
Interpreting Linear Models 
(Especially Interactions)
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• Today’s Class:
 Representing effects of categorical predictors
 Decomposing interactions among continuous predictors
 (see example for interactions among categorical predictors)



The Two Sides of a Model

  ଵ  ଶ  ଷ   

• Model for the Means (Predicted Values):
• Each person’s expected (predicted) outcome is a weighted linear 

function of his/her values on ܺ and ܼ (and here, their interaction), 
each measured once per person (i.e., this is a between-person model)

• Estimated parameters are called fixed effects (here, ߚ, ߚଵ, ߚଶ, and ߚଷ)
• The number of fixed effects will show up in formulas as k (so k = 4 here)

• Model for the Variance (“Piles” of Variance):
• ݁ ∼ ܰ 0, ଶߪ  ONE residual (unexplained) deviation
• ݁ has a mean of 0 with some estimated constant variance ߪଶ, 

is normally distributed, is unrelated to ܺ and ܼ, and is unrelated across 
people (across all observations, just people here)

• Estimated parameter is the residual variance only (in above model)
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Our focus today



Representing the Effects of Predictors
• From now on, we will think carefully about exactly how the 

predictor variables are entered into the model for the means 
(i.e., by which a predicted outcome is created for each person)

• Why don’t people always care? Because the scale of predictors:
 Does NOT affect the amount of outcome variance accounted for (R2)

 Does NOT affect the outcomes values predicted by the model for the means
(so long as the same predictor fixed effects are included)

• Why should this matter to us? 
 Because the Intercept = expected outcome value when X = 0

 Can end up with nonsense values for intercept if X = 0 isn’t in the data, 
so we need to change the scale of the predictors to include 0

 Scaling becomes more important once interactions are included or once 
random intercepts are included (i.e., variability around fixed intercept)
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Adjusting the Scale of Predictors
• For continuous (quantitative) predictors, we will make the intercept 

interpretable by centering:
 Centering = subtract a  constant from each person’s variable value so that 

the 0 value falls within the range of the new centered predictor variable
 Typical  Center around predictor’s mean: ݀݁ݎ݁ݐ݊݁ܥ	 ଵܺ ൌ ଵܺ െ ଵܺ

 Intercept is then expected outcome for “average X1 person”

 Better  Center around meaningful constant C: ݀݁ݎ݁ݐ݊݁ܥ	 ଵܺ ൌ ଵܺ െ ܥ
 Intercept is then expected outcome for person with that constant (even 0 may be ok)

• For categorical (grouping) predictors, either we or the program
will make the intercept interpretable by creating a reference group:
 Reference group is given a 0 value on all predictor variables created from 

the original grouping variable, such that the intercept is the expected 
outcome for that reference group specifically

 Accomplished via “dummy coding” (aka, “reference group coding”) 
 Two-group example using Gender:    0 = Men, 1 = Women 

(or  0 = Women, 1 = Men)
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Adjusting the Scale of Predictors
• For more than two groups, need: dummy codes = #groups − 1

 “Treatgroup” variable: Control=0, Treat1=1, Treat2=2, Treat3=3

 Variables: d1= 0, 1, 0, 0   difference between Control and T1 
d2= 0, 0, 1, 0   difference between Control and T2
d3= 0, 0, 0, 1   difference between Control and T3

• Potential pit-falls:
 All predictors for the effect of group (e.g., d1, d2, d3) MUST be in the 

model at the same time for these specific interpretations to be correct!

