
Introduction to Generalized Univariate Models, 
Models for Binary Outcomes, 

and SAS PROC GENMOD 

PSYC 943 (930): Fundamentals  
of Multivariate Modeling 

Lecture 7: September 14, 2012 

PSYC 943: Lecture 7 



Today’s Class 

logit 
____ 

PSYC 943: Lecture 7 2 



Today’s Class 

• A bit of review for maximum likelihood 
 

• Expanding your linear models knowledge to models for outcomes 
that are not conditionally normally distributed 
 A class of models called Generalized Linear Models 

 

• A furthering of our Maximum Likelihood discussion: how knowledge 
of distributions and likelihood functions makes virtually any type of 
model possible (in theory) 
 

• An example of generalized models for binary data:  
logistic regression 
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REVIEWING MAXIMUM 
LIKELIHOOD 
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Properties of Maximum Likelihood Estimators 

• Provided several assumptions (“regularity conditions”) are met, 
maximum likelihood estimators have good statistical properties: 
 

1. Asymptotic Consistency: as the sample size increases, the 
estimator converges in probability to its true value  
 

2. Asymptotic Normality: as the sample size increases, the 
distribution of the estimator is normal (with variance given by 
“information” matrix) 
 

3. Efficiency: No other estimator will have a smaller standard error 
 

• Because they have such nice and well understood properties, MLEs 
are commonly used in statistical estimation 
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Things Involved in Maximum Likelihood Estimation 
• (Marginal) Likelihood/Probability Density Functions: 

 The assumed distribution of one observation’s data – following some type of probability 
density function that maps the sample space onto a likelihood 

 The outcome can come from any distribution  
 

• (Joint) Likelihood Function:  
 The combination of the marginal likelihood functions (by a product when independence 

of observations is assumed) 
 Serves as the basis for finding the unknown parameters that find the maximum point 

 
• Log-Likelihood Function: 

 The natural log of the joint likelihood function, used to make the function easier to work 
with statistically and computationally 

 Typically the function used to find the unknown parameters of the model 
 

• Function Optimization (finding the maximum): 
 Initial values of the unknown parameters are selected and the log likelihood is calculated 
 New values are then found (typically using an efficient search mechanism like Newton 

Raphson) and the log likelihood is calculated again 
 If the change in log likelihoods is small, the algorithm stops (found the maximum); if not, 

the algorithm continues for another iteration of new parameter guesses 
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Once the Maximum Is Found… 

• Distribution of the Parameters: 
 As sample size gets large, the parameters of the model follow a normal 

distribution (note, this is NOT the outcome) 
 

• Standard Errors of Parameters: 
 The standard errors of parameters are found by calculating the information 

matrix, which results from the matrix of second derivatives evaluated at the 
maximum value of the log likelihood function 

 The asymptotic covariance matrix of the parameters comes from -1 times 
the inverse of the information matrix (contains variances of parameters 
along the diagonal) 

 The standard error for each parameter is the square root of the variances 
 The variances and covariances of the parameters are used in calculating 

linear combinations of the parameters, as in SAS’ ESTIMATE statement 
 

PSYC 943: Lecture 7 7 



Once the Maximum is Found… 
• Likelihood Ratio/Deviance Tests: 

 -2 times the log likelihood (at the maximum) provides what is often called a 
deviance statistic 

 Nested models are compared using differences in -2*log likelihood, which 
follows a Chi-Square distribution with DF = difference in number of parameters 
between models 

 Some software reports -2 log likelihood (like PROC MIXED), some reports only 
the log likelihood (like PROC GENMOD so you have to multiply by -2) 

 
• Wald Tests: 

 (1 degree of freedom) Wald tests are typically formed by taking a parameter 
and dividing it by its standard error 

 Typically these are used to evaluate fixed effects for ML estimates of GLMs 
 

• Information Criteria 
 The information criteria are used to select from non-nested models 
 The model with the lowest value on a given criterion (i.e., AIC, BIC) is the 

preferred model 
 This is not a hypothesis test: no p-values are given 
 These aren’t used when models are nested (use likelihood ratio/deviance tests) 
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AN INTRODUCTION TO 
GENERALIZED MODELS 
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A World View of Models 

• Statistical models can be broadly organized as: 
 General (normal outcome) vs. Generalized (not normal outcome) 
 One dimension of sampling (one variance term per outcome) vs. multiple 

dimensions of sampling (multiple variance terms) 
 Fixed effects only vs. mixed (fixed and random effects = multilevel) 

 

• All models have fixed effects, and then: 
 General Linear Models: conditionally normal distribution for data, fixed 

effects, no random effects  
 General Linear Mixed Models: conditionally normal distribution for data, 

fixed and random effects  
 Generalized Linear Models: any conditional distribution for data, fixed 

effects through link functions, no random effects 
 Generalized Linear Mixed Models: any conditional distribution for data, 

fixed and random effects through link functions 
 

• “Linear” means the fixed effects predict the link-transformed DV in a linear 
combination of (effect*predictor) + (effect*predictor)… 
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Unpacking the Big Picture 
 
