T2 vs. T3" treatgroup 0 0 -1 1;
RUN;
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Note that treatgroup
is the only predictor.

This LSMEANS line provides the same 
information as all statements below!

Treatgroup has 4 
possible levels, 

so 4 values must be 
given in ESTIMATEs.



To CLASS or not to CLASS?
• Letting SAS create dummy codes for categorical predictors 

(instead of creating manual dummy codes) does the following:
 Allows use of LSMEANS (for cell means and differences)

 Provides omnibus (multiple df) group F-tests

 Marginalizes the group effect across interacting predictors 
 omnibus F-tests represent marginal main effects (instead of simple)

 e.g., MODEL y = Treatgroup Gender Treatgroup*Gender 
(in which Treatgroup is always on CLASS statement)
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Type 3 Tests of 
Fixed Effects 

Interpretation if using 
dummy code for Gender

Interpretation if CLASS 
statement for Gender

Gender Marginal gender diff Marginal gender diff
Treatgroup Group diff if gender=0 Marginal group diff 
Treatgroup*Gender Interaction Interaction



Continuous Predictors
• For continuous (quantitative) predictors, we (not SAS) will 

make the intercept interpretable by centering
 Centering = subtract a  constant (e.g., sample mean, other meaningful 

reference value) from each person’s variable value so that the 0 value 
falls within the range of the new centered predictor variable

 Continuous predictors do not go on the CLASS statement

 Predicted group means at specific levels of continuous predictors 
can be found using LSMEANS (e.g., if X1 SD=5, means at ±1 SD):
 CLASS treatgroup;
MODEL y = treatgroup x1 treatgroup*x1 / SOLUTION;
LSMEANS treatgroup / AT (x1)=(-5) DIFF=ALL;
LSMEANS treatgroup / AT (x1)=( 0) DIFF=ALL;
LSMEANS treatgroup / AT (x1)=( 5) DIFF=ALL;

 Continuous predictors cannot be used on LSMEANS otherwise
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Interactions: ௜ ଴ ଵ ௜ ଶ ௜ ଷ ௜ ௜ ௜

• Interaction = Moderation: the effect of a predictor depends 
on the value of the interacting predictor
 Either predictor can be “the moderator” (interpretive distinction only) 

• Interactions can always be evaluated for any combination of 
categorical and continuous predictors, although traditionally…
 In “ANOVA”: By default, all possible interactions are estimated

 Software does this for you; oddly enough, nonsignificant interactions usually still 
are kept in the model (even if only significant interactions are interpreted)

 In “ANCOVA”: Continuous predictors (“covariates”) do not get to be part 
of interaction terms  “homogeneity of regression assumption”
 There is no reason to assume this – it is a testable hypothesis!

 In “Regression”: No default – effects of predictors are as you specify
 Requires most thought, but gets annoying because in regression programs you 

usually have to manually create the interaction as an observed variable: 
 e.g.,  XZinteraction = centeredX * centeredZ
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Interaction variables are created 
for you in SAS PROC GLM, 
MIXED, and GLIMMIX 



Main Effects of Predictors within Interactions
• Main effects of predictors within interactions should remain in the 

model regardless of whether or not they are significant
 An interaction is an over-additive (enhancing) or under-additive 

(dampening) effect, so what it is additive to must be included

• The role of a two-way interaction is to adjust its main effects… 
• However, the idea of a “main effect” no longer applies… 

each main effect is conditional on the interacting predictor = 0

• e.g., Model of Y = W, X, Z, X*Z:
 The effect of W is still a “main effect” because it is not part of an interaction
 The effect of X is now the conditional main effect of X specifically when Z=0 
 The effect of Z is now the conditional main effect of Z specifically when X=0 

• The trick is keeping track of what 0 means for every interacting 
predictor, which depends on the way each predictor is being 
represented, as determined by you, or by the software without you!
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Interactions:  Why 0 Matters
• Y = Student achievement (GPA as percentage out of 100)

X = Parent attitudes about education (measured on 1-5 scale) 
Z = Father’s education level (measured in years of education)

• GPAi =  β0 + (β1*Atti) + (β2*Edi) +  (β3*Atti*Edi) + ei
GPAi = 30 +   (1*Atti) + (2*Edi) + (0.5*Atti*Edi) + ei

• Interpret β0:

• Interpret β1:

• Interpret β2: 

• Interpret β3: Attitude as Moderator: 

Education as Moderator:

• Predicted GPA for attitude of 3 and Ed of 12?
75 = 30 + 1*(3)  +  2*(12)  +  0.5*(3)*(12) 
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Model-Implied Simple Main Effects
• Original:  GPAi = β0 +(β1*Atti)+ (β2*Edi) +  (β3*Atti*Edi) + ei

GPAi = 30 + (1*Atti) + (2*Edi) + (0.5*Atti*Edi) + ei

• Given any values of the predictor variables, the model equation 
provides predictions for:
 Value of outcome (model-implied intercept for non-zero predictor values)
 Any conditional (simple) main effects implied by an interaction term
 Simple Main Effect = what it is + what modifies it

• Step 1: Identify all terms in model involving the predictor of interest
 e.g., Effect of Attitudes comes from: β1*Atti + β3*Atti*Edi