 Model parameters resulting from these dummy codes will not directly tell 
you about differences among non-reference groups (but they can) 

• Other examples of things people do to categorical predictors:
 “Contrast/effect coding” Gender: −0.5 = Men, 0.5 = Women

 Test other contrasts among multiple groups  four-group example: 
contrast1= −1, 0.33, 0.33, 0.34  Control vs. Any Treatment?
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SAS CLASS statement 
can do this for you 



Categorical Predictors: Manual Coding
• Model:    ଵ  ଶ  ଷ  

 “Treatgroup” variable:  Control=0, Treat1=1, Treat2=2, Treat3=3

 New variables d1= 0, 1, 0, 0   difference between Control and T1 
to be created d2= 0, 0, 1, 0   difference between Control and T2
for the model: d3= 0, 0, 0, 1   difference between Control and T3

• How does the model give us all possible group differences? 
By determining each group’s mean, and then the difference…

• The model for the 4 groups directly provides 3 differences 
(control vs. each treatment), and indirectly provides another 
3 differences (differences between treatments)
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Control Mean
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Mean

Treatment 2 
Mean

Treatment 3
Mean

ࢼ ࢊࢼ+ࢼ ࢊࢼ+ࢼ ࢊࢼ+ࢼ



Group Differences from Dummy Codes
• Model:    ଵ  ଶ  ଷ  

Alt Group Ref Group Difference
• Control vs. T1 =  ଵ  ଵ
• Control vs. T2 =  ଶ  ଶ
• Control vs. T3 =  ଷ  ଷ
• T1 vs. T2 =          ଶ  ଵ ଶ ଵ
• T1 vs. T3 =          ଷ  ଵ ଷ ଵ
• T2 vs. T3 =          ଷ  ଶ ଷ ଶ
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ESTIMATEs when using dummy codes
Alt Group Ref Group Difference

• Control vs. T1 = ሺߚߚଵሻ		െ		ሺߚሻ 																		ൌ ଵߚ
• Control vs. T2 = ሺߚߚଶሻ		െ		ሺߚሻ 																		ൌ ଶߚ
• Control vs. T3 = ሺߚߚଷሻ		െ		ሺߚሻ 																		ൌ ଷߚ
• T1 vs. T2 =         ሺߚߚଶሻ 	െ	ሺߚߚଵሻ 										ൌ ଶߚ െ ଵߚ
• T1 vs. T3 =         ሺߚߚଷሻ 	െ	ሺߚߚଵሻ 										ൌ ଷߚ െ ଵߚ
• T2 vs. T3 =         ሺߚߚଷሻ 	െ	ሺߚߚଶሻ 										ൌ ଷߚ െ ଶߚ

TITLE "Manual Contrasts for 4-Group Diffs";
PROC MIXED DATA=dataname ITDETAILS METHOD=ML;
MODEL y = d1 d2 d3 / SOLUTION;
ESTIMATE "Control Mean" intercept 1 d1 0 d2 0 d3 0;
ESTIMATE "T1 Mean" intercept 1 d1 1 d2 0 d3 0;
ESTIMATE "T2 Mean" intercept 1 d1 0 d2 1 d3 0;
ESTIMATE "T3 Mean" intercept 1 d1 0 d2 0 d3 1;
ESTIMATE "Control vs. T1" d1  1 d2  0 d3 0;
ESTIMATE "Control vs. T2" d1  0 d2  1 d3 0;
ESTIMATE "Control vs. T3" d1  0 d2  0 d3 1;
ESTIMATE "T1 vs. T2" d1 -1 d2  1 d3 0;
ESTIMATE "T1 vs. T3" d1 -1 d2  0 d3 1;
ESTIMATE "T2 vs. T3" d1  0 d2 -1 d3 1;
RUN;
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Note the order of the equations: 
the reference group mean 

is subtracted from
the alternative group mean.

In ESTIMATE statements, the 
variables refer to their betas; 

the numbers refer to the 
operations of their betas.

Positive values indicate 
addition; negative values 

indicate subtraction.

Intercepts are used only 
in predicted values.