 
 
 
 
 
 

• Substantive theory: what guides your study 
 

• Hypothetical causal process: what the statistical model is testing 
(attempting to falsify) when estimated 
 

• Observed outcomes: what you collect and evaluate based on your theory 
 Outcomes can take many forms:  

 Continuous variables (e.g., time, blood pressure, height) 
 Categorical variables (e.g., likert-type responses, ordered categories, nominal 

categories) 
 Combinations of continuous and categorical (e.g., either 0 or some other  

continuous number) 
 

 

Observed 
Outcomes 

(any format) 

Hypothesized 
Causal 
Process Model: 

Substantive 
Theory  
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The Goal of Generalized Models 

• Generalized models map the substantive theory onto the sample 
space of the observed outcomes 
 Sample space = type/range/outcomes that are possible 

 
• The general idea is that the statistical model will not approximate 

the outcome well if the assumed distribution is not a good fit to the 
sample space of the outcome 
 If model does not fit the outcome, the findings cannot be believed 

 
• The key to making all of this work is the use of differing  

statistical distributions for the outcome 
 

• Generalized models allow for different distributions for outcomes 
 The mean of the distribution is still modeled by the model for the means  

(the fixed effects) 
 The variance of the distribution may or may not be modeled  

(some distributions don’t have variance terms) 
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What kind of outcome? Generalized vs. General 

• Generalized Linear Models  General Linear Models whose 
residuals follow some not-normal distribution and in which a link-
transformed Y is predicted instead of Y 

 

• Many kinds of non-normally distributed outcomes have some kind 
of generalized linear model to go with them: 
 Binary (dichotomous) 
 Unordered categorical (nominal) 
 Ordered categorical (ordinal) 
 Counts (discrete, positive values) 
 Censored (piled up and cut off at one end – left or right) 
 Zero-inflated (pile of 0’s, then some distribution after) 
 Continuous but skewed data (pile on one end, long tail) 

These two are often called 
“multinomial” inconsistently 
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Some Links/Distributions (from Wikipedia) 
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3 Parts of a Generalized Linear Model 

• Link Function (main difference from GLM): 
 How a non-normal outcome gets transformed into something  

we can predict that is more continuous (unbounded) 
 For outcomes that are already normal, general linear models  

are just a special case with an “identity” link function (Y * 1) 
 

 
• Model for the Means (“Structural Model”): 

 How predictors linearly relate to the link-transformed outcome 
 New link-transformed Yp = β0 + β1Xp + β2Zp + β3XpZp 

 
 

• Model for the Variance (“Sampling/Stochastic Model”): 
 If the errors aren’t normally distributed, then what are they? 
 Family of alternative distributions at our disposal that map onto what the 

distribution of errors could possibly look like 
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Link Functions: How Generalized Models Work 

• Generalized models work by providing a mapping of the theoretical 
portion of the model (the right hand side of the equation) to the 
sample space of the outcome (the left hand side of the equation) 
 The mapping is done by a feature called a link function 

 
• The link function is a non-linear function that takes the linear model 

predictors, random/latent terms, and constants and puts them onto 
the space of the outcome observed variables 

 

• Link functions are typically expressed for the mean of the outcome 
variable (we will only focus on that) 
 In generalized models, the variance is often a function of the mean 

PSYC 943: Lecture 7 16 



Link Functions in Practice 

• The link function expresses the conditional value of the mean of the 
outcome 𝐸 𝑌𝑝 = 𝑌�𝑝 = 𝜇𝑦 (E stands for expectation)… 

 

• …through a (typically) non-linear link function 𝑔 ⋅  (when used on 
conditional mean); or its inverse 𝑔−1(⋅) when used on predictors… 

 

• …of the observed predictors (and their regression weights): 
𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝 

• Meaning:  
𝐸 𝑌𝑝 = 𝑌�𝑝 = 𝜇𝑦 = 𝑔−1 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝  

 
• The term 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝 is called the linear predictor 

 Within the function, the values are linear combinations 
 Model for the means (fixed effects) 
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Normal GLMs in a Generalized Model Context 
• Our familiar general linear model is actually a member of the generalized 

model family (it is subsumed) 
 The link function is called the identity, the linear predictor is what it is 

 
• The normal distribution has two parameters, a mean 𝜇 and a variance 𝜎2 

 Unlike most distributions, the normal distribution parameters are directly 
modeled by the GLM 
 

• The expected value of an outcome from the GLM was  
𝐸 𝑌𝑝 = 𝑌�𝑝 = 𝜇𝑦 = 𝑔−1 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝

= 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝  
 
• In conditionally normal GLMs, the inverse link function is called the 

identity: 
𝑔−1 ⋅ = 1 ∗ linear predictor  

 The identity does not alter the predicted values – they can be any real number  
 This matches the sample space of the normal distribution – the mean can be any 

real number 
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And…About the Variance 

