Course Introduction and Overview Descriptive Statistics Conceptualizations of Variance Review of the General Linear Model

PSYC 943 (930): Fundamentals of Multivariate Modeling

Lecture 1: August 22, 2012

Today's Class

Course Introduction and Overview

Descriptive Statistics

Conceptualizations of Variance and Covariance

Review of the General Linear Model

COURSE OVERVIEW

Guiding Principles for PSYC 943 #1 of 3: Blocks

#1. If you understand the building blocks of a model, you can build anything!

4 (or 5*) Model Building Blocks

- 1. Linear models (for effects of predictors)
- 2. Link functions (for anything not normal)
- 3a*. Random effects (for describing dependency = 944)
- 3b*. Latent variables (for measurement models = 948)
- 4. Estimation (e.g., Maximum Likelihood, Bayesian)

^{*} These are really the same thing.

Principles #2 of 3 - The Journey is Part of the Destination

- Not just blocks; Not just a journey...in 943 you will learn:
 - Generalized models (ANOVA with non-normal outcomes)
 - Missing data (impute?)
 - > Path models
 - Mediation and moderation
 - > Testing complex hypotheses involving observed variables
 - > Bayesian
 - > Likelihood based methods

Guiding Principles for PSYC 943 – the Bridge: #3 of 3

A bridge between what you know now...

...and advanced statistical methods

Motivation for Course Content

- The goal of this course is to provide you with a fundamental understanding of the underpinnings of the most commonly used contemporary statistical models
- The course is a combination of topics, picked to make your experience more extendable beyond coursework
- Some topics are math/statistics heavy
 - Mathematical statistics for the social sciences
- Upon completion of the course, you will be able to understand the communalities that link methods

Course Structure (from the syllabus)

- Course format is all lecture based
 - No dedicated lab days; Office hours held in labs
- Ten homework assignments (8 points each; 80 points)
 - > About one week to complete (Thursday-Tuesday, usually)
 - Online format (http://psych.unl.edu/psycrs/943hw/)
 - Questions: data analysis, interpretation (mad libs), some question-and-answer
 - > Late penalty: 3 points regardless of time
- Take-home final exam (20 points)
 - Administered in mid November
 - > Optional first draft submitted for comments two weeks later
 - > Final draft due last week of finals

Lecture Format

- Mix of theory and examples with data and syntax
 - > Software: mainly SAS to start; Mplus later in the semester
 - Maybe some SPSS where applicable
- Last 10 minutes of class time: homework questions and general discussion
 - > Topical questions are welcomed and encouraged during class

REVIEW: BASIC STATISTICAL TOPICS

Data for Today's Lecture

- To help demonstrate the concepts of today's lecture, we will be using a data set with three variables
 - Female (Gender): Male (=0) or Female (=1)
 - Height in inches
 - Weight in pounds
- The end point of our lecture will be to build a linear model that predicts a person's weight
 - Linear model: a statistical model for an outcome that uses a linear combination (a weighted sum; weighted by a slope) of one or more predictor variables

Visualizing the Data

Upon Further Inspection: Weight

 The weight variable seems to be bimodal – should that bother you? (hint: it shouldn't...yet)

Descriptive Statistics

- We can summarize each variable marginally through a set of descriptive statistics
 - Marginal: one variable by itself
- Common marginal descriptive statistics:
 - > Central tendency: Mean, Median, Mode
 - > Variability: Standard deviation (variance), range
- We can also summarize the joint (bivariate) distribution of two variables through a set of descriptive statistics:
 - > Joint distribution: more than one variable simultaneously
- Common bivariate descriptive statistics:
 - > Correlation and covariance

Descriptive Statistics for Height/Weight Data

Variable	Mean	SD	Variance
Height	67.9	7.44	55.358
Weight	183.4	56.383	3,179.095
Female	0.5	0.513	0.263

Diagonal: Variance

Above Diagonal: Covariance

Correlation /Covariance	Height	Weight	Female
Height	55.358	334.832	-2.263
Weight	.798	3,179.095	-27.632
Female	593	955	.263

Below Diagonal: Correlation

Re-examining the Concept of Variance

- Variability is a central concept in advanced statistics
 - > In multivariate statistics, covariance is also central
- Two formulas for the variance (about the same when N is large):

$$S_{Y_1}^2 = rac{1}{N-1} \sum_{p=1}^{N} (Y_{1p} - \bar{Y}_1)^2$$
 Unbiased or "sample"
$$S_{Y_1}^2 = rac{1}{N} \sum_{p=1}^{N} (Y_{1p} - \bar{Y}_1)^2$$
 Biased/ML or "population"