Using the CLASS statement instead
• If you let SAS do the dummy coding instead via CLASS, 

then the highest/last group is the reference
• Manual model:    ଵ  ଶ  ଷ  

 “Treatgroup” variable: Control=0, Treat1=1, Treat2=2, Treat3=3

 New variables d1= 0, 1, 0, 0   difference between Control and T1 
you created d2= 0, 0, 1, 0   difference between Control and T2
for the model: d3= 0, 0, 0, 1   difference between Control and T3

 When including d1, d2, and d3, SAS doesn’t understand they are part of 
one 4-group variable, and so does not provide omnibus (df=3) F-tests

• CLASS model:    ଵ  ଶ  ଷ  
 New variables g0= 1, 0, 0, 0   difference between T3 and Control 

created by g1= 0, 1, 0, 0   difference between T3 and T1
using CLASS: g2= 0, 0, 1, 0  difference between T3 and T2

 If SAS does the coding, it will provide 4-group (df=3) omnibus F-tests 
(and compute all cell means and differences using LSMEANS)
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Using the CLASS statement instead
• CLASS model:    ଵ  ଶ  ଷ  

 New variables g0= 1, 0, 0, 0   difference between T3 and Control 
created by g1= 0, 1, 0, 0   difference between T3 and T1
using CLASS: g2= 0, 0, 1, 0   difference between T3 and T2

TITLE "CLASS Contrasts for 4-Group Differences";
PROC MIXED DATA=dataname ITDETAILS METHOD=ML;
CLASS treatgroup;
MODEL y = treatgroup / SOLUTION;
LSMEANS treatgroup / DIFF=ALL;

ESTIMATE "Control Mean" intercept 1 treatgroup 1 0 0 0;
ESTIMATE "T1 Mean" intercept 1 treatgroup 0 1 0 0;
ESTIMATE "T2 Mean" intercept 1 treatgroup 0 0 1 0;
ESTIMATE "T3 Mean" intercept 1 treatgroup 0 0 0 1;
ESTIMATE "Control vs. T1" treatgroup -1 1 0 0;
ESTIMATE "Control vs. T2" treatgroup -1 0 1 0;
ESTIMATE "Control vs. T3" treatgroup -1 0 1 0;
ESTIMATE "T1 vs. T2" treatgroup 0 -1 1 0;
ESTIMATE "T1 vs. T3" treatgroup 0 -1 0 1;
ESTIMATE "T2 vs. T3" treatgroup 0 0 -1 1;
RUN;
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Note that treatgroup
is the only predictor.

This LSMEANS line provides the same 
information as all statements below!

Treatgroup has 4 
possible levels, 

so 4 values must be 
given in ESTIMATEs.



To CLASS or not to CLASS?
• Letting SAS create dummy codes for categorical predictors 

(instead of creating manual dummy codes) does the following:
 Allows use of LSMEANS (for cell means and differences)

 Provides omnibus (multiple df) group F-tests

 Marginalizes the group effect across interacting predictors 
 omnibus F-tests represent marginal main effects (instead of simple)

 e.g., MODEL y = Treatgroup Gender Treatgroup*Gender 
(in which Treatgroup is always on CLASS statement)
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Type 3 Tests of 
Fixed Effects 

Interpretation if using 
dummy code for Gender

Interpretation if CLASS 
statement for Gender

Gender Marginal gender diff Marginal gender diff
Treatgroup Group diff if gender=0 Marginal group diff 
Treatgroup*Gender Interaction Interaction



Continuous Predictors
• For continuous (quantitative) predictors, we (not SAS) will 

make the intercept interpretable by centering
 Centering = subtract a  constant (e.g., sample mean, other meaningful 

reference value) from each person’s variable value so that the 0 value 
falls within the range of the new centered predictor variable

 Continuous predictors do not go on the CLASS statement

 Predicted group means at specific levels of continuous predictors 
can be found using LSMEANS (e.g., if X1 SD=5, means at ±1 SD):
 CLASS treatgroup;
MODEL y = treatgroup x1 treatgroup*x1 / SOLUTION;
LSMEANS treatgroup / AT (x1)=(-5) DIFF=ALL;
LSMEANS treatgroup / AT (x1)=( 0) DIFF=ALL;
LSMEANS treatgroup / AT (x1)=( 5) DIFF=ALL;

 Continuous predictors cannot be used on LSMEANS otherwise
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Interactions:   ଵ  ଶ  ଷ   

• Interaction = Moderation: the effect of a predictor depends 
on the value of the interacting predictor
 Either predictor can be “the moderator” (interpretive distinction only) 

• Interactions can always be evaluated for any combination of 
categorical and continuous predictors, although traditionally…
 In “ANOVA”: By default, all possible interactions are estimated

 Software does this for you; oddly enough, nonsignificant interactions usually still 
are kept in the model (even if only significant interactions are interpreted)

 In “ANCOVA”: Continuous predictors (“covariates”) do not get to be part 
of interaction terms  “homogeneity of regression assumption”
 There is no reason to assume this – it is a testable hypothesis!

