
Describing Within-Person 

Change over Time
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• Topics:

➢ The big picture of modeling change

➢ Fixed and random effects models for nonlinear change:

▪ Polynomial slopes

▪ Piecewise slopes

▪ Truly nonlinear change (via exponential 

curves and linear approximations thereof)
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The Big Picture of Longitudinal Data:

Model for the Means (Fixed Effects)

• What kind of change occurs on average over “time”?

➢ What is the most appropriate metric of time?

▪ Time in study (with other predictors for BP differences in time)?

▪ Time since birth (age)? Time to event (time since diagnosis)?

▪ Measurement occasions need not be the same across persons 

or equally spaced (so code time as exactly as possible)

➢ What kind of theoretical process generated the observed 

trajectories, and thus what kind of model do we need?

▪ Linear or nonlinear? Continuous or discontinuous? Does change 

keep happening or does it eventually stop?

▪ Many options: polynomial, piecewise, and nonlinear families
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The Big Picture of Longitudinal Data: 

Models for the Means (Fixed Effects)

PSQF 7375 Longitudinal:  Lecture 6 4

P
a
rs

im
o

n
y

G
o

o
d

 f
it

• What kind of change occurs on average over “time”? 

Two baseline models for comparison:

➢ “Empty” → only a fixed intercept (predicts no change)

➢ “Saturated” → all occasion mean diffs from reference time

(ANOVA model that uses # fixed effects= n)

*** may not be possible in unbalanced data

Empty Model:
Predicts NO 
change over time 

1 Fixed Effect

Saturated Means:

Reproduces mean 

at each occasion

# Fixed Effects 

=  # Occasions

Name… that… Trajectory!

In-between options:

polynomial slopes, 

piecewise slopes, 

nonlinear models…
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Saturated Means (ANOVA) Model 

= 6 parameters (1 mean per session)

Empty Means Model = 1 fixed intercept
(means predicted to be equal over sessions)

Number Match 3 Mean Response Times by Session



The Big Picture of Longitudinal Data:
Models for the Variance (Random Effects)

• From a substantive perspective: 
Are there individual differences in change?

➢ Individual differences in the level of an outcome?

▪ At what time point are individual differences in outcome level 
important for your hypotheses (beginning, middle, end)?

➢ Individual differences in magnitude of change?

▪ Each aspect of change (e.g., linear change, quadratic change) 
can potentially exhibit individual differences (data permitting)

• From a statistical perspective: What kind of pattern do 
the variances and covariances exhibit over time?

➢ Do the variances increase or decrease over time?

➢ Are the covariances differentially related based on time?

PSQF 7375 Longitudinal:  Lecture 6 6



The Big Picture of Longitudinal Data: 

Models for the Variance
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Unstructured (UN)Compound Symmetry (CS)

NAME ...THAT … 

STRUCTURE!

Most useful 

model: likely 

somewhere 

in between!

Univariate

RM ANOVA

Multivariate 

RM ANOVA

What is the pattern of variance and covariance over time?

CS and UN are just two of the many, many options available 

within MLM, including random effects models (for change) 

and alternative covariance structure models (for fluctuation).
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Unstructured Variance Model 

= 21 parameters (all variances and covariances)

Random Intercept Model 

= 2 parameters (𝛕𝐔
𝟐
𝟎

and 𝛔𝐞
𝟐)

(variances predicted to be equal over sessions)

Variance in Number Match 3 Response Times by Session



Summary: Modeling Means and Variance

• We have two tasks in describing within-person change:

• Choose a Model for the Means

➢ What kind of change in the outcome do we have on average?

➢ What kind and how many fixed effects do we need to predict 

that mean change as parsimoniously but accurately as possible?

• Choose a Model for the Variance

➢ What pattern do the variances and covariances of the outcome 

show over time because of individual differences in change?

➢ What kind and how many random effects do we need to predict 

that pattern as parsimoniously but accurately as possible?
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Bonus: Testing Absolute Fit in REML

• Answer key model (only possible directly for balanced data):

➢ Model for the Means = Saturated Means (fixed effects = n occasions)

➢ Model for the Variance = Unstructured R, or RI+UN(n−1) equivalent

• Tests of absolute fit of any simpler means model against 
saturated means can only be done via −2ΔLL when using ML, 
but what if you need to use REML given small level-2 N?

