Interpreting Linear Models
(Especially Interactions)

- Today'’s Class:
> Representing effects of categorical predictors
> Decomposing interactions among continuous predictors

> (see example for interactions among categorical predictors)
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The Two Sides of a Model

Vi =|Bo + P1Xi + B2Z; + B3 X Z;|+|e;

- Model for the Means (Predicted Values): \ Our focus today

Each person’s expected (predicted) outcome is a weighted linear
function of his/her values on X and Z (and here, their interaction),
each measured once per person (i.e., this is a between-person model)

Estimated parameters are called fixed effects (here, S, 51, 55, and B3)
- The number of fixed effects will show up in formulas as k (so k = 4 here)

- Model for the Variance (“Piles” of Variance):
. e; ~ N(0,0%)~> ONE residual (unexplained) deviation

. e; has a mean of 0 with some estimated constant variance o2,
Is normally distributed, is unrelated to X and Z, and is unrelated across
people (across all observations, just people here)

- Estimated parameter is the residual variance only (in above model)
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Representing the Effects of Predictors

- From now on, we will think carefully about exactly how the
predictor variables are entered into the model for the means
(i.e., by which a predicted outcome is created for each person)

- Why don't people always care? Because the scale of predictors:
> Does NOT affect the amount of outcome variance accounted for (R?)

> Does NOT affect the outcomes values predicted by the model for the means
(so long as the same predictor fixed effects are included)

- Why should this matter to us?
> Because the Intercept = expected outcome value when X = 0

> Can end up with nonsense values for intercept if X = 0 isn't in the data,
so we need to change the scale of the predictors to include 0

> Scaling becomes more important once interactions are included or once
random intercepts are included (i.e., variability around fixed intercept)
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Adjusting the Scale of Predictors

- For continuous (quantitative) predictors, we will make the intercept

Interpretable by centering:

> Centering = subtract a constant from each person’s variable value so that
the 0 value falls within the range of the new centered predictor variable

> Typical = Center around predictor’s mean: Centered X; = X; — X,

Intercept is then expected outcome for “average X; person”
> Better &> Center around meaningful constant C: Centered X; = X; — C

Intercept is then expected outcome for person with that constant (even 0 may be ok)

- For categorical (grouping) predictors, either we or the program
will make the intercept interpretable by creating a reference group:

Reference group is given a 0 value on all predictor variables created from
the original grouping variable, such that the intercept is the expected

outcome for that reference group specifically

Accomplished via “dummy coding” (aka, “reference group coding”)

= Two-group example using Gender: 0 = Men, 1 = Women
(or 0 = Women, 1 = Men)

>
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Adjusting the Scale of Predictors

For more than two groups, need: dummy codes = #groups — 1

» "Treatgroup” variable: Control=0, Treatl=1, Treat2=2, Treat3=3

> Variables: di= 0,1, 0, 0 = difference between Control and T1
d?=0,0, 1, 0 = difference between Control and T2

SAS CLASS statement | ¢3=0, 0, 0, 1 - difference between Control and T3
can do this for you ©

Potential pit-falls:

> All predictors for the effect of group (e.g., d1, d2, d3) MUST be in the
model at the same time for these specific interpretations to be correct!

> Model parameters resulting from these dummy codes will not directly tell
you about differences among non-reference groups (but they can)

Other examples of things people do to categorical predictors:

» "Contrast/effect coding”—> Gender: —-0.5 = Men, 0.5 = Women

> Test other contrasts among multiple groups - four-group example:
contrastl= -1, 0.33, 0.33, 0.34 - Control vs. Any Treatment?
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Categorical Predictors: Manual Coding

« Model: Vi = IBO + ,Bldli + ﬁzdzi + ﬁ3d3i + €;
> "Treatgroup” variable: Control=0, Treatl=1, Treat2=2, Treat3=3

> New variables dI=0, 1,0, 0 - difference between Control and T1

to becreated d2?=0,0,1, 0 - difference between Control and T2

for the model: d3=0,0, 0,1 - difference between Control and T3

- How does the model give us all possible group differences?
By determining each group’s mean, and then the difference...