• The other parameter of the normal distribution described the 
variance of an outcome – called the error variance 
 

• We found that the model for the variance for the GLM was: 
𝑉 𝑌𝑝 = 𝑉 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝 + 𝑒𝑝 = 𝑉 𝑒𝑝 = 𝜎𝑒2 

 
• Similarly, this term directly relates to the variance of the outcome in 

the normal distribution 
 We will quickly see distributions where this doesn’t happen 
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GENERALIZED LINEAR MODELS  
FOR BINARY DATA 
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Today’s Data Example 

• To help demonstrate generalized models for binary data, we borrow 
from an example listed on the UCLA ATS website: 

http://www.ats.ucla.edu/stat/sas/dae/ologit.htm  
 

• Data come from a survey of 400 college juniors looking at factors 
that influence the decision to apply to graduate school: 
 Y (outcome): student rating of likelihood he/she will apply to grad school – 

(0 = unlikely; 1 = somewhat likely; 2 = very likely) 
 We will first look at Y for two categories (0 = unlikely; 1 = somewhat or very 

likely)  - this is to introduce the topic for you Y is a binary outcome 
 You wouldn’t do this in practice (use a different distribution for 3 categories) 

 
 ParentEd: indicator (0/1) if one or more parent has graduate degree 
 Public: indicator (0/1) if student attends a public university 
 GPA: grade point average on 4 point scale (4.0 = perfect) 
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Descriptive Statistics for Data 

Analysis Variable : GPA 
N Mean Std Dev Minimum Maximum 

400 2.998925 0.3979409 1.9 4 

Likelihood of Applying (1 = likely) 
Lapply Frequency Percent Cumulative Cumulative 

Frequency Percent 
0 220 55 220 55 
1 180 45 400 100 

APPLY Frequency Percent Cumulative Cumulative 
Frequency Percent 

0 220 55 220 55 
1 140 35 360 90 
2 40 10 400 100 

Parent Has Graduate Degree 
parentGD Frequency Percent Cumulative Cumulative 

Frequency Percent 
0 337 84.25 337 84.25 
1 63 15.75 400 100 

Student Attends Public University 
PUBLIC Frequency Percent Cumulative Cumulative 

Frequency Percent 
0 343 85.75 343 85.75 
1 57 14.25 400 100 
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What If We Used a Normal GLM for Binary Outcomes? 

• If 𝑌𝑝 is a binary (0 or 1) outcome… 
 Expected mean is proportion of people who have a 1 (or “p”, the probability 

of 𝑌𝑝 = 1 in the sample) 
 The probability of having a 1 is what we’re trying to predict for each person, 

given the values of his/her predictors  
 General linear model: Yp = β0 + β1xp + β2zp + ep 

– β0 = expected probability when all predictors are 0 
– β’s = expected change in probability for a one-unit change in the predictor 
– ep = difference between observed and predicted values 

 

 Model becomes Yp = (predicted probability of 1) + ep 
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A General Linear Model  Predicting Binary Outcomes? 

• But if 𝑌𝑝 is binary, then 𝑒𝑝 can only be 2 things: 
 𝑒𝑝 = 𝑌𝑝 − 𝑌�𝑝 

 If 𝑌𝑝 = 0 then 𝑒𝑝 = (0 − predicted probability) 
 If 𝑌𝑝 =1 then 𝑒𝑝 = (1 − predicted probability) 

 
 The mean of errors would still be 0…by definition  

 
 But variance of errors can’t possibly be constant over levels of 

X like we assume in general linear models 
 The mean and variance of a binary outcome are dependent!  
 As shown shortly, mean = p and variance = p*(1-p), so they are tied 

together 
 This means that because the conditional mean of Y  

(p, the predicted probability Y= 1) is dependent on X,  
then so is the error variance 
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A General Linear Model With Binary Outcomes? 

• How can we have a linear relationship between X & Y?  
• Probability of a 1 is bounded between 0 and 1, but predicted 

probabilities from a linear model aren’t bounded  
 Impossible values  

• Linear relationship needs to ‘shut off’ somehow  made nonlinear 
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3 Problems with General* Linear Models Predicting 
Binary Outcomes 
• *General = model for continuous, conditionally normal outcome 

 

• Restricted range (e.g., 0 to 1 for binary item) 
 Predictors should not be linearly related to observed outcome  
 Effects of predictors need to be ‘shut off’ at some point to  
     keep predicted values of binary outcome within range 

 

• Variance is dependent on the mean, and not estimated 
 Fixed (predicted value) and random (error) parts are related 
 So residuals can’t have constant variance 

 

• Further, residuals have a limited number of possible values 
 Predicted values can each only be off in two ways 
 So residuals can’t be normally distributed 
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The Binary Case: Bernoulli Distribution 
For items that are binary (dichotomous/two options), a frequent distribution chosen 
is the Bernoulli distribution (the Bernoulli distribution is also called a one-trial 
binomial distribution): 
 
Notation: 𝑌𝑝 ∼ 𝐵 𝑝𝑝  (where 𝑝 is the conditional probability of a 1 for person 𝑝) 
 
