
Describing Within-Person  
Change over Time 
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• Topics: 
 The Big Picture of modeling change 
 Fixed and random effects models for nonlinear change: 

 Polynomial slopes 
 Piecewise slopes 
 Nonlinear change 



Example Data Individual Observed 
Trajectories (N = 101, n = 6) 
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The Big Picture of Longitudinal Data: 
Model for the Means (Fixed Effects) 

• What kind of change occurs on average over “time”? 
 

 What is the most appropriate metric of time? 
 Time in study (with predictors for BP differences in time)? 
 Time since birth (age)? Time to event (time since diagnosis)? 
 Measurement occasions need not be the same across persons or 

equally spaced (code time as exactly as possible) 
 

 What kind of theoretical process generated the observed 
trajectories, and thus what kind of model do we need? 
 Linear or nonlinear? Continuous or discontinuous? Does change 

keep happening or does it eventually stop? 
 Many options: polynomial, piecewise, and nonlinear families 
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The Big Picture of Longitudinal Data:  
Models for the Means (Fixed Effects) 
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• What kind of change occurs on average over “time”? 
Two baseline models for comparison: 
 “Empty”  only a fixed intercept (predicts no change) 
 “Saturated”  all occasion mean differences from time 0 

                        (ANOVA model that uses # fixed effects= n) 
           *** may not be possible in unbalanced data 

Empty Model: 
Predicts NO 
change over time  
1 Fixed Effect 

Saturated Means: 
Reproduces mean 

at each occasion 
# Fixed Effects  
=  # Occasions 

Name… that… Trajectory! 

In-between options: 
polynomial slopes, 
piecewise slopes, 
nonlinear models… 
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Saturated Means (ANOVA) Model  
= 6 parameters (1 mean per session) 

Empty Means Model = 1 fixed intercept 
(means predicted to be equal over sessions) 

Number Match 3 Mean Response Times by Session 



The Big Picture of Longitudinal Data: 
Models for the Variance (Random Effects) 

• From a substantive perspective:  
Are there individual differences in change? 
 Individual differences in the level of an outcome? 

 At what time point are individual differences in outcome level 
important for your hypotheses (beginning, middle, end)? 

 Individual differences in magnitude of change? 
 Each aspect of change (e.g., linear change, quadratic change)  

can potentially exhibit individual differences (data permitting) 
 

• From a statistical perspective: What kind of pattern do 
the variances and covariances exhibit over time? 
 Do the variances increase or decrease over time? 
 Are the covariances differentially related based on time? 
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The Big Picture of Longitudinal Data:  
Models for the Variance 
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Unstructured (UN) Compound Symmetry (CS) 

NAME ...THAT … 
STRUCTURE! 

Most useful 
model: likely 
somewhere 
in between! 

Univariate 
RM ANOVA 

Multivariate  
RM ANOVA 

What is the pattern of variance and covariance over time?  
 

CS and UN are just two of the many, many options available  
within MLM, including random effects models (for change)  
and alternative covariance structure models (for fluctuation). 
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Unstructured Variance Model  
= 21 parameters (all vars. and covars.) 

Random Intercept Model  
= 2 parameters (𝛕𝐔𝟐𝟎 and 𝛔𝐞𝟐) 
(variances predicted to be equal over sessions) 

Variance in Number Match 3 Response Times by Session 



Summary: Modeling Means and Variances 
• We have two tasks in describing within-person change: 

 

• Choose a Model for the Means 
 What kind of change in the outcome do we have on average? 
 What kind and how many fixed effects do we need to predict 

that mean change as parsimoniously but accurately as possible? 
 

• Choose a Model for the Variances 
 What pattern do the variances and covariances of the outcome 

show over time because of individual differences in change? 
 What kind and how many random effects do we need to predict 

that pattern as parsimoniously but accurately as possible? 
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New: Testing Absolute Fit in REML 
• Answer key model (possible only for balanced data): 

 Means Model = Saturated Means 
 Variance Model = Unstructured R, or RI+UN(n−1) equivalent 

 

• Tests of absolute fit of any simpler means model against 
saturated means can only be done via −2ΔLL when using ML, 
but what if you need to use REML given small level-2 N? 
 Use a multivariate Wald test instead: add enough contrasts for occasion-

specific mean differences to create saturated means, then test that 
group of contrasts (see example 6 for how to do so using CLASS/BY) 