Here: p = person; 1 = variable number one

Interpretation of Variance

- The variance describes the spread of a variable in squared units (which come from the $(Y_{1p} \bar{Y}_1)^2$ term in the equation)
- Variance: the average <u>squared</u> distance of an observation from the mean
 - Variance of Height: 55.358 inches squared
 - > Variance of Weight: 3,179.095 inches squared
 - > Variance of Female not applicable in the same way!
- Because squared units are difficult to work with, we typically use the standard deviation – which is reported in units
- Standard deviation: the average distance of an observation from the mean
 - > SD of Height: 7.44 inches
 - > SD of Weight: 56.383 inches

Variance/SD as a More General Statistical Concept

- Variance (and the standard deviation) is a concept that is applied across statistics – not just for data
 - > Statistical parameters have variance
 - e.g. The sample mean \bar{Y}_1 has a "standard error" (SE) of $S_{\bar{Y}} = \frac{S_Y}{\sqrt{N}}$
- The standard error is another name for standard deviation
 - So "standard error of the mean" is equivalent to "standard deviation of the mean"
 - Usually "error" refers to parameters; "deviation" refers to data
 - > Variance of the mean would be $S_{\bar{Y}}^2 = \frac{S_Y^2}{N}$
- More generally, variance = error
 - You can think about the SE of the mean as telling you how far off the mean is for describing the data

Correlation of Variables

 Moving from marginal summaries of each variable to joint (bivariate) summaries, the Pearson correlation is often used to describe the association between a pair of variables:

$$r_{Y_1,Y_2} = \frac{\frac{1}{N-1} \sum_{p=1}^{N} (Y_{1p} - \bar{Y}_1) (Y_{2p} - \bar{Y}_2)}{S_{Y_1} S_{Y_2}}$$

- The correlation is unitless as it ranges from -1 to 1 for continuous variables, regardless of their variances
 - Pearson correlation of binary/categorical variables with continuous variables is called a point-biserial (same formula)
 - Pearson correlation of binary/categorical variables with other binary/categorical variables has bounds within -1 and 1

More on the Correlation Coefficient

- The Pearson correlation is a biased estimator
 - Biased estimator: the expected value differs from the true value for a statistic
 - Other biased estimators: Variance/SD when $\frac{1}{N}$ is used
- The unbiased correlation estimate would be:

$$r_{Y_1,Y_2}^U = r_{Y_1,Y_2} \left[1 + \frac{\left(1 - r_{Y_1,Y_2}^2\right)}{2N} \right]$$

- > As N gets large bias goes away; Bias is largest when $r_{Y_1,Y_2}=0$
- > Pearson is an underestimate of true correlation
- If it is biased, then why does everyone use it anyway?
 - > Answer: forthcoming when we talk about (ML) estimation

Covariance of Variables: Association with Units

 The numerator of the correlation coefficient is the covariance of a pair of variables:

$$S_{Y_{1},Y_{2}} = \frac{1}{N-1} \sum_{p=1}^{N} (Y_{1p} - \bar{Y}_{1})(Y_{2p} - \bar{Y}_{2})$$
 Unbiased or "sample"
$$S_{Y_{1},Y_{2}} = \frac{1}{N} \sum_{p=1}^{N} (Y_{1p} - \bar{Y}_{1})(Y_{2p} - \bar{Y}_{2})$$
 Biased/ML or "population"

- The covariance uses the units of the original variables (but now they are multiples):
 - > Covariance of height and weight: 334.832 inch-pounds
- The covariance of a variable with itself is the variance
- The covariance is often used in multivariate analyses because it ties directly into multivariate distributions
 - > But...covariance and correlation are easy to switch between

Going from Covariance to Correlation

• If you have the covariance matrix (variances and covariances):

$$r_{Y_1,Y_2} = \frac{S_{Y_1,Y_2}}{S_{Y_1}S_{Y_2}}$$

 If you have the correlation matrix and the standard deviations:

$$S_{Y_1,Y_2} = r_{Y_1,Y_2} S_{Y_1} S_{Y_2}$$

THE GENERAL LINEAR MODEL

The General Linear Model

• The general linear model incorporates many different labels of analyses under one unifying umbrella:

	Categorical X's	Continuous X's	Both Types of X's
Univariate Y	ANOVA	Regression	ANCOVA
Multivariate Y's	MANOVA	Multivariate Regression	MANCOVA

- The typical assumption is that error is normally distributed –
 meaning that the data are conditionally normally distributed
- Models for non-normal outcomes (e.g., dichotomous, categorical, count) fall under the *Generalized* Linear Model, of which the GLM is a special case (i.e., for when model residuals can be assumed to be normally distributed)

General Linear Models: Conditional Normality

$$Y_{p} = \beta_{0} + \beta_{1}X_{p} + \beta_{2}Z_{p} + \beta_{3}X_{p}Z_{p} + e_{p}$$

Model for the Means (Predicted Values):

- Each person's expected (predicted) outcome is a function of his/her values on x and z (and their interaction)
- y, x, and z are each measured only once per person (p subscript)

Model for the Variance:

- $e_p \sim N(0, \sigma_e^2) \rightarrow$ **ONE** residual (unexplained) deviation
- e_p has a mean of 0 with some estimated constant variance σ_e^2 , is normally distributed, is unrelated to x and z, and is unrelated across people (across all observations, just people here)

We will return to the normal distribution in a few weeks – but for now know that it is described by two terms: a mean and a variance

Building a Linear Model for Predicting a Person's Weight

- We will now build a linear model for predicting a person's weight, using height and gender as predictors
- Several models we will build are done for didactic reasons
 - to show how regression and ANOVA work under the GLM
 - > You wouldn't necessarily run these models in this sequence
- Our beginning model is that of an empty model no predictors for weight (an unconditional model)
- Our ending model is one with both predictors and their interaction (a conditional model)

Model 1: The Empty Model

- Linear model: $Weight_p = \beta_0 + e_p$ where $e_p \sim N(0, \sigma_e^2)$
- Estimated Parameters: [ESTIMATE (STANDARD ERROR)]
 - $\beta_0 = 183.4 (12.607)$
 - Overall intercept the "grand" mean of weight across all people
 Just the mean of weight
 - SE for β_0 is standard error of the mean for weight $\frac{S_{Weight}}{\sqrt{N}}$
 - > $\sigma_e^2 = 3,179.095$ (SE not given)
 - The (unbiased) variance of weight: $e_p = Weight_p \beta_0 = Weight_p \overline{Weight}_p$ $S_e^2 = \frac{1}{N-1} \sum_{p=1}^{N} \left(Weight_p \overline{Weight}_p \right)^2$

From Mean Square Error of F-table

Model 2: Predicting Weight from Height ("Regression")

- Linear model: $Weight_p=\beta_0+\beta_1 Height_p+e_p$ where $e_p\sim N(0,\sigma_e^2)$
- Estimated Parameters: [ESTIMATE (STANDARD ERROR)]
 - $\beta_0 = -227.292 (73.483)$
 - Predicted value of Weight for a person with Height = 0
 - Nonsensical but we could have centered Height
 - $\beta_1 = 6.048 (1.076)$
 - Change in predicted value of Weight for every one-unit increase in height (weight goes up 6.048 pounds per inch)
 - > $\sigma_e^2 = 1,217.973$ (SE not given)
 - The residual variance of weight
 - Height explains $\frac{3,179.095-1,217.973}{3,179.095} = 61.7\%$ of variance of weight

Model 2a: Predicting Weight from Mean-Centered Height

- Linear model: $W_p=\beta_0+\beta_1\big(H_p-\overline{H}\big)+e_p$ where $e_p\sim N(0,\sigma_e^2)$
- Estimated Parameters: [ESTIMATE (STANDARD ERROR)]
 - $\beta_0 = 183.4 (7.804)$
 - Predicted value of Weight for a person with Height = Mean Height
 - Is the Mean Weight (regression line goes through means)
 - $\beta_1 = 6.048 (1.076)$
 - Change in predicted value of Weight for every one-unit increase in height (weight goes up 6.048 pounds per inch)
 - Same as previous
 - > $\sigma_e^2 = 1,217.973$ (SE not given)
 - The residual variance of weight
 - Height explains $\frac{3,179.095-1,217.973}{3,179.095} = 61.7\%$ of variance of weight
 - Same as previous