Sample Space: 𝑌𝑝 ∈ {0,1} (𝑌𝑝 can either be a 0 or a 1) 
 
Probability Density Function (PDF): 

𝑓 𝑌𝑝 = 𝑝𝑝
𝑌𝑝 1 − 𝑝𝑝

1−𝑌𝑝  
 
Expected value (mean) of Y: 𝐸 𝑌𝑝 = 𝜇𝑌𝑝 = 𝑝𝑝 
 
Variance of Y: 𝑉 𝑌𝑝 = 𝜎𝑌𝑝

2 = 𝑝𝑝 1 − 𝑝𝑝  
 
Note: 𝑝𝑝 is the only parameter – so we only need to provide a link function for it… 
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Generalized Models for Binary Outcomes 

• Rather than modeling the probability of a 1 directly, we need to 
transform it into a more continuous variable with a link function, 
for example: 

 

 We could transform probability into an odds ratio: 
 Odds ratio: (p / 1-p)  prob(1) / prob(0) 
 If p = .7, then Odds(1) = 2.33; Odds(0) = .429 
 Odds scale is way skewed, asymmetric, and ranges from 0 to +∞ 

– Nope, that’s not helpful 
 

 Take natural log of odds ratio  called “logit” link 
 LN (p / 1-p)  Natural log of (prob(1) / prob(0)) 
 If p = .7, then LN(Odds(1)) = .846; LN(Odds(0)) = -.846 
 Logit scale is now symmetric about 0  DING 

 
 The logit link is one of many used for the Bernoulli distribution 

 Names of others: Probit, Log-Log, Complementary Log-Log 
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Turning Probability into Logits 

• Logit is a nonlinear transformation of probability: 
 Equal intervals in logits are NOT equal in probability 
 The logit goes from ±∞ and is symmetric about prob = .5 (logit = 0) 
 This solves the problem of using a linear model 

 The model will be linear with respect to the logit, which translates into 
nonlinear with respect to probability (i.e., it shuts off as needed) 

Probability: p 

Logit: 
LN (p / 1-p) 

Zero-point on 
each scale: 
 
Prob = .5 
Odds = 1 
Logit = 0 

PSYC 943: Lecture 7 29 



Transforming Probabilities to Logits 

Probability Logit 
0.99 4.6 

0.90 2.2 

0.50 0.0 

0.10 -2.2 
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P
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Can you guess what a 
probability of .01 would be 
on the logit scale? 
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Transforming Logits to Probabilities: 𝒈(⋅) and 𝒈−𝟏(⋅) 

• In the terminology of generalized models, the link function for a 
logit is defined by (log = natural logarithm): 

𝑔 𝐸 𝑌𝑝 = log
𝑃 𝑌𝑝 = 1

1 − 𝑃 𝑌𝑝 = 1
= 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝 

 
 

• A logit can be translated to a probability with some algebra: 

exp log
𝑃 𝑌𝑝 = 1

1 − 𝑃 𝑌𝑝 = 1
= exp 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝  

↔ 1 − 𝑃 𝑌𝑝 = 1
𝑃 𝑌𝑝 = 1

1 − 𝑃 𝑌𝑝 = 1
= exp 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝 1 − 𝑃 𝑌𝑝 = 1  

Linear Predictor 
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Transforming Logits to Probabilities: 𝒈(⋅) and 𝒈−𝟏(⋅) 

• Continuing:  
𝑃 𝑌𝑝 = 1 = exp 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝  − exp 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝 𝑃 𝑌𝑝 = 1  

𝑃 𝑌𝑝 = 1 1 − exp 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝 = exp 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝  
 
 

• Which finally gives us:  

𝑃 𝑌𝑝 = 1 =
exp 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝

1 + exp 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝
 

 
• Therefore, the inverse logit (un-logit…or 𝑔−1 ⋅ ) is:  

𝐸 𝑌𝑝 = 𝑔−1 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝

=
exp 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝

1 + exp 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝
 

Linear Predictor 
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Written Another Way… 

• The inverse logit 𝑔−1 ⋅  has another form that is sometimes used: 
 

𝐸 𝑌𝑝 = 𝑔−1 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝  
 

=
exp 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝

1 + exp 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝
 

 

=
1

1 + exp − 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝
 

 
= 1 + exp − 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝

−1
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Nonlinearity in Prediction 
• The relationship between X and the probability of response=1  

is “nonlinear”  an s-shaped logistic curve whose shape and location are 
dictated by the estimated fixed effects 

 Linear with respect to the logit, nonlinear with respect to probability 
 
 
 
 
 
 
 
 

 

• The logit version of the model will be easier to explain; the probability version of 
the prediction will be easier to show 

B0 = 0 
B1 = 1 

Predictor X Predictor X 
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Putting it Together with Data: The Empty Model  
• The empty model (under GLM): 

