The MEANS Procedure |
|
|
|
|
|
|
|
|
|
Analysis Variable : GPA |
|
N |
Mean |
Std
Dev |
Minimum |
Maximum |
|
400 |
2.998925 |
0.3979409 |
1.9 |
4 |
|
|
|
|
|
|
|
|
|
|
The FREQ Procedure |
|
|
|
Likelihood of Applying (1 = likely) |
|
Lapply |
Frequency |
Percent |
Cumulative |
Cumulative |
|
Frequency |
Percent |
|
0 |
220 |
55 |
220 |
55 |
|
1 |
180 |
45 |
400 |
100 |
|
|
|
APPLY |
Frequency |
Percent |
Cumulative |
Cumulative |
|
Frequency |
Percent |
|
0 |
220 |
55 |
220 |
55 |
|
1 |
140 |
35 |
360 |
90 |
|
2 |
40 |
10 |
400 |
100 |
|
|
|
Parent Has Graduate Degree |
|
parentGD |
Frequency |
Percent |
Cumulative |
Cumulative |
|
Frequency |
Percent |
|
0 |
337 |
84.25 |
337 |
84.25 |
|
1 |
63 |
15.75 |
400 |
100 |
|
|
|
Student Attends Public University |
|
PUBLIC |
Frequency |
Percent |
Cumulative |
Cumulative |
|
Frequency |
Percent |
|
0 |
343 |
85.75 |
343 |
85.75 |
|
1 |
57 |
14.25 |
400 |
100 |
|
|
|
|
|
|
|
|
|
|
The GENMOD Procedure |
|
|
|
Model Information |
|
Data Set |
WORK.GRADPLAN |
|
|
Distribution |
Binomial |
|
|
Link Function |
Logit |
|
|
Dependent Variable |
Lapply |
Likelihood
of Applying (1 = likely) |
|
|
|
Number
of Observations Read |
400 |
|
Number of Observations Used |
400 |
|
Number of Events |
220 |
|
Number of Trials |
400 |
|
|
|
Response Profile |
|
Ordered |
Lapply |
Total |
|
Value |
Frequency |
|
1 |
0 |
220 |
|
2 |
1 |
180 |
|
|
PROC GENMOD is modeling the probability that Lapply='0'. One way
to change this to model the probability that Lapply='1' is to specify the
DESCENDING option in the PROC statement. |
|
|
Parameter Information |
|
Parameter |
Effect |
|
Prm1 |
Intercept |
|
|
|
Iteration History For Parameter |
|
Estimates |
|
Iter |
Ridge |
LogLikelihood |
Prm1 |
|
0 |
0 |
-275.27348 |
0.2197225 |
|
1 |
0 |
-275.25553 |
0.2006514 |
|
2 |
0 |
-275.25553 |
0.2006707 |
|
|
|
Criteria For Assessing Goodness Of Fit |
|
Criterion |
DF |
Value |
Value/DF |
|
Log Likelihood |
|
-275.2555 |
|
|
Full Log Likelihood |
|
-275.2555 |
|
|
AIC (smaller is better) |
|
552.5111 |
|
|
AICC (smaller is better) |
|
552.5211 |
|
|
BIC (smaller is better) |
|
556.5025 |
|
|
|
|
Last Evaluation Of The |
|
Negative Of The Gradient |
|
and Hessian |
|
|
Prm1 |
|
Gradient |
-1.84E-09 |
|
Prm1 |
99 |
|
|
|
Algorithm
converged. |
|
|
|
Analysis Of Maximum Likelihood Parameter Estimates |
Parameter |
DF |
Estimate |
Standard
Error |
Wald 95% Confidence Limits |
Wald
Chi-Square |
Pr > ChiSq |
Intercept |
1 |
0.2007 |
0.1005 |
0.0037 |
0.3977 |
3.99 |
0.0459 |
Scale |
0 |
1 |
0 |
1 |
1 |
|
|
|
|
|
The scale parameter was held
fixed. |
|
|
|
|
|
|
|
|
|
|
|
The GENMOD Procedure |
|
|
|
Model Information |
|
Data Set |
WORK.GRADPLAN |
|
|
Distribution |
Binomial |
|
|
Link Function |
Logit |
|
|
Dependent Variable |
Lapply |
Likelihood
of Applying (1 = likely) |
|
|
|
Number
of Observations Read |
400 |
|
Number of Observations Used |
400 |
|
Number of Events |
180 |
|
Number of Trials |
400 |
|
|
|
Response Profile |
|
Ordered |
Lapply |
Total |
|
Value |
Frequency |
|
1 |
1 |
180 |
|
2 |
0 |
220 |
|
|
PROC GENMOD
is modeling the probability that Lapply='1'. |
|
|
|
Parameter Information |
|
Parameter |
Effect |
|
Prm1 |
Intercept |
|
|
|
Iteration History For Parameter |
|
Estimates |
|
Iter |
Ridge |
LogLikelihood |
Prm1 |
|
0 |
0 |
-275.27348 |
-0.219722 |
|
1 |
0 |
-275.25553 |
-0.200651 |
|
2 |
0 |
-275.25553 |
-0.200671 |
|
|
|
Criteria For Assessing Goodness Of Fit |
|
Criterion |
DF |
Value |
