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Today’s Class

Course Introduction and Overview

Descriptive Statistics

Conceptualizations of Variance and Covariance

Review of the General Linear Model
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COURSE OVERVIEW



Guiding Principles for PSYC 943 #1 of 3: Blocks

#1. If you understand the building blocks
of a model, you can build anything!
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4 (or 5*) Model Building Blocks

1. Linear models (for effects of predictors)

2. Link functions (for anything not normal)

3a*. Random effects (for describing dependency = 944)

3b*. Latent variables (for measurement models = 948)

4. Estimation (e.g., Maximum Likelihood, Bayesian)

* These are really the same thing.

PSYC 943: Lecture 1



Principles #2 of 3 - The Journey is Part of the Destination

« Not just blocks; Not just a journey...in 943 you will learn:
> Generalized models (ANOVA with non-normal outcomes)

Missing data (impute?)

Path models

Mediation and moderation

Testing complex hypotheses involving observed variables

Bayesian r
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Guiding Principles for PSYC 943 — the Bridge: #3 of 3

A bridge between what you know now...

...and advanced statistical methods
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Motivation for Course Content

- The goal of this course is to provide you with a
fundamental understanding of the underpinnings of the
most commonly used contemporary statistical models

- The course is a combination of topics, picked to make
your experience more extendable beyond coursework

- Some topics are math/statistics heavy
> Mathematical statistics for the social sciences

- Upon completion of the course, you will be able to
understand the communalities that link methods
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Course Structure (from the syllabus)

. Course formatis all lecture based
> No dedicated lab days; Office hours held in [abs

- Ten homework assignments (8 points each; 80 points)
> About one week to complete (Thursday-Tuesday, usually)
> Online format (http://psych.unl.edu/psycrs/943hw/)

> Questions: data analysis, interpretation (mad libs), some
guestion-and-answer

> Late penalty: 3 points regardless of time

- Take-home final exam (20 points)
> Administered in mid November
> Optional first draft submitted for comments two weeks later
> Final draft due last week of finals
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Lecture Format

- Mix of theory and examples with data and syntax
> Software: mainly SAS to start; Mplus later in the semester
> Maybe some SPSS where applicable

. Last 10 minutes of class time: homework questions and
general discussion
> Topical questions are welcomed and encouraged during class
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REVIEW: BASIC STATISTICAL TOPICS



Data for Today’s Lecture

- To help demonstrate the concepts of today’s lecture, we
will be using a data set with three variables
> Female (Gender): Male (=0) or Female (=1)
> Height in inches
> Weight in pounds

- The end point of our lecture will be to build a linear
model that predicts a person’s weight

> Linear model: a statistical model for an outcome that uses a
linear combination (a weighted sum; weighted by a slope) of
one or more predictor variables
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Visualizing the Data
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Upon Further Inspection: Weight

- The weight variable seems to be bimodal — should that

bother you? (hint: it shouldn’t...yet)
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Descriptive Statistics

We can summarize each variable marginally through a set
of descriptive statistics
> Marginal: one variable by itself

Common marginal descriptive statistics:
> Central tendency: Mean, Median, Mode
> Variability: Standard deviation (variance), range

We can also summarize the joint (bivariate) distribution
of two variables through a set of descriptive statistics:
> Joint distribution: more than one variable simultaneously

Common bivariate descriptive statistics:
> Correlation and covariance
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Descriptive Statistics for Height/Weight Data

Variable Mean SD Variance
Height 67.9 7.44 55.358
Weight 183.4 56.383 3,179.095
Female 0.5 0.513 0.263
Above Diagonal:
Diagonal: Variance Covariance
Correlation Height Weight Female
/Covariance
Height 55.358 334.832 -2.263
Weight .798 3,179.095 -27.632
Female -.593 -.955 .263
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Re-examining the Concept of Variance

. Variability is a central concept in advanced statistics
> In multivariate statistics, covariance is also central

. Two formulas for the variance
(about the same when N is large):

N
1 2 [Unbi
2 — nbiased or
ShEN T Z(Ym = 11)" | sampie
p:

Biased/ML or

, N
2 — 2
2 — o H ”
SY1 = —N (Ylp — Yl) population
p=1
Here: p = person; 1 = variable number one
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Interpretation of Variance

- The variance describes the spread of a varlable in squared
units (which come from the(Ylp — Yl) term in the equation)

- Variance: the average squared distance of an observation

from the mean
> Variance of Height: 55.358 inches squared
> Variance of Weight: 3,179.095 inches squared
> Variance of Female — not applicable in the same way!