𝑌𝑝 = 𝛽0 + 𝑒𝑝 
     where 𝑒𝑝 ∼ 𝑁 0,𝜎𝑒2  𝐸 𝑌𝑝 = 𝛽0 and 𝑉 𝑌𝑝 = 𝜎𝑒2 
 
• The empty model for a Bernoulli distribution with a logit link: 

𝑔 𝐸 𝑌𝑝 = 𝑙𝑙𝑙𝑙𝑙 𝑃 𝑌𝑝 = 1 = 𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 = 𝛽0 

𝑝𝑝 = 𝑃 𝑌𝑝 = 1 = 𝐸 𝑌𝑝 = 𝑔−1 𝛽0 =
exp 𝛽0

1 + exp 𝛽0
 

𝑉 𝑌𝑝 = 𝑝𝑝 1 − 𝑝𝑝  
• Note: many generalized LMs don’t list an error term in the linear predictor 

– is for the expected value and error usually has a 0 mean so it disappears 
 

• We could have listed 𝑒𝑝 for the logit function 
 𝑒𝑝 would have a logistic distribution with a zero mean and variance 𝜋

2

3
= 3.29 

 Variance is fixed – cannot modify variance of Bernoulli distribution after 
modeling the mean 

Linear Predictor 
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SAS PROC GENMOD 

• SAS PROC GENMOD is a generalized modeling procedure with a 
good number of distributions and link functions 

Click here for the PROC GENMOD online documentation 
 
 
 

 
• DESCENDING: models probability of a 1 (default is modeling 0) 
• MODEL: works the same as PROC GLM and PROC MIXED 
• ITPRINT: prints iteration details from ML algorithm (discussed soon) 
• DIST = BINOMIAL: sets the distribution of the data to be BINOMIAL 

(Bernoulli is a Binomial with trials = 1) 
• LINK = LOGIT: selects the logit link 
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Empty Model Output 

• The empty model is estimating one parameter: 𝛽0 
 
 
 

• 𝛽0 = −0.2007 (0.1005): interpreted as the predicted logit of yp =1 
for an individual when all predictors are zero 
 Because of the empty model, this becomes average logit for sample 

 
• Wald 95% Confidence Limits: (1.96 comes from standard normal Z)  

 −0.3977 = −0.2007 − 0.1005 ∗ 1.96 
 −0.0037 =    0.2007 + 0.1005 ∗ 1.96 

• Wald Chi-Square: 3.99 = 0.2007
0.1005

2
, compared with 𝜒12 

 Square of a standard normal (Z) is a chi square 

 

Analysis Of Maximum Likelihood Parameter Estimates 
Parameter DF Estimate Standard 

Error 
Wald 95% Confidence 

Limits 
Wald Chi-

Square 
Pr > Chi

Sq 
Intercept 1 -0.2007 0.1005 -0.3977 -0.0037 3.99 0.0459 

Scale 0 1 0 1 1     
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Predicting Logits, Odds, & Probabilities:  
• Coefficients for each form of the model: 

 Logit: Log(pp/1-pp) = β0 
 Predictor effects are linear and additive like in regression,  

but what does a ‘change in the logit’ mean anyway? 
 Here, we are saying the average logit is -.2007 

 

 Odds:   (pp/1-pp) = exp(β0) 
 A compromise: effects of predictors are multiplicative 
 Here, we are saying the average odds of a applying to grad school  

is exp(-.2007) = .819 
 

 Prob:   P(yp=1) =    exp(β0)  
                    1+ exp(β0) 

 Effects of predictors on probability are nonlinear and  
non-additive (no “one-unit change” language allowed) 

 Here, we are saying the average probability of applying to grad school is .450 
Likelihood of Applying (1 = likely) 

Lapply Frequency Percent Cumulative Cumulative 
Frequency Percent 

0 220 55 220 55 
1 180 45 400 100 

PSYC 943: Lecture 7 38 



More on the Empty Model  

• The default coding in SAS doesn’t model the probability of a 1, but 
models the probability of a zero: 

𝑙𝑙𝑙𝑙𝑙 𝑃 𝑌𝑝 = 0 = 𝑙𝑙𝑙𝑙𝑙 1 − 𝑝𝑝 = 𝛽0 

 
• Removing the word DESCENDING from the PROC GENMOD line 

reverts to this method 
 

• This changes the direction of the sign of the intercept  
(now negative; will change all other parameters, too): 
 
 
 
 

• How would you interpret this number? 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate Standard 
Error 

Wald 95% 
Confidence Limits 

  

Wald Chi-
Square 

Pr >  
ChiSq 

Intercept 1 0.2007 0.1005 0.0037 0.3977 3.99 0.0459 
Scale 0 1 0 1 1     
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MAXIMUM LIKELIHOOD ESTIMATION 
OF GENERALIZED MODELS 
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Maximum Likelihood Estimation of Generalized Models 

• The process of ML estimation in Generalized Models is similar to 
that from the GLM, with two exceptions: 
 The error variance is not estimated 
 The fixed effects do not have closed form equations (so are now part of the 

log likelihood function search) 
 