Plotting Model 2a

Hypothesis Tests for Parameters

 To determine if the regression slope is significantly different from zero, we must use a hypothesis test:

$$H_0: \beta_1 = 0$$

$$H_1:\beta_1\neq 0$$

- We have two options for this test (both are same in this case)
 - Use ANOVA table: sums of squares F-test
 - > Use "Wald" test for parameter: $t = \frac{\beta_1}{se(\beta_1)}$
 - \rightarrow Here $t^2 = F$
- Wald test: $t = \frac{\beta_1}{se(\beta_1)} = \frac{6.048}{1.076} = 5.62; p < .001$
- Conclusion: reject null (H_0) ; slope is significant

Model 3: Predicting Weight from Gender ("ANOVA")

- Linear Model: $Weight_p = \beta_0 + \beta_2 Female_p + e_p$ where $e_p \sim N(0, \sigma_e^2)$
- Note: because gender is a categorical predictor, we must first code it into a number before entering it into the model (typically done automatically in software)
 - > Here we use Female = 1 for females; Female = 0 for males
- Estimated Parameters: [ESTIMATE (STANDARD ERROR)]
 - $\beta_0 = 235.9 (5.414)$
 - Predicted value of Weight for a person with Female=0 (males)
 - Mean weight of males
 - $\beta_2 = -105.0 (7.658)$
 - $t = -\frac{105}{7.658} = -13.71; p < .001$
 - Change in predicted value of Weight for every one unit increase in female
 - In this case, the difference between the mean for males and the mean for females
 - > $\sigma_e^2 = 293.211$ (SE not given)
 - The residual variance of weight
 - Gender explains $\frac{3,179.095-239.211}{3,179.095} = 90.8\%$ of variance of weight

Model 3: More on Categorical Predictors

- Gender was coded using what is called reference or dummy coding:
 - Intercept becomes mean of the "reference" group (the 0 group)
 - Slopes become the difference in the means between reference and non-reference groups
 - > For C categories, C-1 predictors are created

All coding choices can be recovered from the model:

Predicted Weight for Females (mean weight for females):

$$W_p = \beta_0 + \beta_2 = 239.5 - 105 = 130.5$$

Predicted Weight for Males:

$$W_p = \beta_0 = 239.5$$

- What would β_0 and β_2 be if we coded Male = 1?
 - > Super cool idea: what if you could do this in software all at once?

Model 3: Predictions and Plots

Model 4: Predicting Weight from Height and Gender (w/o Interaction); ("ANCOVA")

- Linear Model: $W_p=\beta_0+\beta_1\big(H_p-\overline{H}\big)+\beta_2F_p+e_p$ where $e_p\sim N(0,\sigma_e^2)$
- Estimated Parameters: [ESTIMATE (STANDARD ERROR)]
 - $\beta_0 = 224.256 (1.439)$
 - Predicted value of Weight for a person with Female=0 (males) and has Height = Mean Height $(H_p \overline{H}) = 0$
 - $\beta_1 = 2.708 (0.155)$
 - $t = \frac{2.708}{0.155} = 17.52; p < .001$
 - Change in predicted value of Weight for every one-unit increase in height (holding gender constant)
 - $\beta_2 = -81.712 (2.241)$
 - $t = -\frac{81.712}{2.241} = -36.46; p < .001$
 - Change in predicted value of Weight for every one-unit increase in female (holding height constant)
 - In this case, the difference between the mean for males and the mean for females holding height constant
 - > $\sigma_e^2 = 16.283$ (SE not given)
 - The residual variance of weight

Model 4: By-Gender Regression Lines

- Model 4 assumes identical regression slopes for both genders but has different intercepts
 - > This assumption is tested statistically by model 5
- Predicted Weight for Females:

$$W_p = 224.256 + 2.708(H_p - \overline{H}) - 81.712F_p$$

= 142.544 + 2.708(H_p - \overline{H})

Predicted Weight for Males:

$$W_p = 224.256 + 2.708(H_p - \overline{H}) - 81.712F_p$$

= 224.256 + 2.708(H_p - \overline{H})

Model 4: Predicted Value Regression Lines

Model 5: Predicting Weight from Height and Gender (with Interaction); ("ANCOVAish")

Linear Model:

$$W_p = \beta_0 + \beta_1 (H_p - \overline{H}) + \beta_2 F_p + \beta_3 (H_p - \overline{H}) F_p + e_p$$

where $e_p \sim N(0, \sigma_e^2)$

- Estimated Parameters: [ESTIMATE (STANDARD ERROR)]
 - $\beta_0 = 222.184 (0.838)$
 - Predicted value of Weight for a person with Female=0 (males) and has Height = Mean Height $\left(H_p-\overline{H}\right)=0$
 - $\beta_1 = 3.190 (0.111)$
 - $t = \frac{3.190}{0.111} = 28.65; p < .001$
 - Simple main effect of height: Change in predicted value of Weight for every one-unit increase in height (for males only)
 - A conditional main effect: when interacting variable (gender) = 0