➢ Use a multivariate Wald test instead: add enough contrasts for 
occasion-specific mean differences to create saturated means, then 
test that group of contrasts (see example 6 using CLASS/BY/Factor)

➢ Idea found in this book: Generalized Linear Mixed Models (Stroup)

• Tests of absolute fit of any simpler variance model against 
UN can be done using REML −2ΔLL if same models for the 
means(so keep the same fixed time slopes in each model)
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https://www.routledge.com/Generalized-Linear-Mixed-Models-Modern-Concepts-Methods-and-Applications/Stroup/p/book/9781439815120


Name that trajectory… Polynomial?

• Predict mean change with polynomial fixed effects of time: 

➢ Linear       → constant amount of change (up or down)

➢ Quadratic → change in linear rate of change (acceleration/deceleration) 

➢ Cubic       → change in acceleration/deceleration of linear rate of change
(known in physics as jerk, surge, or jolt)

➢ Terms work together to describe curved trajectories 
(most useful for continuous trends that change direction)

• Can have polynomial fixed time slopes UP TO: n – 1*

➢ 3 occasions = 2nd order (time2)= Fixed Quadratic Time or less

➢ 4 occasions = 3rd order (time3) = Fixed Cubic Time or less

• Interpretable polynomials past cubic are rarely seen in practice 

*This rule can be broken in unbalanced data (but cautiously)
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Interpreting Quadratic Fixed Effects

A Quadratic time slope is a two-way interaction: time*time

• Fixed quadratic time = “half the rate of acceleration/deceleration”

• So to interpret it as how the linear time slope changes per unit time, 

you must multiply the quadratic slope coefficient by 2

• If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?

➢ Instantaneous linear rate of Δ at time 0 = 4.0, at time 1 = 4.6…

• Btw, the “twice” part comes from taking the derivatives of the function:
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Interpreting Quadratic Fixed Effects

A Quadratic time effect is a two-way interaction: time*time

• Fixed quadratic = “half the rate of acceleration/deceleration”

• So to interpret it as how the linear time slope changes per unit time, 

you must multiply the quadratic slope coefficient by 2

• If fixed linear time slope = 4 at time 0, with quadratic slope = 0.3?

➢ Instantaneous linear rate of Δ at time 0 = 4.0, at time 1 = 4.6…

• The “twice” part also comes from 

what you remember about the

role of interactions with respect 

to their constituent main effects:

• Because time is interacting with itself, there is no second “main effect” 

in the model for the interaction to modify. So the quadratic time slope 

gets applied twice when added to the one (main) linear time slope
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Examples of Fixed Quadratic Time Trends
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Conditionality of Polynomial Fixed Time Effects

• We’ve seen how marginal main effect slopes become 
conditional simple slopes once they are part of an interaction

• The same is true for polynomial fixed time effects:

➢ Fixed Intercept Only?

▪ Fixed Intercept = predicted mean of yti for any occasion (= grand mean)

➢ Add Fixed Linear Time Slope?

▪ Fixed Intercept = now predicted mean of yti at time=0 from linear time trend 
(would be different if time was centered elsewhere)

▪ Fixed Linear Time Slope = mean linear rate of change across all occasions 
(would be the same even if time was centered elsewhere)

➢ Add Fixed Quadratic Time Slope?

▪ Fixed Intercept = still predicted mean of yti at time=0 (but from quadratic 
time trend; would be different if time was centered elsewhere)

▪ Fixed Linear Time = now mean linear rate of change at time=0
(would now be different if time was centered elsewhere)

▪ Fixed Quadratic Time = half the mean rate of acceleration or deceleration 
of linear change over time across all occasions (the linear time slope 
changes the same way over time)
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Polynomial Fixed vs. Random Time Effects

• Polynomial fixed effects combine to describe the mean 
trajectory over time (can have fixed time slopes up to n – 1):

➢ Fixed Intercept = Predicted mean of yti at time=0

➢ Fixed Linear Time Slope = Mean linear rate of change at time=0

➢ Fixed Quadratic Time Slope = Half of mean acceleration/deceleration 
in linear rate of change (2*quad is how the linear time slope changes 
per unit time if quadratic slope is highest-order fixed effect for time)

• Polynomial random effects (individual deviations from the 
fixed effects) describe individual differences in those change 
parameters (can have random time slopes up to n – 2):

➢ Random Intercept = BP variance in predicted mean of yti at time=0

➢ Random Linear Time Slope = BP variance in linear time slope at time=0

➢ Random Quadratic Time Slope = BP variance in half the rate of 
acceleration or deceleration of linear rate of change (over all occasions 
if quadratic time slope is highest-order random effect for time)

PSQF 7375 Longitudinal:  Lecture 6 16



Random Quadratic Time Model

Level 1:     yti = β0i + β1iTimeti + β2iTimeti
2 + eti

Level 2 Equations (one per β):