- Because squared units are difficult to work with, we typically
use the standard deviation — which is reported in units

- Standard deviation: the average distance of an observation

from the mean
> SD of Height: 7.44 inches
> SD of Weight: 56.383 inches
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Variance/SD as a More General Statistical Concept

- Variance (and the standard deviation) is a concept that is
applied across statistics — not just for data
> Statistical parameters have variance
Sy

+ e.g. The sample mean Y; has a “standard error” (SE) of Sy = N

. The standard error is another name for standard deviation

> So “standard error of the mean” is equivalent to “standard
deviation of the mean”

> Usually “error” refers to parameters; “deviation” refers to data

. S 2
> Variance of the mean would be S,% = %

- More generally, variance = error

» You can think about the SE of the mean as telling you how far
off the mean is for describing the data
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Correlation of Variables

- Moving from marginal summaries of each variable to joint
(bivariate) summaries, the Pearson correlation is often
used to describe the association between a pair of
variables:

1 _ _
v 2p=1(Y1p = ¥1)(Yzp — V2)

1,12 S' S'
)1 )2

. The correlation is unitless as it ranges from -1 to 1 for
continuous variables, regardless of their variances

> Pearson correlation of binary/categorical variables with
continuous variables is called a point-biserial (same formula)

> Pearson correlation of binary/categorical variables with other
binary/categorical variables has bounds within -1 and 1
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More on the Correlation Coefficient

. The Pearson correlation is a biased estimator

> Biased estimator: the expected value differs from the true
value for a statistic

. . . 1,
+ Other biased estimators: Variance/SD when v 1S used

. The unbiased correlation estimate would be:
(1 o TYZJJYZ):|
2N

U —
vy, = [1 T

> As N gets large bias goes away; Bias is largest when 1y, y, = 0
> Pearson is an underestimate of true correlation

. |Ifitis biased, then why does everyone use it anyway?
> Answer: forthcoming when we talk about (ML) estimation

PSYC 943: Lecture 1

21



Covariance of Variables: Association with Units

. The numerator of the correlation coefficient is the covariance of a
pair of variables:

Unbiased or

N
1 _ _
S =y =12 Ui~ )0 =F2) |
p=1

N
1 = = Biased/ML or
SY1»Y2 = N 2 (Ylp o Yl)(YZP o YZ) “population”

p=1
- The covariance uses the units of the original variables (but now they
are multiples):
> Covariance of height and weight: 334.832 inch-pounds

. The covariance of a variable with itself is the variance

- The covariance is often used in multivariate analyses because it ties
directly into multivariate distributions
» But...covariance and correlation are easy to switch between
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Going from Covariance to Correlation

. |f you have the covariance matrix
(variances and covariances):

. |f you have the correlation matrix and the
standard deviations:

5 Yi,Y2 = 17,1, SY1 SYz
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THE GENERAL LINEAR MODEL



The General Linear Model

The general linear model incorporates many different labels of

analyses under one unifying umbrella:

Categorical X’s | Continuous X's | Both Types of
X’s
Univariate Y ANOVA Regression ANCOVA
Multivariate Y's MANOVA Multivariate MANCOVA
Regression

- The typical assumption is that error is normally distributed —
meaning that the data are conditionally normally distributed

- Models for non-normal outcomes (e.g., dichotomous, categorical,
count) fall under the Generalized Linear Model, of which the GLM is

a special case (i.e., for when model residuals can be assumed to be
normally distributed)
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General Linear Models: Conditional Normality

Yp — IBO + ﬁlXp + ﬁzZp + ﬁ3Xpr + ep

- Model for the Means (Predicted Values):

« Each person’s expected (predicted) outcome is a function of
his/her values on x and z (and their interaction)

« Vv, X, and z are each measured only once per person
(p subscript)

- Model for the Variance:
- e, ~ N(0, 02)-> ONE residual (unexplained) deviation
- e, has a mean of 0 with some estimated constant variance a2,

is normally distributed, is unrelated to x and z, and is unrelated
across people (across all observations, just people here)

We will return to the normal distribution in a few weeks — but for now
know that it is described by two terms: a mean and a variance
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Building a Linear Model for Predicting a Person’s Weight

- We will now build a linear model for predicting a person’s
weight, using height and gender as predictors

. Several models we will build are done for didactic reasons
— to show how regression and ANOVA work
under the GLM

> You wouldn’t necessarily run these models in this sequence

« Our beginning model is that of an empty model — no
predictors for weight (an unconditional model)

« Our ending model is one with both predictors and
their interaction (a conditional model)

PSYC 943: Lecture 1
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Model 1: The Empty Model

- Linear model: Weight, = By + e,

where e, ~ N(0, o¢)

. Estimated Parameters: [ESTIMATE (STANDARD ERROR)]
> By = 183.4 (12.607)

+ Overall intercept — the “grand” mean of weight across all people
— Just the mean of weight
SWeight

VN

+ SE for 3, is standard error of the mean for weight

> 02 = 3,179.095 (SE not given)