 

• Tests of absolute fit of any nested variance model against UN 
can be done using REML −2ΔLL if same means side (so keep 
the same fixed effects for time in each comparison model) 
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Name that trajectory… Polynomial? 
• Predict mean change with polynomial fixed effects of time:  

 Linear        constant amount of change (up or down) 
 Quadratic  change in linear rate of change (acceleration/deceleration)  
 Cubic        change in acceleration/deceleration of linear rate of change 

                     (known in physics as jerk, surge, or jolt) 
 Terms work together to describe curved trajectories 

 

• Can have polynomial fixed time slopes UP TO: n – 1* 
 3 occasions = 2nd order (time2)= Fixed Quadratic Time or less 
 4 occasions = 3rd order (time3) = Fixed Cubic Time or less 

 
• Interpretable polynomials past cubic are rarely seen in practice  

 

*This rule can be broken in unbalanced data (but cautiously) 
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Interpreting Quadratic Fixed Effects 
A Quadratic time effect is a two-way interaction: time*time 

 

• Fixed quadratic time = “half the rate of acceleration/deceleration” 
• So to interpret it as how the linear time effect changes per unit time,  

you must multiply the quadratic coefficient by 2 
 

• If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3? 
 Instantaneous linear rate of Δ at time 0 = 4.0, at time 1 = 4.6… 

 

• The “twice” part comes from taking the derivatives of the function: 
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Interpreting Quadratic Fixed Effects 
A Quadratic time effect is a two-way interaction: time*time 

• Fixed quadratic = “half the rate of acceleration/deceleration” 
• So to interpret it as how the linear time effect changes per unit time,  

you must multiply the quadratic coefficient by 2 
• If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3? 

 Instantaneous linear rate of Δ at time 0 = 4.0, at time 1 = 4.6… 

 
• The “twice” part also comes from  

what you remember about the 
role of interactions with respect  
to their constituent main effects: 

 

• Because time is interacting with itself, there is no second main effect in the 
model for the interaction to modify as usual. So the quadratic time effect 
gets applied twice to the one (main) linear effect of time. 
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Examples of Fixed Quadratic Time Effects 
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Conditionality of Polynomial Fixed Time Effects 

• We’ve seen how main effects become conditional simple 
effects once they are part of an interaction 

• The same is true for polynomial fixed effects of time: 
 Fixed Intercept Only? 

 Fixed Intercept = predicted mean of Y for any occasion (= grand mean) 
 Add Fixed Linear Time? 

 Fixed Intercept = now predicted mean of Y from linear time at time=0 
(would be different if time was centered elsewhere) 

 Fixed Linear Time = mean linear rate of change across all occasions  
(would be the same if time was centered elsewhere) 

 Add Fixed Quadratic Time? 
 Fixed Intercept = still predicted mean of Y at time=0 (but from quadratic model) 

(would be different if time was centered elsewhere) 
 Fixed Linear Time = now mean linear rate of change at time=0 

(would be different if time was centered elsewhere) 
 Fixed Quadratic Time = half the mean rate of acceleration or deceleration of 

change across all occasions (i.e., the linear slope changes the same over time) 
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Polynomial Fixed vs. Random Time Effects 
• Polynomial fixed effects combine to describe mean 

trajectory over time (can have fixed slopes up to n – 1): 
 Fixed Intercept = Predicted mean level (at time 0) 
 Fixed Linear Time = Mean linear rate of change (at time 0) 
 Fixed Quadratic Time = Half of mean acceleration/deceleration in linear 

rate of change (2*quad is how the linear time slope changes per unit 
time if quadratic is highest order fixed effect) 
 

• Polynomial random effects (individual deviations from the 
fixed effect) describe individual differences in those change 
parameters (can have random slopes up to n – 2): 
 Random Intercept = BP variance in level (at time 0) 
 Random Linear Time = BP variance in linear time slope (at time 0) 
 Random Quadratic Time = BP variance in half the rate of 

acceleration/deceleration of linear time slope  
(across all time if quadratic is highest-order random effect) 
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Random Quadratic Time Model 
Level 1:  yti   =   β0i +  β1iTimeti  + β2iTimeti

2 +  eti 
 

Level 2 Equations (one per β): 
 β0i  =  γ00  +      U0i  
 

 

  