β0i = γ00 +      U0i

β1i = γ10 +      U1i

β2i = γ20 +      U2i
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Fixed Effect Subscripts:

1st = which level-1 term

2nd = which level-2 term

# of Possible Time-Related 

Slopes by # of Occasions (n):

# Fixed time slopes = n – 1

# Random time slopes = n – 2

Need n = 4 occasions to fit 

random quadratic time model

Intercept

for person i

Linear Time 

Slope for 

person i

Quadratic 

Time Slope

for person i

Fixed (mean) 

Intercept

Fixed (mean)

Linear Slope

Fixed (mean)

Quad Slope

Random 

(Deviation) 

Intercept

Random 

(Deviation) 

Linear Slope

Random 

(Deviation) 

Quad Slope



Example Sequence for Testing Fixed 

and Random Polynomial Time Slopes
Build up fixed and random time slopes simultaneously:

1. Empty Means, Random Intercept → to calculate ICC

2. Fixed Linear Slope, Random Intercept → check fixed linear p-value

3. Random Linear Slope → check −2ΔLL(df≈2) for random linear variance
(+1 covariance with random intercept)

4. Fixed Quadratic Slope, Random Linear Time → check fixed quadratic p-value

5. Random Quadratic Slope → check −2ΔLL(df≈3) for random quadratic variance
(+2 covariances  with other random effects)

6. (other fixed and random time-related slopes as needed)

*** In general: Can use REML for all models, so long as you:

→ Test significance of new fixed effects by their Wald test p-values

→ Test significance of new random effects in separate step by −2ΔLL

→ Also see if AIC and BIC are smaller when adding random effects
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Conditionality of Polynomial Random Effects

• We saw previously that lower-order fixed time slopes are 
conditional on higher-order polynomial fixed time slopes

• The same is true for polynomial random time slopes:

➢ Random Intercept Only?

▪ Random Intercept = BP variance for any occasion in predicted mean of yti

(= variance in grand mean because individual lines are parallel)

➢ Add Random Linear Time Slope?

▪ Random Intercept = now BP variance at time=0 in predicted mean of yti

(would be different if time was centered elsewhere)

▪ Random Linear Time Slope= BP variance across all occasions in linear 
rate of change (would be the same if time was centered elsewhere)

➢ Add Random Quadratic Time Slope?

▪ Random Intercept = still BP variance at time=0 in predicted mean of yti

▪ Random Linear Time Slope = now BP variance at time=0 in linear rate of change 
(would be different if time was centered elsewhere)

▪ Random Quadratic Time Slope = BP variance across all occasions in half of 
accel/decel of change (would be the same if time was centered elsewhere)
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Random Effects Allowed by #Occasions
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Predicted V Matrix from 

Polynomial Random Effects Models

• Random linear time model? Variance has a quadratic dependence on time

➢ Variance will be at a minimum when time = –Cov(U0,U1)/Var(U1), 

and will increase parabolically and symmetrically over time 

➢ Predicted variance at each occasion and covariance between A and B:

Var(ytime)  = Var(et) + Var(U0) + 2Cov(U0,U1)(timet) + Var(U1)(timet
2)

Cov(yA,yB) = Var(U0) + Cov(U0,U1)(A + B) + Var(U1)(AB)

• Random quadratic time model? Variance has a quartic dependence on time

Var(ytime)  = Var(et) + Var(U0) + 2Cov(U0,U1)(timet) + Var(U1)(timet
2) +

2Cov(U0,U2)(timet
2) + 2Cov(U1,U2)(timet

3) + Var(U2)(timet
4) 

Cov(yA,yB) = Var(U0) + Cov(U0,U1)(A + B) + Var(U1)(AB) + Cov(U0,U2)(A
2 + B2) +

Cov(U1,U2)[(AB2)+(A2B)] + Var(U2)(A
2B2)

• The point of the story: random effects of time are a way of allowing the 

variances and covariances to differ over time in specific, time-dependent 

patterns (that result from differential individual change over time).
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Rules for Polynomial Time Models 
(and in general for fixed and random effects)

• On the same side of the model (means or variances side), lower-order 
effects stay in EVEN IF NONSIGNIFICANT (for correct interpretation)

➢ e.g., Significant fixed quadratic? Keep the fixed linear

➢ e.g., Significant random quadratic? Keep the random linear

• You can have a significant random effect EVEN IF the corresponding fixed 
effect is not significant (keep fixed anyway → what random deviates from):

➢ e.g., Fixed linear slope not significant, but random linear slope is significant?
→ No linear change on average, but have significant individual differences in change

• Language: A random effect supersedes a fixed effect:

➢ If Fixed = intercept, linear, quad; Random = intercept, linear, quad?