+ The (unbiased) variance of weight:
e, = Weight, — By = Weight,, — Weight,,

N
1 , : 2
S2 = mz(Welghtp — Weight,)
p=1
+ From Mean Square Error of F-table
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Model 2: Predicting Weight from Height (“Regression”)

- Linear model: Weight, = B, + p;Height, + e,

where e, ~ N(0, o¢)

. Estimated Parameters: [ESTIMATE (STANDARD ERROR)]

> B, = —227.292 (73.483)

+ Predicted value of Weight for a person with Height =0
+ Nonsensical — but we could have centered Height

> B, = 6.048 (1.076)

+ Change in predicted value of Weight for every one-unit increase in
height (weight goes up 6.048 pounds per inch)

> 02 = 1,217.973 (SE not given)

+ The residual variance of weight
3,179.095—1,217.973
3,179.095

+ Height explains = 61.7% of variance of weight
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Model 2a: Predicting Weight from Mean-Centered Height

- Linear model: W, = B, + ﬁl(Hp — ﬁ) + e,
where e, ~ N(0, o¢)

. Estimated Parameters: [ESTIMATE (STANDARD ERROR)]

> B, = 183.4 (7.804)

+ Predicted value of Weight for a person with Height = Mean Height
+ Is the Mean Weight (regression line goes through means)

> B, = 6.048 (1.076)

+ Change in predicted value of Weight for every one-unit increase in
height (weight goes up 6.048 pounds per inch)
+ Same as previous

> 02 = 1,217.973 (SE not given)

+ The residual variance of weight
3,179.095—1,217.973
3,179.095

+ Height explains = 61.7% of variance of weight
+ Same as previous
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Plotting Model 2a
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Hypothesis Tests for Parameters

- To determine if the regression slope is significantly
different from zero, we must use a hypothesis test:

Ho:1 =0
Hl:ﬁl * 0

- We have two options for this test
(both are same in this case)
> Use ANOVA table: sums of squares — F-test

«“ ” . — ﬁl
> Use “Wald” test for parameter: t 5e(B1)
> Heret? =F
6.048
. Waldtest: t = —22— =298 _ 5 691, < 001

se(f1) ~1.076
. Conclusion: reject null (Hy); slope is significant

PSYC 943: Lecture 1
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Model 3: Predicting Weight from Gender (“ANOVA”)

- Linear Model: Weight,, = B, + B,Female, + e,
where e, ~ N(0,0¢)

- Note: because gender is a categorical predictor, we must first code
it into a number before entering it into the model (typically done
automatically in software)

> Here we use Female = 1 for females; Female = 0 for males

. Estimated Parameters: [ESTIMATE (STANDARD ERROR)]
> By = 235.9 (5.414)

+ Predicted value of Weight for a person with Female=0 (males)
+ Mean weight of males

> B, = —105.0 (7.658)

o t=-—22=_13.71;p <.001
7.658

+ Change in predicted value of Weight for every one unit increase in female
+ In this case, the difference between the mean for males and the mean for females

> 02 = 293.211 (SE not given)

+ The residual variance of weight

. 3,179.095-239.211 . .
+ Gender explains 2179005 = 90.8% of variance of weight
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Model 3: More on Categorical Predictors

- Gender was coded using what is called reference or
dummy coding:
> Intercept becomes mean of the “reference” group
(the O group)

> Slopes become the difference in the means between reference and
non-reference groups

> For C categories, C-1 predictors are created

. All coding choices can be recovered from the model:
> Predicted Weight for Females (mean weight for females):
Wy, = Bo + B2 = 239.5—105 = 130.5
> Predicted Weight for Males:
W, = Bo = 239.5

« What would 5, and 3, be if we coded Male =17

> Super cool idea: what if you could do this in software all at once?

PSYC 943: Lecture 1
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Model 3: Predictions and Plots
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Model 4: Predicting Weight from Height and Gender
(w/o Interaction); (“ANCOVA”)

- Linear Model: W}, = B, + ,Bl(Hp — 17) + BLE, + e,
where e, ~ N(0, o¢)
- Estimated Parameters: [ESTIMATE (STANDARD ERROR)]
> By = 224.256 (1.439)

+ Predicted value of Weight for a person with Female=0 (males) and has
Height = Mean Height (Hp — H) =0

> B, = 2.708 (0.155)

o t =222 =1752;p < .001
0.155

+ Change in predicted value of Weight for every one-unit increase in height
(holding gender constant)

> B, = —81.712 (2.241)

o t=—2712 = _3646;p < .001
2.241

+ Change in predicted value of Weight for every one-unit increase in female
(holding height constant)

+ In this case, the difference between the mean for males and the mean for
females holding height constant

> 02 = 16.283 (SE not given)

+ The residual variance of weight
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Model 4: By-Gender Regression Lines

- Model 4 assumes identical regression slopes for both
genders but has different intercepts
> This assumption is tested statistically by model 5