 β1i  =  γ10  +      U1i 

 
 
 

 β2i  =  γ20  +      U2i  
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Fixed Effect Subscripts: 
1st = which Level 1 term 
2nd = which Level 2 term 

Number of Possible Slopes 
by Number of Occasions (n): 

# Fixed slopes = n – 1 
# Random slopes = n – 2 

Need n = 4 occasions to fit 
random quadratic time model 

Intercept 
for person i 

Linear Slope 
for person i 

Quad Slope 
for person i 

Fixed (mean) 
Intercept 

Fixed (mean) 
Linear Slope  
 

Fixed (mean) 
Quad Slope  
 

Random 
(Deviation) 
Intercept 

Random 
(Deviation) 
Linear Slope 

Random 
(Deviation) 
Quad Slope 



Example Sequence for Testing Fixed 
and Random Polynomial Effects of Time  

Build up fixed and random effects simultaneously: 
1. Empty Means, Random Intercept  to calculate ICC 
2. Fixed Linear, Random Intercept  check fixed linear p-value 
3. Random Linear  check −2ΔLL(df≈2) for random linear variance 
4. Fixed Quadratic, Random Linear  check fixed quadratic p-value 
5. Random Quadratic  check −2ΔLL(df ≈ 3) for random quadratic variance 
6. ……. 
 

*** In general: Can use REML for all models, so long as you: 
 Test significance of new fixed effects by their p-values 
 Test significance of new random effects in separate step by −2ΔLL 
 Also see if AIC and BIC are smaller when adding random effects 
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Conditionality of Polynomial Random Effects 
• We saw previously that lower-order fixed effects of time are 

conditional on higher-order polynomial fixed effects of time 
• The same is true for polynomial random effects of time: 

 Random Intercept Only? 
 Random Intercept = BP variance for any occasion in predicted mean Y  

(= variance in grand mean because individual lines are parallel) 
 Add Random Linear Time? 

 Random Intercept = now BP variance at time=0 in predicted mean Y 
(would be different if time was centered elsewhere) 

 Random Linear Time = BP variance across all occasions in linear rate of change  
(would be the same if time was centered elsewhere) 

 Add Random Quadratic Time? 
 Random Intercept = still BP variance at time=0 in predicted mean Y  
 Random Linear Time = now BP variance at time=0 in linear rate of change  

(would be different if time was centered elsewhere) 
 Random Quadratic Time = BP variance across all occasions in half of accel/decel 

of change (would be the same if time was centered elsewhere) 
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Random Effects Allowed by #Occasions 
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Predicted V Matrix from  
Polynomial Random Effects Models 

• Random linear model? Variance has a quadratic dependence on time  
 Variance will be at a minimum when time = –Cov(U0,U1)/Var(U1),  

and will increase parabolically and symmetrically over time  
 Predicted variance at each occasion and covariance between A and B: 

Var(ytime)  = Var(et) + Var(U0) + 2Cov(U0,U1)(timet) + Var(U1)(timet
2) 

Cov(yA,yB) = Var(U0) + Cov(U0,U1)(A + B) + Var(U1)(AB) 

• Random quadratic model? Variance has a quartic dependence on time 
 Var(ytime)  = Var(et) + Var(U0) + 2Cov(U0,U1)(timet) + Var(U1)(timet

2) + 
                             2Cov(U0,U2)(timet

2) + 2Cov(U1,U2)(timet
3) + Var(U2)(timet

4)  

Cov(yA,yB) = Var(U0) + Cov(U0,U1)(A + B) + Var(U1)(AB) + Cov(U0,U2)(A2 + B2) + 
                 Cov(U1,U2)[(AB2)+(A2B)] + Var(U2)(A2B2) 
 

• The point of the story: random effects of time are a way of allowing the 
variances and covariances to differ over time in specific, time-dependent 
patterns (that result from differential individual change over time).  
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Rules for Polynomial Models  
(and in general for fixed and random effects) 

• On the same side of the model (means or variances side), lower-order 
effects stay in EVEN IF NONSIGNIFICANT (for correct interpretation) 
 e.g., Significant fixed quadratic? Keep the fixed linear 
 e.g., Significant random quadratic? Keep the random linear 

 

• Also remember—you can have a significant random effect EVEN IF the 
corresponding fixed effect is not significant (keep it anyway): 
 e.g., Fixed linear not significant, but random linear is significant? 
 No linear change on average, but significant individual differences in change 

 

• Language: A random effect supersedes a fixed effect: 
 If Fixed = intercept, linear, quad; Random = intercept, linear, quad? 