 In “Regression”: No default – effects of predictors are as you specify
 Requires most thought, but gets annoying because in regression programs you 

usually have to manually create the interaction as an observed variable: 
 e.g.,  XZinteraction = centeredX * centeredZ
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Interaction variables are created 
for you in SAS PROC GLM, 
MIXED, and GLIMMIX 



Main Effects of Predictors within Interactions
• Main effects of predictors within interactions should remain in the 

model regardless of whether or not they are significant
 An interaction is an over-additive (enhancing) or under-additive 

(dampening) effect, so what it is additive to must be included

• The role of a two-way interaction is to adjust its main effects… 
• However, the idea of a “main effect” no longer applies… 

each main effect is conditional on the interacting predictor = 0

• e.g., Model of Y = W, X, Z, X*Z:
 The effect of W is still a “main effect” because it is not part of an interaction
 The effect of X is now the conditional main effect of X specifically when Z=0 
 The effect of Z is now the conditional main effect of Z specifically when X=0 

• The trick is keeping track of what 0 means for every interacting 
predictor, which depends on the way each predictor is being 
represented, as determined by you, or by the software without you!
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Interactions:  Why 0 Matters
• Y = Student achievement (GPA as percentage out of 100)

X = Parent attitudes about education (measured on 1-5 scale) 
Z = Father’s education level (measured in years of education)

• GPAi =  β0 + (β1*Atti) + (β2*Edi) +  (β3*Atti*Edi) + ei
GPAi = 30 +   (1*Atti) + (2*Edi) + (0.5*Atti*Edi) + ei

• Interpret β0:

• Interpret β1:

• Interpret β2: 

• Interpret β3: Attitude as Moderator: 

Education as Moderator:

• Predicted GPA for attitude of 3 and Ed of 12?
75 = 30 + 1*(3)  +  2*(12)  +  0.5*(3)*(12) 
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Model-Implied Simple Main Effects
• Original:  GPAi = β0 +(β1*Atti)+ (β2*Edi) +  (β3*Atti*Edi) + ei

GPAi = 30 + (1*Atti) + (2*Edi) + (0.5*Atti*Edi) + ei

• Given any values of the predictor variables, the model equation 
provides predictions for:
 Value of outcome (model-implied intercept for non-zero predictor values)
 Any conditional (simple) main effects implied by an interaction term
 Simple Main Effect = what it is + what modifies it

• Step 1: Identify all terms in model involving the predictor of interest
 e.g., Effect of Attitudes comes from: β1*Atti + β3*Atti*Edi

• Step 2: Factor out common predictor variable
 Start with [β1*Atti + β3*Atti*Edi]  [Atti (β1+ β3*Edi)]  Atti (new β1) 
 Value given by ( ) is then the model-implied coefficient for the predictor

• Step 3: ESTIMATEs calculate model-implied simple effect and SE
 Let’s try it for a new reference point of attitude = 3 and education = 12
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Model-Implied Simple Main Effects
• Old Equation using uncentered predictors:

GPAi =  β0 +(β1*Atti)+ (β2*Edi) +  (β3*Atti*Edi) + ei
GPAi = 30 + (1*Atti) +  (2*Edi) + (0.5*Atti*Edi) + ei

• New equation using centered predictors (Atti−3 and Edi−12):
GPAi = __ + ___*(Atti−3)+ ___*(Edi−12) + ___*(Atti−3)*(Edi−12)+ei

• Intercept: expected value of GPA when Atti=3 and Edi=12
β0 = 75

• Simple main effect of Att if Edi=12
β1*Atti + β3*Atti*Edi  Atti(β1+ β3*Edi)  Atti(1+0.5*12)