• We will describe this process for the previous analysis, using our 
grid search 

 

• Here, each observation has a Bernoulli distribution where the 
“height” of the curve is given by the PDF:  

𝑓 𝑌𝑝 = 𝑝𝑝
𝑌𝑝 1 − 𝑝𝑝

1−𝑌𝑝  
• The generalized linear model then models  

𝐸 𝑌𝑝 = 𝑝𝑝 =
exp 𝛽0

1 + exp 𝛽0
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From One Observation…To The Sample 

• The likelihood function shown previously was for one observation, 
but we will be working with a sample 
 Assuming the sample observations are independent and identically 

distributed, we can form the joint distribution of the sample 
 
 
𝐿 𝛽0|𝑌1, … ,𝑌𝑁 = 𝐿 𝛽0|𝑌1 × 𝐿 𝛽0|𝑌2 × ⋯× 𝐿 𝛽0|𝑌𝑁  

= �𝑓 𝑌𝑝

𝑁

𝑝=1

= �𝑝𝑝
𝑌𝑝 1 − 𝑝𝑝

1−𝑌𝑝
𝑁

𝑝=1

= �
exp 𝛽0

1 + exp 𝛽0

𝑌𝑝
1 −

exp 𝛽0
1 + exp 𝛽0

1−𝑌𝑝𝑁

𝑝=1
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The Log Likelihood Function 

• The log likelihood function is found by taking the natural log of the 
likelihood function: 

 
 

log𝐿 𝛽0|𝑌1, … ,𝑌𝑁 = log 𝐿 𝛽0|𝑌1 × 𝐿 𝛽0|𝑌2 × ⋯× 𝐿 𝛽0|𝑌𝑁  

= � log 𝐿 𝛽0 𝑌𝑝

𝑁

𝑝=1

= � log 𝑝𝑝
𝑌𝑝 1 − 𝑝𝑝

1−𝑌𝑝
𝑁

𝑝=1

= �𝑌𝑝log 𝑝𝑝 + 1 − 𝑌𝑝 log 1 − 𝑝𝑝

𝑁

𝑝=1

= �𝑌𝑝log
exp 𝛽0

1 + exp 𝛽0
+ 1 − 𝑌𝑝 log 1 −

exp 𝛽0
1 + exp 𝛽0

𝑁

𝑝=1
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Grid Search of the Log Likelihood Function 

• Just like we did for the normal distribution, we can plot the log 
likelihood function for all possible values of 𝛽0  
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Iteration History from PROC GENMOD 

• Proc GENMOD lists the iteration history for the ML algorithm: 
 
 
 
 

• Following convergence, GENMOD also lists:  
 
 

Iteration History For Parameter 
Estimates 

Iter Ridge LogLikelihood Prm1 
0 0 -275.27348 -0.219722 
1 0 -275.25553 -0.200651 
2 0 -275.25553 -0.200671 

Criteria For Assessing Goodness Of Fit 
Criterion DF Value Value/DF 

Log Likelihood   -275.2555   
Full Log Likelihood   -275.2555   

AIC (smaller is better)   552.5111   
AICC (smaller is better)   552.5211   
BIC (smaller is better)   556.5025   
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At the Maximum… 

• At the maximum (𝛽0 = −0.2007) we now assume that the 
parameter 𝛽0 has a normal distribution 
 Only the data Y have a Bernoulli distribution 

 

• Putting this into statistical context: 
𝛽0 ∼ 𝑁 𝛽̂0, 𝑠𝑠 𝛽̂0

2
 

 
• This says that the true parameter 𝛽0 has a mean at our estimate 

and has a variance equal to the square of the standard error  
of our estimate 
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ADDING PREDICTORS TO THE 
EMPTY MODEL 
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Adding Predictors to the Empty Model  

• Having examined how the logistic link function works and how 
estimation works, we can now add predictor variables to our model: 

𝑔 𝐸 𝑌𝑝 = 𝑙𝑙𝑙𝑙𝑙 𝑃 𝑌𝑝 = 0 = 𝑙𝑙𝑙𝑙𝑙 𝑝𝑝
= 𝛽0 + 𝛽1𝑃𝑃𝑅𝑝 + 𝛽2 𝐺𝐺𝐴𝑝 − 3 + 𝛽3𝑃𝑃𝐵𝑝 

 
𝑝𝑝 = 𝐸 𝑌𝑝 = 𝑔−1 𝛽0

=
exp 𝛽0 + 𝛽1𝑃𝑃𝑅𝑝 + 𝛽2 𝐺𝐺𝐴𝑝 − 3 + 𝛽3𝑃𝑃𝐵𝑝

1 + exp 𝛽0 + 𝛽1𝑃𝑃𝑅𝑝 + 𝛽2 𝐺𝐺𝐴𝑝 − 3 + 𝛽3𝑃𝑃𝐵𝑝
 

 
𝑉 𝑌𝑝 = 𝑝𝑝 1 − 𝑝𝑝  

• Here PAR is Parent Education, PUB is Public University, and GPA is 
Grade Point Average (centered at a value of 3) 

• For now, we will omit any interactions (to simplify interpretation) 
• We will also use the default parameterization (modeling Y = 0) 
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Understanding SAS Output 

• First…the Algorithm Iteration History: 
 
 
 
 

• Next, the log likelihood value:  
 
 
 
 

 
 

Algorithm converged.  