• Step 2: Factor out common predictor variable
 Start with [β1*Atti + β3*Atti*Edi]  [Atti (β1+ β3*Edi)]  Atti (new β1) 
 Value given by ( ) is then the model-implied coefficient for the predictor

• Step 3: ESTIMATEs calculate model-implied simple effect and SE
 Let’s try it for a new reference point of attitude = 3 and education = 12
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Model-Implied Simple Main Effects
• Old Equation using uncentered predictors:

GPAi =  β0 +(β1*Atti)+ (β2*Edi) +  (β3*Atti*Edi) + ei
GPAi = 30 + (1*Atti) +  (2*Edi) + (0.5*Atti*Edi) + ei

• New equation using centered predictors (Atti−3 and Edi−12):
GPAi = __ + ___*(Atti−3)+ ___*(Edi−12) + ___*(Atti−3)*(Edi−12)+ei

• Intercept: expected value of GPA when Atti=3 and Edi=12
β0 = 75

• Simple main effect of Att if Edi=12
β1*Atti + β3*Atti*Edi  Atti(β1+ β3*Edi)  Atti(1+0.5*12)

• Simple main effect of Ed if Atti=3
β2*Edi + β3*Atti*Edi  Edi(β2+ β3*Atti )  Edi(2+0.5*3)

• Two-way interaction of Att and Ed:
(0.5*Atti*Edi)
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Model-Implied Simple Main Effects
• Old Equation using uncentered predictors:

GPAi =  β0 +(β1*Atti)+ (β2*Edi) +  (β3*Atti*Edi) + ei
GPAi = 30 + (1*Atti) +  (2*Edi) + (0.5*Atti*Edi) + ei

• Intercept: expected value of GPA when Atti=3 and Edi=12
• Simple main effect of Att if Edi=12 Atti(β1+ β3*Edi) 
• Simple main effect of Ed if Atti=3 Edi(β2+ β3*Atti ) 

TITLE "Calculating Model-Implied Parameters";
PROC MIXED DATA=dataname ITDETAILS METHOD=ML;
MODEL y = att ed att*ed / SOLUTION;
ESTIMATE "GPA if Att=3, Ed=12" intercept 1 att 3 ed 12 att*ed 36;
ESTIMATE "Effect of Att if Ed=12" att 1 att*ed 12;
ESTIMATE "Effect of Ed if Att=3" ed 1 att*ed 3;
RUN;
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In ESTIMATE statements, the variables 
refer to their betas; the numbers refer 

to the operations of their betas.

These estimates would be given 
directly by the model parameters 

instead if you re-centered the 
predictors as: Att-3, Ed-12.



More Generally…
• Can decompose a 2-way interaction by testing the simple effect of X at 

different levels of Z (and vice-versa)
 Use ESTIMATEs to request simple effects at any point of the interacting predictor

 Re-centering the interacting predictor at those points will also work

• More general rules, given a 3-way interaction:
 Simple (main) effects move the intercept

 1 possible interpretation for each simple main effect
 Each simple effect is conditional on other two variables = 0

 The 2-way interactions (3 of them in a 3-way model) move the simple effects
 2 possible interpretations for each 2-way interaction
 Each 2-way interaction is conditional on third variable = 0

 The 3-way interaction moves each of the 2-way interactions
 3 possible interpretations of the 3-way interaction
 Is highest-order term in model, so is unconditional (applies always)
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Practice with 3-Way Interactions
• Intercept = 5, Effect of X  = 1.0, Effect of Z  = 0.50, Effect of W = 0.20 

• X*Z  = .10 (applies specifically when W is 0)
 #1: for every 1-unit ∆X, 

 #2: for every 1-unit ∆Z, 

• X*W = .01 (applies specifically when Z is 0)
 #1: for every 1-unit ∆X, 

 #2: for every 1-unit ∆W,

• Z*W = .05 (applies specifically when X is 0)
 #1: for every 1-unit ∆Z, 

 #2: for every 1-unit ∆W, 

• X*Z*W = .001 (unconditional because is highest order)
 #1: for every 1-unit ∆X, 

 #2: for every 1-unit ∆Z, 

 #3: for every 1-unit ∆W, 
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Practice with 3-Way Interactions
• Model:  ௜ ଴ ଵ ௜ ଶ ௜ ଷ ௜ ସ ௜ ௜

ହ ௜ ௜ ଺ ௜ ௜ ଻ ௜ ௜ ௜ ௜

• Calculate simple main effects:
 For X 
 For Z 
 For W 

• Calculate simple 2-way interactions:
 For X*Z 
 For X*W 
 For Z*W 
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Interpreting Interactions:  Summary
• Interactions represent “moderation” – the idea that the effect 

of one variable depends upon the level of other(s)

• The main effects WILL CHANGE in once an interaction with 
them is added, because they now mean different things:
 Main effect  Simple effect specifically when interacting predictor = 0

 Best to have 0 as a meaningful predictor value for that reason

• Conditional rules of parameter interpretation:
 Intercepts are conditional on (i.e., get moved by) main effects

 Main effects are conditional on two-ways (become ‘simple effects’)

 Two-ways are conditional on three-ways... And so forth

 Highest-order term is unconditional – same regardless of centering
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