▪ Call it a “Random quadratic model” (implies all lower-order terms)

➢ If Fixed = intercept, linear, quad; Random = intercept, linear?

▪ Call it a “Fixed quadratic, random linear model" (distinguishes no random quad)

• Intercept–slope correlation depends largely on centering of time…
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Correlation Between Random Intercept and 

Random Linear Slope Depends on Time=0
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r = -1

r = +1

!! Nonparallel lines will eventually cross !!

r = 0

Which intercept–

slope correlation 

is the ‘right’ one?



Correlations Among Polynomial Slopes
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Session Linear Quadratic Session Linear Quadratic Session Linear Quadratic

1 0 0 1 -5 25 1 -2.5 6.25

2 1 1 2 -4 16 2 -1.5 2.25

3 2 4 3 -3 9 3 -0.5 0.25

4 3 9 4 -2 4 4 0.5 0.25

5 4 16 5 -1 1 5 1.5 2.25

6 5 25 6 0 0 6 2.5 6.25

Session Centered at 1: Session Centered at 6: Session Centered at Mean:
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Correlations among 

polynomial time slopes 

can be induced by 

centering time near the 

start or near the end. 

Therefore, these 

correlations will be 

*most* interpretable 

when centering time 

at its mean instead.



Intermediate Summary

• Modeling within-person change involves specifying 
effects of time for both sides of the model

➢ Fixed slopes in model for the means:

▪ What kind of change am I observing on average?

▪ What kind of trajectory will reproduce those means?

➢ Random slopes (and residuals) in model for the variance:

▪ What kind of individual differences in change am I observing?

▪ How many random slopes do I need to reproduce the observed 
pattern of variances and covariances over time?

• One option: Polynomial models (linear, quadratic, cubic)

➢ Terms work together to describe non-linear trajectories

➢ Careful with the covariances among random effects, though

• Coming next: Piecewise slopes and truly nonlinear change…
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Other Random Effects Models of Change

• Piecewise models: Discrete slopes for discrete phases of time

➢ Separate terms describe sections of overall trajectories

➢ Useful for examining change in intercepts and slopes before 

vs. after discrete events (changes in policy, interventions)

➢ Must know where the break point is ahead of time!

▪ Otherwise, you need a “latent change point” model to find the breaks

 
5th Grade

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Baseline 1                Treat 1     Baseline 2    Treat 2

Piecewise Model 

Real Example:

4 slopes 

(one per phase)

3 “jumps”

(shift in intercept 

between phases)

PSQF 7375 Longitudinal:  Lecture 6 26



Example of Daily Cortisol Fluctuation: 

Morning Rise and Afternoon Decline
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Daily Cortisol Averages for Time of Day
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This piecewise model 

is structured using 

“Time Since Waking”

SAS Code to create two piecewise slopes from 

continuous time of day in stacked data:

IF occasion=1 THEN DO; 

P1=0; P2=0; END; 

IF occasion=2 THEN DO; 

P1= time2-time1; P2=0; END;

IF occasion=3 THEN DO; 

P1= time2-time1; P2=time3-time2; END; 

IF occasion=4 THEN DO; 

P1= time2-time1; P2=time4-time2; END;

Note that a quadratic slope may be necessary 

for the afternoon decline trajectory!

Wake  +30min    lunch               bed



Random Two-Slope Piecewise Model

Level 1:     yti = β0i + β1iSlope1ti + β2iSlope2ti + eti

Level 2 Equations (one per β):

β0i = γ00 +      U0i

β1i = γ10 +      U1i

β2i = γ20 +      U2i 
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Fixed Effect Subscripts:

1st = which level-1 term

2nd = which level-2 term

# of Possible Time-Related 

Slopes by # of Occasions (n):

# Fixed time slopes = n – 1

# Random time slopes = n – 2

Need n = 4 occasions to fit 

random two-slope model

Intercept

for person i
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Fixed (mean) 

Intercept

Fixed (mean)

Slope1

Fixed (mean)

Slope2

Random 

(Deviation) 

Intercept

Random 

(Deviation) 

Slope1

Random 

(Deviation) 

Slope2



1,500

1,550

1,600

1,650

1,700

1,750

1,800

1,850

1,900

1,950

2,000

1 2 3 4 5 6

R
T

 i
n

 m
se

c

Session

What kind of piecewise model could predict 

our example data mean change across sessions?
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Practice 

Effect
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Practice 

Effect

Saturated Means (ANOVA) Model 

= 6 parameters (1 mean per session)