Criteria For Assessing Goodness Of Fit 
Criterion DF Value Value/DF 

Log Likelihood   -264.9624   
Full Log Likelihood   -264.9624   

AIC (smaller is better)   537.9248   
AICC (smaller is better)   538.0261   
BIC (smaller is better)   553.8907   

Iteration History For Parameter Estimates 
Iter Ridge LogLikelihood Prm1 Prm2 Prm3 Prm4 

0 0 -265.00194 0.3650003 -1.113614 -0.567908 0.2070592 
1 0 -264.9624 0.3381472 -1.059362 -0.548005 0.2004713 
2 0 -264.9624 0.3382338 -1.059612 -0.548246 0.2005571 
3 0 -264.9624 0.3382338 -1.059612 -0.548246 0.2005571 
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Question #1: Does Conditional Model Fit Better than 
Empty Model  
• Question #1: does this model fit better than the empty model? 

𝐻0:𝛽1 = 𝛽2 = 𝛽3 = 0 
𝐻1: At least one not equal to zero 

 
• Deviance =-2*(-275.26 - -264.96) = 20.6 

 -275.26 is log likelihood from empty model 
 -264.96 is log likelihood from this model 

 

• DF = 4 – 1 =3 
 Parameters from empty model = 1 
 Parameters from this model = 4 

 

• P-value: 𝑝 = .0001 (from “=chidist(20.6, 3)”) 
 

• Conclusion: reject 𝐻0; this model is preferred to empty model 
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Interpreting Model Parameters from SAS Output 

• Parameter Estimates: 
 
 
 
 
 
 

• Intercept 𝛽0 = 0.3382 (0.1187): this is the predicted value for the 
logit of yp = 0 for a person with: 3.0 GPA, parents without a 
graduate degree, and at a private university 
 Converted to a probability: .583 – probability a student with 3.0 GPA, 

parents without a graduate degree, and at a private university is unlikely to 
apply to grad school (yp = 0) 

PROC GENMOD is modeling the probability that Lapply='0'. One way to change this to model 
the probability that Lapply='1' is to specify the DESCENDING option in the PROC statement.  

Analysis Of Maximum Likelihood Parameter Estimates 
Parameter DF Estimate Standard 

Error 
Wald 95% 

Confidence Limits 
Wald Chi-

Square 
Pr >  

ChiSq 
Intercept 1 0.3382 0.1187 0.1056 0.5709 8.12 0.0044 
parentGD 1 -1.0596 0.2974 -1.6425 -0.4767 12.7 0.0004 

GPA3 1 -0.5482 0.2724 -1.0822 -0.0143 4.05 0.0442 
PUBLIC 1 0.2006 0.3053 -0.3979 0.799 0.43 0.5113 
Scale 0 1 0 1 1     
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Interpreting Model Parameters from SAS Output 

 
 
 
 

parentGD: 𝛽1 = −1.0596 0.2974 ;𝑝 = .0004  
 
The change in the logit of yp = 0 for every one-unit change in 
parentGD…or, the difference in the logit of yp = 0 for students who 
have parents with a graduate degree 
 
Because logit of yp = 0 means a rating of “unlikely to apply” this means 
that students who have a parent with a graduate degree are less likely 
to rate the item with an “unlikely to apply” 
 
 

Analysis Of Maximum Likelihood Parameter Estimates 
Parameter DF Estimate Standard 

Error 
Wald 95% 

Confidence Limits 
Wald Chi-

Square 
Pr >  

ChiSq 
Intercept 1 0.3382 0.1187 0.1056 0.5709 8.12 0.0044 
parentGD 1 -1.0596 0.2974 -1.6425 -0.4767 12.7 0.0004 

GPA3 1 -0.5482 0.2724 -1.0822 -0.0143 4.05 0.0442 
PUBLIC 1 0.2006 0.3053 -0.3979 0.799 0.43 0.5113 
Scale 0 1 0 1 1     
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More on Slopes 
• The quantification of how much less likely a student is to respond with 

“unlikely to apply” can be done using odds ratios or probabilities: 
 
Odds Ratios:  
• Odds of “unlikely to apply” (Y=0) for student with parental graduate 

degree: exp 𝛽0 + 𝛽1 = .486  
• Odds of “unlikely to apply” (Y=0) for student without parental graduate 

degree: exp 𝛽0 = 1.402  
• Ratio of odds = .346 = exp 𝛽1  - meaning, a student with parental 

graduate degree has 1/3 the odds of rating “unlikely to apply” 
 