Value/DF |
|
Log Likelihood |
|
-275.2555 |
|
|
Full Log Likelihood |
|
-275.2555 |
|
|
AIC (smaller is better) |
|
552.5111 |
|
|
AICC (smaller is better) |
|
552.5211 |
|
|
BIC (smaller is better) |
|
556.5025 |
|
|
|
|
Last Evaluation Of The |
|
Negative Of The Gradient |
|
and Hessian |
|
|
Prm1 |
|
Gradient |
1.84E-09 |
|
Prm1 |
99 |
|
|
|
Algorithm
converged. |
|
|
|
Analysis Of Maximum Likelihood Parameter Estimates |
Parameter |
DF |
Estimate |
Standard
Error |
Wald 95% Confidence Limits |
Wald
Chi-Square |
Pr > ChiSq |
Intercept |
1 |
-0.2007 |
0.1005 |
-0.3977 |
-0.0037 |
3.99 |
0.0459 |
Scale |
0 |
1 |
0 |
1 |
1 |
|
|
|
|
|
The scale parameter was held
fixed. |
|
|
|
|
|
|
|
|
|
|
|
The GENMOD Procedure |
|
|
|
Model Information |
|
Data Set |
WORK.GRADPLAN |
|
|
Distribution |
Binomial |
|
|
Link Function |
Logit |
|
|
Dependent Variable |
Lapply |
Likelihood
of Applying (1 = likely) |
|
|
|
Number
of Observations Read |
400 |
|
Number of Observations Used |
400 |
|
Number of Events |
220 |
|
Number of Trials |
400 |
|
|
|
Response Profile |
|
Ordered |
Lapply |
Total |
|
Value |
Frequency |
|
1 |
0 |
220 |
|
2 |
1 |
180 |
|
|
PROC GENMOD is modeling the probability that Lapply='0'. One way
to change this to model the probability that Lapply='1' is to specify the
DESCENDING option in the PROC statement. |
|
|
Parameter Information |
|
Parameter |
Effect |
|
Prm1 |
Intercept |
|
Prm2 |
parentGD |
|
Prm3 |
GPA3 |
|
Prm4 |
PUBLIC |
|
|
|
Iteration History For Parameter Estimates |
|
Iter |
Ridge |
LogLikelihood |
Prm1 |
Prm2 |
Prm3 |
Prm4 |
|
0 |
0 |
-265.00194 |
0.3650003 |
-1.113614 |
-0.567908 |
0.2070592 |
|
1 |
0 |
-264.9624 |
0.3381472 |
-1.059362 |
-0.548005 |
0.2004713 |
|
2 |
0 |
-264.9624 |
0.3382338 |
-1.059612 |
-0.548246 |
0.2005571 |
|
3 |
0 |
-264.9624 |
0.3382338 |
-1.059612 |
-0.548246 |
0.2005571 |
|
|
|
Criteria For Assessing Goodness Of Fit |
|
Criterion |
DF |
Value |
Value/DF |
|
Log Likelihood |
|
-264.9624 |
|
|
Full Log Likelihood |
|
-264.9624 |
|
|
AIC (smaller is better) |
|
537.9248 |
|
|
AICC (smaller is better) |
|
538.0261 |
|
|
BIC (smaller is better) |
|
553.8907 |
|
|
|
|
Last Evaluation Of The Negative Of The Gradient
and Hessian |
|
|
Prm1 |
Prm2 |
Prm3 |
Prm4 |
|
Gradient |
-9.77E-08 |
1.17E-07 |
1.56E-07 |
-1.92E-08 |
|
Prm1 |
93.971936 |
13.525946 |
0.4546087 |
13.199123 |
|
Prm2 |
13.525946 |
13.525946 |
1.9430187 |
2.828192 |
|
Prm3 |
0.4546087 |
1.9430187 |
14.4641 |
2.9910389 |
|
Prm4 |
13.199123 |
2.828192 |
2.9910389 |
13.199123 |
|
|
|
Algorithm
converged. |
|
0.583753215 |
|
|
|
Analysis Of Maximum Likelihood Parameter Estimates |
Parameter |
DF |
Estimate |
Standard
Error |
Wald 95% Confidence Limits |
Wald
Chi-Square |
Pr > ChiSq |
Intercept |
1 |
0.3382 |
0.1187 |
0.1056 |
0.5709 |
8.12 |
0.0044 |
parentGD |
1 |
-1.0596 |
0.2974 |
-1.6425 |
-0.4767 |
12.7 |
0.0004 |
GPA3 |
1 |
-0.5482 |
0.2724 |
-1.0822 |
-0.0143 |
4.05 |
0.0442 |
PUBLIC |
1 |
0.2006 |
0.3053 |
-0.3979 |
0.799 |
0.43 |
0.5113 |
Scale |
0 |
1 |
0 |
1 |
1 |
|
|
|
|
|
The scale parameter was held
fixed. |
|
0.583753215 |
|
1.40242096 |
2.885216672 |
|
0.34659442 |
1.40242096 |
|
0.327084768 |
|
0.48607128 |
0.34659442 |
|
|
GPA3 |
Logit |
Odds of 0 |
Prob = 0 |
|
1 |
-0.210 |
0.811 |
0.448 |
|
0 |
0.338 |
1.402 |
0.584 |
|
-1 |
0.886 |
2.426 |
0.708 |
|
-2 |
1.435 |
4.198 |
0.808 |
|
|
Public |
Logit |
Odds of 0 |
Prob = 0 |
|
1 |
0.539 |
1.714 |
0.632 |
|
0 |
0.338 |
1.402 |
0.584 |
|
|
|
|
|
|
|
|
|