Control Mean Treatment 1 Treatment 2 Treatment 3
(Reference) Mean Mean Mean
Po Pot+P1dl;  PBo+Pp.d2; Bo+Pp3d3;

- The model for the 4 groups directly provides 3 differences
(control vs. each treatment), and indirectly provides another
3 differences (differences between treatments)
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Group Differences from Dummy Codes
- Model; Vi = IBO + ,Bldli + ﬁzdzi + ﬁ3d3i + €;

Control Mean Treatment 1 Treatment 2 Treatment 3
(Reference) Mean Mean Mean
Bo Pot+p1dl;  Po+P2d2;  [o+p3d3;
Alt Group Ref Group  Difference
» Control vs. T1 = (Bo+p1) — (Bo) = b4
» Control vs. T2 = (Bo+B2) — (Bo) = [
» Control vs. T3 = (Bo+f3) — (Bo) = [

« T1vs. T2 = (Bo+B2) — (Bo+p1) = p2 — b1
« T1lvs. T3 = (Bo+PB3) — (Bo+p1) = Pz — P4
- T2vs. T3 = (Bo+P3) — (Both2) = p3 — B>
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ESTIMATEs when using dummy codes

Alt Group Ref Group  Difference Note the order of the equations:
. Controlvs. T1 = (Bo+B1) — (Bo) = B4 the reference group mean
(s subtracted from
« Control vs. T2 = (By+ — = :
(Bothz) = (Bo) & the alternative group mean.

- Controlvs. T3 = (Bo+f3) — (Bo) = B3
« Tlvs. T2 = (Bot+B2) — (Bot+p1) =B, — b1
« Tlvs. T3 = (Bot+PB3) — (Bot+p1) = B3 — P

. T2vs. T3 = (Bo+B3) — (Bo+P2) = By — B, In ESTIMATE statements, the
variables refer to their betas;

TITLE "Manual Contrasts for 4-Group Diffs"; theruqnbeﬁ;m#ertothe

PROC MIXED DATA=dataname ITDETAILS METHOD=ML; operations of their betas.

MODEL y = d1 d2 d3 /7 SOLUTION;

ESTIMATE "Control Mean' intercept 1 gl 0 32 0 33 0;

ESTIMATE ""T1 Mean' intercept 1 d1 1 d2 O d3 O;

ESTIMATE T2 Mean" intercept 1 dl 0 d2 1 d3 o:|Intercepts are used only
ESTIMATE "'T3 Mean" intercept 1 d1 0 d2 0 d3 1:| in predicted values.
ESTIMATE "Contro= vs. T1" gl 1 32 0 33 0;

ESTIMATE "Control vs. T2" 1 0d2 1 d30; " s
ESTIMATE "Control vs. T3" di 0d2 0 d3 1- Positive values indicate
ESTIMATE "T1 vs. T2" gl -1 32 1 33 0; addition; negative values
ESTIMATE "T1 vs. T3" 1 -1d2 0 d3 1; Lo :
ESTIMATE "T2 vs. T3" dl 0 d2 -1 d3 1- indicate subtraction.
RUN;
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Using the CLASS statement instead

- If you let SAS do the dummy coding instead via CLASS,
then the highest/last group is the reference

- Manual model: y; = By, + f1d1; + B,d2; + B3;d3; + e;
> "Treatgroup” variable: Control=0, Treatl=1, Treat2=2, Treat3=3

> New variables dI=0,1,0, 0 = difference between Control and T1
you created d2=10,0,1, 0 - difference between Control and T2
for the model: d3=0, 0,0, 1 - difference between Control and T3

> When including d1, d2, and d3, SAS doesn’t understand they are part of
one 4-group variable, and so does not provide omnibus (df=3) F-tests

« CLASS model; Vi = ,BO + ,BlgOl- + ,Bzgli + ,83gZi + €;