 Call it a “Random quadratic model” (implies everything beneath those terms) 
 If Fixed = intercept, linear, quad; Random = intercept, linear? 

 Call it a “Fixed quadratic, random linear model" (distinguishes no random quad) 
 

• Intercept-slope correlation depends largely on centering of time… 
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Correlation between Random Intercept and 
Random Linear Slope depends on time 0 
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r = -1 

r = +1 

!! Nonparallel lines will eventually cross. 

r = 0 

Which intercept-
slope correlation 
is the ‘right’ one? 



Correlations among polynomial slopes 
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Session Linear Quadratic Session Linear Quadratic Session Linear Quadratic
1 0 0 1 -5 25 1 -2.5 6.25
2 1 1 2 -4 16 2 -1.5 2.25
3 2 4 3 -3 9 3 -0.5 0.25
4 3 9 4 -2 4 4 0.5 0.25
5 4 16 5 -1 1 5 1.5 2.25
6 5 25 6 0 0 6 2.5 6.25

Session Centered at 1: Session Centered at 6: Session Centered at Mean:
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Correlations among 
polynomial effects of 
time can be induced by 
centering time near the 
start or near the end.  
 
Therefore, these 
correlations will be 
*most* interpretable 
when centering time  
at its mean instead. 



Summarizing so far… 
• Modeling within-person change involves specifying 

effects of time for both sides of the model 
 Fixed effects in model for the means:  

 What kind of change am I observing on average? 
 What kind of trajectory will reproduce those means? 

 Random effects (and residuals) in model for the variances: 
 What kind of individual differences in change am I observing? 
 How many random effects do I need to reproduce the observed  

pattern of variances and covariances over time? 
 

• One option: Polynomial models (linear, quadratic, cubic) 
 Terms work together to describe non-linear trajectories 
 Careful with the covariances among random effects, though 

• Coming next: Piecewise slopes and truly nonlinear change… 
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Other Random Effects Models of Change 
• Piecewise models: Discrete slopes for discrete phases of time 

 Separate terms describe sections of overall trajectories 
 Useful for examining change in intercepts and slopes before/after 

discrete events (changes in policy, interventions) 
 Must know where the break point is ahead of time! 

 
5th Grade
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

         Baseline 1                Treat 1     Baseline 2    Treat 2 
Piecewise Model: 
 
4 slopes  
(one per phase) 
 
3 “jumps” 
(shift in intercept 
between phases) 
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Example of Daily Cortisol Fluctuation: 
Morning Rise and Afternoon Decline 
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This piecewise model 
is structured using  
“Time Since Waking” 

SAS Code to create two piecewise slopes from 
continuous time of day in stacked data: 
IF occasion=1 THEN DO;  
     P1=0;        P2=0; END;  
IF occasion=2 THEN DO;  
     P1= time2-time1; P2=0; END; 
IF occasion=3 THEN DO;  
     P1= time2-time1; P2=time3-time2; END;  
IF occasion=4 THEN DO;  
     P1= time2-time1; P2=time4-time2; END; 
 
Note that a quadratic slope may be necessary 
for the afternoon decline slope! 
 

Wake  +30min    lunch               bed 

 



Random Two-Slope Piecewise Model 
Level 1:  yti  =  β0i + β1iSlope1ti + β2iSlope2ti + eti 
 

Level 2 Equations (one per β): 
 β0i  =  γ00  +      U0i  
 

 

  

 β1i  =  γ10  +      U1i 
 
 

 

 β2i  =  γ20  +      U2i   
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Fixed Effect Subscripts: 
1st = which Level 1 term 
2nd = which Level 2 term 

Number of Possible Slopes 
by Number of Occasions (n): 

# Fixed slopes = n – 1 
# Random slopes = n – 2 

Need n = 4 occasions to fit 
random two-slope model 

Intercept 
for person i 

Slope1  
for person i 

Slope2  
for person i 

Fixed (mean) 
Intercept 

Fixed (mean) 
Slope1  
 

Fixed (mean) 
Slope2  
 

Random 
(Deviation) 
Intercept 

Random 
(Deviation) 
Slope1 

Random 
(Deviation) 
Slope2 
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What kind of piecewise model could predict  
our example data mean change across sessions? 