. Predicted Weight for Females:
W, = 224.256 + 2.708(H, — H) — 81.712F,

= 142.544 + 2.708(H, — H)

« Predicted Weight for Males:
W, = 224.256 + 2.708(H, — H) — 81.712F,

= 224.256 + 2.708(H, — H)
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Model 4: Predicted Value Regression Lines
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Model 5: Predicting Weight from Height and Gender
(with Interaction); (“ANCOVAish”)

. Linear Model:
W, = Bo + B1(Hy, — H) + B2F, + B3(H, — H)E, + ¢,
where e, ~ N(0, o¢)

. Estimated Parameters: [ESTIMATE (STANDARD ERROR)]
> By = 222.184 (0.838)

+ Predicted value of Weight for a person with Female=0 (males) and has
Height = Mean Height (H, — H) = 0

> B; =3.190 (0.111)

o t =222 =2865;p <.001
0.111

+ Simple main effect of height: Change in predicted value of Weight for
every one-unit increase in height (for males only)
+ A conditional main effect: when interacting variable (gender) =0
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Model 5: Estimated Parameters

. Estimated Parameters:
> B, = —82.272 (1.211)

2272 — _67.93;p < .001
1.211

+ Simple main effect of gender: Change in predicted value of Weight for
every one unit increase in female, for height = mean height

+ Gender difference at 67.9 inches

o [ = —

> By = —1.094 (0.168)

e t=—-222= _652:p<.001
0.168

+ Gender-by-Height Interaction: Additional change in predicted value of
weight for change in either gender or height

+ Difference in slope for height for females vs. males

+ Because Female =1, it modifies the slope for height for females (here
the height slope is less positive than for females than for males)

> 02 = 4.731 (SE not given)

PSYC 943: Lecture 1 40



Model 5: By-Gender Regression Lines

- Model 5 does not assume identical regression slopes for
both genders

> Because [; was significantly different from zero, the data
supports different slopes for the genders

. Predicted Weight for Females:
W, = 222.184 + 3.190(H, — H) — 82.272F,

— 1.094(H, — H)F,
= 139.912 + 2.096(H, — H)

« Predicted Weight for Males:
W, = 222.184 + 3.190(H, — H) — 82.272F,

— 1.094(H, — H)E,
= 222.184 + 3.190(H, — H)
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Model 5: Predicted Value Regression Lines
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Comparing Across Models

. Typically, the empty model and model #5 would be the

only models run
> The trick is to describe the impact of all and each of the
predictors — typically using variance accounted for (explained)

. All predictors:
> Baseline: empty model #1; 62 = 3,179.095
> Comparison: model #5; g2 = 4.731
> All predictors (gender, height, interaction)explained

3,179.095—4.731 . . :
= 99.9% of variance in weight
3,179.095

+ R? hall of fame worthy
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Comparing Across Models

- The total effect of height (main effect and interaction):

> Baseline: model #3 (gender only); 62 = 293.211

> Comparison: model #5 (all predictors); 62 = 4.731
293.211-4.731

93.211
remaining after gender

+ 98.4% of the 100-90.8% = 9.2% left after gender
+ True variance accounted for is 98.4%%9.2% =9.1%

- The total effect of gender (main effect and interaction):
> Baseline: model #2a (height only); 62 = 1,217.973

> Comparison: model #5 (all predictors); 62 = 4.731
1,217.973-4.731

1,217.973
remaining after height
+ 99.6% of the 100-61.7% = 38.3% left after height
+ True variance accounted for is 99.6%*38.3% = 38.1%

> Height explained = 98.4% of variance in weight

» Gender explained = 99.6% of variance in weight
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About Weight...

- The distribution of weight was bimodal (shown in the
beginning of the class)

> However, the analysis only called for the residuals to be
normally distributed — not the actual data

> This is the same as saying the conditional distribution of the
data given the predictors must be normal

H R Distribution of Residuals for weight
. Residual:
ep = Weightp_— Weight, B =
= Weight, — [Bo + B1(H, — H) + BoF, + B3 (H, — H)E,] P
o . // \
Distribution of weight = 20 // \\
3 // \
& L \
/ \
0] / \\
/ \
/ / \\\
/’l/ ‘\
01l =—" {y \-.._ _
. 675 625 A75 225 075 075 225 375 525 675
— = = Residual
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CONCLUDING REMARKS



Wrapping Up

- The general linear model forms the basis for many multivariate
statistical techniques

> Certain features of the model change, but many of the same
interpretations remain

« Over the next two weeks, we will more thoroughly unpack the
varying terms of the GLM

> Model parameters (intercepts, main effects, and interactions) and
their interpretations

- We will continue to use these terms in more advanced models
throughout the rest of the semester
> Extra practice for linear model terms

« The trick of linear models is to construct one model that
answers all of your research questions
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