> New variables ¢g0=1,0,0, 0 - difference between T3 and Control
created by gl=0,1,0,0 - difference between T3 and T1
using CLASS: g2=10,0,1, 0 > difference between T3 and T2

> If SAS does the coding, it will provide 4-group (df=3) omnibus F-tests
(and compute all cell means and differences using LSMEANS)
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Using the CLASS statement instead
« CLASS model: Vi = ,BO + ,BlgOi + ,82911' + ,83g2i + e;

> New variables g0
created by 1
using CLASS: g2

TITLE "CLASS Contrasts for 4-Group Differences';

0,1,
0, 0,

1,0, 0,0 - difference between T3 and Control

0, 0 = difference between T3 and T1
1, 0 - difference between T3 and T2

PROC MIXED DATA=dataname ITDETAILS METHOD=ML;

CLASS treatgroup;
MODEL y = treatgroup / SOLUTION;
LSMEANS treatgroup / DIFF=ALL;

ESTIMATE ""Control Mean"
ESTIMATE "T1 Mean"
ESTIMATE "T2 Mean"
ESTIMATE "T3 Mean"
ESTIMATE "Control vs. T1"
ESTIMATE "Control vs. T2"
ESTIMATE "Control vs. T3"
ESTIMATE "T1 vs. T2"
ESTIMATE "T1 vs. T3"
ESTIMATE "T2 vs. T3"

RUN;
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Note that treatgroup
is the only predictor.

This LSMEANS line provides the same
information as all statements below!

intercept 1
intercept 1
intercept 1
intercept 1
treatgroup
treatgroup
treatgroup
treatgroup
treatgroup
treatgroup

treatgroup 1 0 O O;

treatgroup O
treatgroup O
treatgroup O

-1
-1
-1

oNoNo)

1

OrpEFrOoOo

R, OOOO

P ORRRFRO

100
01 O;
001

Treatgroup has 4
possible levels,
so 4 values must be
given in ESTIMATEs.




To CLASS or not to CLASS?

. Letting SAS create dummy codes for categorical predictors
(instead of creating manual dummy codes) does the following:

> Allows use of LSMEANS (for cell means and differences)
> Provides omnibus (multiple df) group F-tests

> Marginalizes the group effect across interacting predictors
- omnibus F-tests represent marginal main effects (instead of simple)

> e.g., MODEL y = Treatgroup Gender Treatgroup*Gender
g y group group
(in which Treatgroup (s always on CLASS statement)

Type 3 Tests of Interpretation if using Interpretation if CLASS
Fixed Effects dummy code for Gender statement for Gender
Gender Marginal gender diff Marginal gender diff
Treatgroup Group diff if gender=0 Marginal group diff

Treatgroup*Gender  Interaction Interaction
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Continuous Predictors

- For continuous (quantitative) predictors, we (not SAS) will
make the intercept interpretable by centering

> Centering = subtract a constant (e.g., sample mean, other meaningful
reference value) from each person’s variable value so that the 0 value
falls within the range of the new centered predictor variable

> Continuous predictors do not go on the CLASS statement
> Predicted group means at specific levels of continuous predictors

can be found using LSMEANS (e.g., if X1 SD=5, means at +1 SD):

CLASS treatgroup;

MODEL y = treatgroup x1 treatgroup*xl / SOLUTION;
LSMEANS treatgroup / AT (x1)=(-5) DIFF=ALL;
LSMEANS treatgroup /7 AT (x1)=(C 0) DIFF=ALL;
LSMEANS treatgroup / AT (x1)=( 5) DIFF=ALL;

> Continuous predictors cannot be used on LSMEANS otherwise
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Interactions: y; = o + [1X; + [2Z; + [3X;Z; + ¢;

Interaction = Moderation: the effect of a predictor depends

on the value of the interacting predictor
> Either predictor can be “the moderator” (interpretive distinction only)

Interactions can always be evaluated for any combination of
categorical and continuous predictors, although traditionally...