Probabilities: 
• Probability of “unlikely to apply” for student with parental graduate 

degree: exp 𝛽0+𝛽1
1+exp 𝛽0+𝛽1

= .327 

• Probability of “unlikely to apply” for student without parental graduate 
degree: exp 𝛽0

1+exp 𝛽0
= .584 
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Interpreting Model Parameters from SAS Output 

 
 
 
 

 
GPA3: 𝛽2 = −0.5482 0.2724 ;𝑝 = .0442:  
 
The change in the logit of yp = 0 for every one-unit change in GPA 
 
Because logit of yp = 0 means a rating of “unlikely to apply” this means 
that students who have a higher GPA are less likely to rate  
“unlikely to apply” 
 
 

Analysis Of Maximum Likelihood Parameter Estimates 
Parameter DF Estimate Standard 

Error 
Wald 95% 

Confidence Limits 
Wald Chi-

Square 
Pr >  

ChiSq 
Intercept 1 0.3382 0.1187 0.1056 0.5709 8.12 0.0044 
parentGD 1 -1.0596 0.2974 -1.6425 -0.4767 12.7 0.0004 

GPA3 1 -0.5482 0.2724 -1.0822 -0.0143 4.05 0.0442 
PUBLIC 1 0.2006 0.3053 -0.3979 0.799 0.43 0.5113 
Scale 0 1 0 1 1     
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More on Slopes 

• The quantification of how much less likely a student is to respond 
with “unlikely to apply” can be done using odds ratios or 
probabilities: 
 
 
 
 

• The odds are found by: exp 𝛽0 + 𝛽2 𝐺𝐺𝐴𝑝 − 3  
 

• The probability is found by: 
exp 𝛽0+𝛽2 𝐺𝐺𝐴𝑝−3

1+exp 𝛽0+𝛽2 𝐺𝐺𝐴𝑝−3
 

 
 
 

 

GPA3  Logit Odds of 0 Prob = 0 
1 -0.210 0.811 0.448 
0 0.338 1.402 0.584 
-1 0.886 2.426 0.708 
-2 1.435 4.198 0.808 
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Plotting GPA 

• Because GPA is an unconditional main effect, we can plot values of 
it versus probabilities of rating “unlikely to apply” 
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Interpreting Model Parameters from SAS Output 

 
 
 
 

 
PUBLIC: 𝛽3 = 0.2006 0.3053 ;𝑝 = .5113:  
 
The change in the logit of yp = 0 for every one-unit change in GPA… 
But, PUBLIC is a coded variable where 0 represents a student in a 
private university, so this is the difference in logits of the logit of yp = 0 
for students in public versus private universities 
 
Because logit of 0 means a rating of “unlikely to apply” this means that 
students who are at a public university are more likely to rate  
“unlikely to apply” 
 
 

Analysis Of Maximum Likelihood Parameter Estimates 
Parameter DF Estimate Standard 

Error 
Wald 95% 

Confidence Limits 
Wald Chi-

Square 
Pr >  

ChiSq 
Intercept 1 0.3382 0.1187 0.1056 0.5709 8.12 0.0044 
parentGD 1 -1.0596 0.2974 -1.6425 -0.4767 12.7 0.0004 

GPA3 1 -0.5482 0.2724 -1.0822 -0.0143 4.05 0.0442 
PUBLIC 1 0.2006 0.3053 -0.3979 0.799 0.43 0.5113 
Scale 0 1 0 1 1     
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More on Slopes 

• The quantification of how much less likely a student is to respond 
with “unlikely to apply” can be done using odds ratios or 
probabilities: 
 
 
 
 

• The odds are found by: exp 𝛽0 + 𝛽3𝑃𝑃𝐵𝑝  
 

• The probability is found by: 
exp 𝛽0+𝛽3𝑃𝑃𝐵𝑝

1+exp 𝛽0+𝛽3𝑃𝑃𝐵𝑝
 

 
 
 

 

Public Logit Odds of 0 Prob = 0 
1 0.539 1.714 0.632 
0 0.338 1.402 0.584 
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Interpretation In General 

• In general, the linear model interpretation that you have worked on 
to this point still applies for generalized models, with some nuances 
 

• For logistic models with two responses: 
 Regression weights are now for LOGITS 
 The direction of what is being modeled has to be understood (Y = 0 or = 1) 
 The change in odds and probability is not linear per unit change in the IV, 

but instead is linear with respect to the logit 
 Hence the term “linear predictor” 

 Interactions will still function the same (see next week) 
 Will still modify the conditional main effects 
 Simple main effects are effects when interacting variables = 0 
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WRAPPING UP 
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Wrapping Up 

• Generalized linear models are models for outcomes with 
distributions that are not necessarily normal 
 

• The estimation process is largely the same: maximum likelihood is 
still the gold standard as it provides estimates with understandable 
properties 
 

• Learning about each type of distribution and link takes time: 
 They all are unique and all have slightly different ways of mapping outcome 

data onto your model  
 

• Logistic regression is one of the more frequently used generalized 
models – binary outcomes are common 
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