Model 5: Estimated Parameters

Estimated Parameters:

- $\beta_2 = -82.272 (1.211)$
 - $t = -\frac{82.272}{1.211} = -67.93; p < .001$
 - Simple main effect of gender: Change in predicted value of Weight for every one unit increase in female, for height = mean height
 - Gender difference at 67.9 inches
- $\beta_3 = -1.094 (0.168)$
 - $t = -\frac{1.094}{0.168} = -6.52$; p < .001
 - Gender-by-Height Interaction: Additional change in predicted value of weight for change in either gender or height
 - Difference in slope for height for females vs. males
 - Because Female = 1, it modifies the slope for height for females (here the height slope is *less positive* than for females than for males)
- > $\sigma_e^2 = 4.731$ (SE not given)

Model 5: By-Gender Regression Lines

- Model 5 does not assume identical regression slopes for both genders
 - \gt Because eta_3 was significantly different from zero, the data supports different slopes for the genders
- Predicted Weight for Females:

$$W_p = 222.184 + 3.190(H_p - \overline{H}) - 82.272F_p$$

$$-1.094(H_p - \overline{H})F_p$$

$$= 139.912 + 2.096(H_p - \overline{H})$$

Predicted Weight for Males:

$$W_p = 222.184 + 3.190(H_p - \overline{H}) - 82.272F_p$$

$$-1.094(H_p - \overline{H})F_p$$

$$= 222.184 + 3.190(H_p - \overline{H})$$

Model 5: Predicted Value Regression Lines

Comparing Across Models

- Typically, the empty model and model #5 would be the only models run
 - The trick is to describe the impact of all and each of the predictors – typically using variance accounted for (explained)
- All predictors:
 - > Baseline: empty model #1; $\sigma_e^2 = 3,179.095$
 - > Comparison: model #5; $\sigma_e^2 = 4.731$
 - All predictors (gender, height, interaction) explained $\frac{3,179.095-4.731}{3,179.095} = 99.9\%$ of variance in weight
 - R^2 hall of fame worthy

Comparing Across Models

- The total effect of height (main effect and interaction):
 - > Baseline: model #3 (gender only); $\sigma_e^2 = 293.211$
 - > Comparison: model #5 (all predictors); $\sigma_e^2 = 4.731$
 - > Height explained $\frac{293.211-4.731}{293.211} = 98.4\%$ of variance in weight remaining after gender
 - 98.4% of the 100-90.8% = 9.2% left after gender
 - ◆ True variance accounted for is 98.4%*9.2% = 9.1%
- The total effect of gender (main effect and interaction):
 - \succ Baseline: model #2a (height only); $\sigma_e^2=1,217.973$
 - > Comparison: model #5 (all predictors); $\sigma_e^2 = 4.731$
 - > Gender explained $\frac{1,217.973-4.731}{1,217.973} = 99.6\%$ of variance in weight remaining after height
 - 99.6% of the 100-61.7% = 38.3% left after height
 - True variance accounted for is 99.6%*38.3% = 38.1%

About Weight...

- The distribution of weight was bimodal (shown in the beginning of the class)
 - However, the analysis only called for the residuals to be normally distributed – not the actual data
 - > This is the same as saying the **conditional distribution** of the data given the predictors must be normal

Residual:

$$\begin{split} e_p &= Weight_p - \widehat{Weight}_p \\ &= Weight_p - \left[\beta_0 + \beta_1 \big(H_p - \overline{H}\big) + \beta_2 F_p + \beta_3 \big(H_p - \overline{H}\big) F_p\right] \end{split}$$

CONCLUDING REMARKS

Wrapping Up

- The general linear model forms the basis for many multivariate statistical techniques
 - Certain features of the model change, but many of the same interpretations remain
- Over the next two weeks, we will more thoroughly unpack the varying terms of the GLM
 - Model parameters (intercepts, main effects, and interactions) and their interpretations
- We will continue to use these terms in more advanced models throughout the rest of the semester
 - > Extra practice for linear model terms
- The trick of linear models is to construct one model that answers all of your research questions