> In "ANOVA": By default, all possible interactions are estimated

Software does this for you; oddly enough, nonsignificant interactions usually still
are kept in the model (even if only significant interactions are interpreted)

> In "ANCOVA": Continuous predictors (“covariates”) do not get to be part
of interaction terms =2 "homogeneity of regression assumption”
There is no reason to assume this — it is a testable hypothesis!
> In “Regression”: No default — effects of predictors are as you specify

Requires most thought, but gets annoying because in regression programs you
usually have to manually create the interaction as an observed variable:

e.g., XZinteraction = centeredX * centeredZ | |hteraction variables are created
for you in SAS PROC GLM,
MIXED, and GLIMMIX ©
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Main Effects of Predictors within Interactions

Main effects of predictors within interactions should remain in the
model regardless of whether or not they are significant

> An interaction is an over-additive (enhancing) or under-additive
(dampening) effect, so what it is additive to must be included

The role of a two-way interaction is to adjust its main effects...

However, the idea of a “main effect” no longer applies...
each main effect is conditional on the interacting predictor = 0

e.g., Model of Y =W, X, Z, X*Z:

> The effect of W is still a “main effect” because it is not part of an interaction
> The effect of X is now the conditional main effect of X specifically when Z=0
> The effect of Z is now the conditional main effect of Z specifically when X=0

The trick is keeping track of what O means for every interacting
predictor, which depends on the way each predictor is being
represented, as determined by you, or by the software without you!
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Interactions: Why 0 Matters

. Y = Student achievement (GPA as percentage out of 100)
X = Parent attitudes about education (measured on 1-5 scale)
Z = Father’s education level (measured in years of education)
- GPA. = B, + (B,*Att) + (B,*Ed,) + (B;*Att*Ed.) + e,
GPA, = 30 + (1*Att) + (2*Ed,) + (0.5*Att*Ed.) + e,
 Interpret 3,
 Interpret 3;:
 Interpret f3,:
 Interpret [3,: Attitude as Moderator:

Education as Moderator:

« Predicted GPA for attitude of 3 and Ed of 127
75 =30 + 1*(3) + 2*(12) + 0.5*(3)*(12)
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Model-Implied Simple Main Effects

- Original: GPA,

= Bo +(B,*Att)+ (B,*Ed) + (B;*Att*Ed) + e;
GPA, =

30 + (L*Att) + (2*Ed) + (0.5*Att*Ed) + e,

- Given any values of the predictor variables, the model equation
provides predictions for:

> Value of outcome (model-implied intercept for non-zero predictor values)
> Any conditional (simple) main effects implied by an interaction term
> Simple Main Effect = what it is + what modifies it

. Step 1: Identify all terms in model involving the predictor of interest
> e.g., Effect of Attitudes comes from: B, *Att, + B;*Att.*Ed,

. Step 2: Factor out common predictor variable
» Start with [B,*Att, + B;*Att*Ed.] > [Att, (B,+ Bs*Ed)] > Att, (new B,)
> Value given by () is then the model-implied coefficient for the predictor
. Step 3: ESTIMATEs calculate model-implied simple effect and SE

> Let's try it for a new reference point of attitude = 3 and education = 12
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Model-Implied Simple Main Effects

- Old Equation using uncentered predictors:
GPA, = B, +(B,*Att,)+ (B,*Ed,) + (B;*Att*Ed.) + e,
GPA. = 30 + (L*Att) + (2*Ed.) + (0.5*Att.*Ed) + e

- New equation using centered predictors (Att,.—3 and Ed,-12):
GPA, =+ *(Att-3)+ _ *(Ed.-12) + _ *(Att,—3)*(Ed,-12)+e,

- Intercept: expected value of GPA when Att,=3 and Ed.=12
Bo =75

« Simple main effect of Att if Ed,=12
B,*Att. + B;*Att.*Ed. > Att.(B,+ B;*Ed) > Att,(1+0.5%12)