“Early” 
Practice 
Effect 

“Later” 
Practice 
Effect 

Saturated Means (ANOVA) Model  
= 6 parameters (1 mean per session) 

Number Match 3 Mean Response Times by Session 
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Piecewise Models:  Two Direct Slopes 

• “Early Practice Slope” and  
“Later Practice Slope” 

• Use to specify slopes through 
each discrete phase directly 

• Session (1-6) gets recoded 
into 2 new time predictor 
variables, as shown below: 

  Session 1 2 3 4 5 6 
  Early Practice  Slope12  =  0 1 1 1 1 1 
  Later Practice  Slope26  =  0 0 1 2 3 4 

1       2       3       4       5       6 

Slope12 = linear 
change from 1-2 

Slope26 = linear 
change from 2-6 
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Piecewise Models: Slope +Deviation Slope 

• “Linear Time Slope” and 
“Deviation Slope”  

• Use to test if multiple 
slopes are needed 

• Initial slope predictor is 
coded differently, second 
slope predictor is same: 

  Session 1 2 3 4 5 6 
  Time            Slope16  =  0 1 2 3 4 5 
  Deviation    Slope26  =  0 0 1 2 3 4 

1       2       3       4       5       6 

Slope16 = linear 
trend for 1-2 only 
after controlling 
Slope26 

Slope26 = now difference 
in linear trend from 2-6  
(test of needing 2 pieces) 
after controlling for time 
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2 Direct Slopes Model: Random Effects  
• Parameters directly represent each part of trajectory: 

 

• Fixed effects for mean change over time (3): 
 Fixed Intercept = expected Y when both slopes = 0 (Session 1) 
 Fixed Slope12 = expected linear rate of change from 1 to 2 
 Fixed Slope26 = expected linear rate of change from 2 to 6 

 

• Leads to possible random effects (up to 3 var+3 cov): 
 Random Intercept = BP variance in expected level  

                                  when both slopes = 0 (at Session 1) 
 Random Slope12 = BP variance in linear slope from 1 to 2 
 Random Slope26 = BP variance in linear slope from 2 to 6 
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Slope + Deviation Slope: Random Effects  
• Parameters directly differences across parts of trajectory: 

 
• Fixed effects for mean change over time (3): 
 Fixed Intercept = expected Y when both slopes = 0 (Session 1) 
 Fixed Slope16 = expected linear rate of change from 1 to 2  

                           (after controlling for slope26) 
 Fixed Slope26 = expected extra linear rate of change from 2 to 6  

                           (after controlling for slope16, which is just time) 
 

• Leads to possible random effects (up to 3 var+3 cov): 
 Random Intercept = BP variance in expected level  

                                  when both slopes = 0 (at Session 1) 
 Random Slope16 = BP variance in linear slope from 1 to 2 
 Random Slope26 = BP variance in extra linear slope from 2 to 6 
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Saturated Means via Piecewise Slopes Models 

• You can fit fixed piecewise slopes up to n–1,  
but only random piecewise slopes up to n–2: 
 3 occasions? up to 2 fixed pieces, but only 1 random piece 
 4 occasions? up to 3 fixed pieces, but only 2 random pieces 
 n–1 fixed pieces will perfectly reproduce observed means 

 
• Given this constraint (and balanced data), you should 

consider some of the ACS models as well: 
 Example: n=3  Model for the means = 2 fixed pieces, 

Model for the Variances could be…. 
 UN, CSH, CS (Random Intercept Only), Random Intercept + Random 

Slope12, OR  Random Intercept + Random Slope23 
 Everything is nested within UN; can also use AIC and BIC to choose 
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Summary: Piecewise Slopes Models 
• Piecewise models are useful for discontinuous trajectories 

(empirically or based on the study design) 
 Use slope + deviation slope(s) to test if > 1 slope is necessary 

• If all effects are random, the slope + deviation slope and the 
direct slopes versions of the models will be equivalent 
 Select the one that has the random effects variance you want to predict 

• Keep all the pieces in the model (even if non-significant) in 
order to maintain a correct interpretation of each 

• Each piece can be linear or non-linear as needed 
 e.g., piece1 + piece2 + piece22  linear, then non-linear trajectory 