• Simple main effect of Ed if Atti=3
β2*Edi + β3*Atti*Edi  Edi(β2+ β3*Atti )  Edi(2+0.5*3)

• Two-way interaction of Att and Ed:
(0.5*Atti*Edi)
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Model-Implied Simple Main Effects
• Old Equation using uncentered predictors:

GPAi =  β0 +(β1*Atti)+ (β2*Edi) +  (β3*Atti*Edi) + ei
GPAi = 30 + (1*Atti) +  (2*Edi) + (0.5*Atti*Edi) + ei

• Intercept: expected value of GPA when Atti=3 and Edi=12
• Simple main effect of Att if Edi=12 Atti(β1+ β3*Edi) 
• Simple main effect of Ed if Atti=3 Edi(β2+ β3*Atti ) 

TITLE "Calculating Model-Implied Parameters";
PROC MIXED DATA=dataname ITDETAILS METHOD=ML;
MODEL y = att ed att*ed / SOLUTION;
ESTIMATE "GPA if Att=3, Ed=12" intercept 1 att 3 ed 12 att*ed 36;
ESTIMATE "Effect of Att if Ed=12" att 1 att*ed 12;
ESTIMATE "Effect of Ed if Att=3" ed 1 att*ed 3;
RUN;
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In ESTIMATE statements, the variables 
refer to their betas; the numbers refer 

to the operations of their betas.

These estimates would be given 
directly by the model parameters 

instead if you re-centered the 
predictors as: Att-3, Ed-12.



More Generally…
• Can decompose a 2-way interaction by testing the simple effect of X at 

different levels of Z (and vice-versa)
 Use ESTIMATEs to request simple effects at any point of the interacting predictor

 Re-centering the interacting predictor at those points will also work

• More general rules, given a 3-way interaction:
 Simple (main) effects move the intercept

 1 possible interpretation for each simple main effect
 Each simple effect is conditional on other two variables = 0

 The 2-way interactions (3 of them in a 3-way model) move the simple effects
 2 possible interpretations for each 2-way interaction
 Each 2-way interaction is conditional on third variable = 0

 The 3-way interaction moves each of the 2-way interactions
 3 possible interpretations of the 3-way interaction
 Is highest-order term in model, so is unconditional (applies always)
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Practice with 3-Way Interactions
• Intercept = 5, Effect of X  = 1.0, Effect of Z  = 0.50, Effect of W = 0.20 

• X*Z  = .10 (applies specifically when W is 0)
 #1: for every 1-unit ∆X, 

 #2: for every 1-unit ∆Z, 

• X*W = .01 (applies specifically when Z is 0)
 #1: for every 1-unit ∆X, 

 #2: for every 1-unit ∆W,

• Z*W = .05 (applies specifically when X is 0)
 #1: for every 1-unit ∆Z, 

 #2: for every 1-unit ∆W, 

• X*Z*W = .001 (unconditional because is highest order)
 #1: for every 1-unit ∆X, 

 #2: for every 1-unit ∆Z, 

 #3: for every 1-unit ∆W, 
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Practice with 3-Way Interactions
• Model:    ଵ  ଶ  ଷ  ସ  

ହ          

• Calculate simple main effects:
 For X 
 For Z 
 For W 

• Calculate simple 2-way interactions:
 For X*Z 
 For X*W 
 For Z*W 
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Interpreting Interactions:  Summary
• Interactions represent “moderation” – the idea that the effect 

of one variable depends upon the level of other(s)

• The main effects WILL CHANGE in once an interaction with 
them is added, because they now mean different things:
 Main effect  Simple effect specifically when interacting predictor = 0

 Best to have 0 as a meaningful predictor value for that reason

• Conditional rules of parameter interpretation:
 Intercepts are conditional on (i.e., get moved by) main effects

 Main effects are conditional on two-ways (become ‘simple effects’)

 Two-ways are conditional on three-ways... And so forth

 Highest-order term is unconditional – same regardless of centering
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