« Simple main effect of Ed if Att.=3
B,*Ed. + B;*Att.*Ed. > Ed.(B,+ B;*Att.) > Ed.(2+0.5*3)

- Two-way interaction of Att and Ed:
(0.5*Att.*Ed.)
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Model-Implied Simple Main Effects

Old Equation using uncentered predictors:
GPA, = B, +(B,*Att)+ (B,*Ed)) + (B;*Att.*Ed.) + e,
GPA. = 30 + (1*Att) + (2*Ed)) + (0.5*Att.*Ed) + e,

Intercept: expected value of GPA when Att,=3 and Ed.=12
Simple main effect of Att if Ed,=12 - Att,(B,+ B;*Ed))
Simple main effect of Ed if Att;=3 2> Ed,(B,+ B;*Att;)

TITLE "Calculating Model-Implied Parameters';

PROC MIXED DATA=dataname ITDETAILS METHOD=ML;

MODEL y = att ed att*ed / SOLUTION;

ESTIMATE "GPA 1f Att=3, Ed=12" intercept 1 att 3 ed 12 att*ed 36;
ESTIMATE "Effect of Att i1f Ed=12" att 1 att*ed 12;

ESTIMATE "Effect of Ed i1f Att=3" ed 1 att*ed 3;

RUN; . .
These estimates would be given
In ESTIMATE statements, the variables directly by the model parameters
refer to their betas; the numbers refer instead if you re-centered the
to the operations of their betas. predictors as: Att-3, Ed-12.
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More Generally...

- Can decompose a 2-way interaction by testing the simple effect of X at
different levels of Z (and vice-versa)

> Use ESTIMATEs to request simple effects at any point of the interacting predictor

> Re-centering the interacting predictor at those points will also work

- More general rules, given a 3-way interaction:

> Simple (main) effects move the intercept
1 possible interpretation for each simple main effect
Each simple effect is conditional on other two variables = 0
> The 2-way interactions (3 of them in a 3-way model) move the simple effects
2 possible interpretations for each 2-way interaction
Each 2-way interaction is conditional on third variable = 0
> The 3-way interaction moves each of the 2-way interactions

3 possible interpretations of the 3-way interaction
Is highest-order term in model, so is unconditional (applies always)
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Practice with 3-Way Interactions

- Intercept = 5, Effect of X = 1.0, Effect of Z = 0.50, Effect of W = 0.20
- X*Z = .10 (applies specifically when W is 0)
> #1: for every 1-unit AX,
> #2:for every 1-unit AZ,
- X*W = .01 (applies specifically when Z is 0)
> #1: for every 1-unit AX,
> #2:for every 1-unit AW,
- Z*W = .05 (applies specifically when X is 0)
> #1: for every 1-unit AZ,
> #2: for every 1-unit AW,
- X*Z*W = .001 (unconditional because is highest order)
> #1: for every 1-unit AX,
> #2:for every 1-unit AZ,
> #3: for every 1-unit AW,
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Practice with 3-Way Interactions

» Model: y; = By + 1 X; + B2Z; + BsW; + BaX; W,
+65XiZ; + BeZiW; + [, X Z;W; + e
» Calculate simple main effects:
> For X 2
> ForZ =
> For W =

- Calculate simple 2-way interactions:
> For X*Z -
> For X*W -
> For Z*W -
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Interpreting Interactions: Summary

- Interactions represent “moderation” — the idea that the effect
of one variable depends upon the level of other(s)

« The main effects WILL CHANGE in once an interaction with
them is added, because they now mean different things:

> Main effect 2 Simple effect specifically when interacting predictor = 0

> Best to have 0 as a meaningful predictor value for that reason

- Conditional rules of parameter interpretation:

> Intercepts are conditional on (i.e., get moved by) main effects
> Main effects are conditional on two-ways (become ‘simple effects’)

> Two-ways are conditional on three-ways... And so forth

> Highest-order term is unconditional — same regardless of centering
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