• You may also need to test for a ‘drop’ or ‘jump’ in intercept at 
the break point in addition to change in slope, data permitting 
 Planning on doing piecewise models? They can be tricky… 

PLEASE let me help you set up the predictors to do so! 
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Other Random Effects for Change 
• Truly nonlinear models: Non-additive terms to describe change 

 Models can include asymptotes (so change can “shut off” as needed) 
 Include power and exponential functions (see chapter 6 for references) 
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(Negative) Exponential Model Parameters 
1) Different Asymptotes, 

same amount and rate 

2) Different Amounts, same 
asymptote and rate 

3) Different Rates, same 
asymptote and amount 
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Asymptote=1.8 
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2) 
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3) Rate= -0.5 
Rate= -1.0 
Rate= -1.5 
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Exponential Models 
• The name positive or negative reflects whether the data 

are moving away or towards asymptote 
 Accelerating trajectory (up or down) = “positive” exponential 
 Decelerating trajectory (up or down) = “negative” exponential 

 
• Amount reflects distance from asymptote to time 0, 

multiplied by exp(rate*time) 
 Decrease across time to asymptote = positive amount 
 Increase across time to asymptote = negative amount 

 
• Amount can also be replaced by an intercept 
 Asymptote + Amount = Intercept 

 
• Cannot be estimated in SAS PROC MIXED given its 

nonlinear parameters (use SAS PROC NLMIXED instead) 
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Exponential Model (3 Random Effects) 
Level 1: yti  =  β0i +  β1i*exp(β2i*Timeti) +  eti 
 

Level 2 Equations (one per β): 
 β0i  =  γ00  +      U0i  
 

 

  

 β1i  =  γ10  +      U1i 

 
 
 

 β2i  =  γ20  +      U2i  
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Fixed Effect Subscripts: 
1st = which Level 1 term 
2nd = which Level 2 term 

Number of Possible Slopes 
by Number of Occasions (n): 

# Fixed slopes = n – 1 
# Random slopes = n – 2 

Also need 4 occasions to fit 
random exponential model 

(Likely need way more 
occasions to find U2i, though) 

Asymptote 
for person i 

Amount  
for person i 

Rate for 
person i 

Fixed (mean) 
Asymptote 

Fixed (mean) 
Amount 
 

Fixed (mean) 
Rate 
 

Random 
(Deviation) 
Asymptote 

Random 
(Deviation) 
Amount 

Random 
(Deviation) 
Rate 



Nonlinear Models 
• Not all forms of change fit polynomial models 
 What goes up must come back down (and vice-versa) 
 Sometimes change needs to “shut off” (need asymptotes) 

 
• Many kinds of truly nonlinear models can be used for 

longitudinal data 
 Linear in variables vs. linear in parameters (exp  nonlinear) 
 Logistic, power, exponential… see end of chapter 6 for ideas 

 
• Require extra steps to evaluate estimation quality 
 Start values are needed, especially for random variances 
 Check that “gradient” values are as close to 0 as possible 

(partial first derivative of that parameter in LL function) 
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How to Mimic an Exponential Model 
If you need to use REML, a predictor of natural-log-transformed 
time may be a good substitute for a truly nonlinear model 
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A linear effect 
of log time 
(black lines) 
predicts an 
exponential 
curve across 
original time. 
 
Quadratic 
effects of log 
time (red or 
blue lines) can 
speed up or 
slow down 
the curve.  

Bottom: There is a linear relationship between log-time and the outcome. 



Which change family should I choose? 
• Within a given family, nested models can usually be 

compared to judge the need for each parameter 
 e.g., linear vs. quadratic? One slope vs. two slopes? 
 Usual nested model comparison rules apply (p-values for fixed 

effects, −2ΔLL tests for random effects) 
 When using REML, you can test absolute fit of each side 

separately if you have balanced data to see if you are “there yet” 
 

• Between families, however, alternative models of change 
may not be nested, so deciding among them can be tricky 
 e.g., quadratic vs. two-slope vs. log time vs. exponential? 
 Use ML AIC and BIC to see what is “preferred” across the families 
 In balanced data, you can also compare each alternative to a 

saturated means, UN model using ML as test of absolute fit 
 Also consider plausibility of alternative models in terms of both 

data predictions and theoretical predictions in deciding 
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