Number Match 3 Mean Response Times by Session
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Piecewise Models:  Two Direct Slopes

• “Early Practice Slope” and 

“Later Practice Slope”

• Use to specify slopes through 

each discrete phase directly

• Session (1-6) gets recoded 

into 2 new time predictor 

variables, as shown below:

Session 1 2 3 4 5 6

Early Practice → Slope12  = 0 1 1 1 1 1

Later Practice → Slope26  = 0 0 1 2 3 4

1       2       3       4       5       6

Slope12 = linear 

change from 1-2

Slope26 = linear 

change from 2-6
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Piecewise Models:  Slope + Deviation Slope

• “Linear Time Slope” and 

“Deviation Slope” 

• Use to test if multiple 

slopes are needed

• Initial slope predictor is 

coded differently, second 

slope predictor is same:

Session 1 2 3 4 5 6

Time           → Slope16  = 0 1 2 3 4 5

Deviation   → Slope26  = 0 0 1 2 3 4

1       2       3       4       5       6

Slope16 = linear 

trend for 1-2 only

after controlling 

Slope26

Slope26 = now difference

in linear trend from 2-6 

(=test of needing 2 pieces) 

after controlling for time
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2 Direct Slopes Model: Random Effects 

• Parameters directly represent each part of trajectory:

• Fixed effects (3) for mean change over sessions

➢ Fixed Intercept = expected mean yti when both slopes = 0          
(at Session 1 given slopes coding)

➢ Fixed Slope12 = expected linear rate of change from 1 to 2

➢ Fixed Slope26 = expected linear rate of change from 2 to 6

• Leads to possible random effects (3 var + 3 covar)

➢ Random Intercept = BP variance in expected mean yti

when both slopes = 0 (at Session 1)

➢ Random Slope12 = BP variance in linear slope from 1 to 2

➢ Random Slope26 = BP variance in linear slope from 2 to 6
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Slope + Deviation Slope: Random Effects 

• Parameters directly differences across parts of trajectory:

• Fixed effects (3) for mean change over sessions

➢ Fixed Intercept = expected mean yti when both slopes = 0          
(at Session 1 given slopes coding)

➢ Fixed Slope16 = expected linear rate of change from 1 to 2 
(after controlling for slope26)

➢ Fixed Slope26 = expected extra linear rate of change from 2 to 6 
(after controlling for slope16, which is just time)

• Leads to possible random effects (up to 3 var+3 cov)

➢ Random Intercept = BP variance in expected mean yti
when both slopes = 0 (at Session 1)

➢ Random Slope16 = BP variance in linear slope from 1 to 2

➢ Random Slope26 = BP variance in extra linear slope from 2 to 6
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Saturated Means via Piecewise Slopes Models

• You can fit fixed piecewise time slopes up to n–1, 
but only random piecewise time slopes up to n–2

➢ 3 occasions? Up to 2 fixed pieces, but only 1 random piece

➢ 4 occasions? Up to 3 fixed pieces, but only 2 random pieces

➢ n–1 fixed pieces will perfectly reproduce observed means

• Given this constraint (and balanced data), you may 
need an ACS model instead of random slopes:

➢ Example: n=3 → model for the means = 2 fixed piecewise 
slopes for time; model for the variance could be….

▪ UN, CSH, CS (Random Intercept Only), Random Intercept + 
Random Slope12, OR  Random Intercept + Random Slope23

▪ Everything is nested within UN; can also use AIC and BIC to choose
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Summary: Piecewise Slopes Models
• Piecewise models are useful for discontinuous trajectories

(empirically or based on the study design)

➢ Use slope + deviation slope(s) to test if > 1 slope is necessary

• If all effects are random, the slope + deviation slope and the 
direct slopes versions of the models will be equivalent

➢ Select the one that has the random effects variance you want to predict

• Keep all the pieces in the model (even if non-significant) 
in order to maintain a correct interpretation of each

• Each piece can be linear or non-linear as needed

➢ e.g., piece1 + piece2 + piece22
→ linear, then non-linear trajectory

• You may also need to test for a ‘drop’ or ‘jump’ in intercept at 
the break point in addition to change in slope, data permitting

➢ Planning on doing piecewise models? They can be tricky…
PLEASE let me help you set up the predictors to do so!
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Other Random Effects for Change
• “Truly” nonlinear models: Non-additive terms to describe change

➢ Models can include asymptotes (so change can “shut off” as needed)

➢ Include power and exponential functions (see chapter 6 for references)
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(Negative) Exponential Model Parameters

1) Different Asymptotes, 

same amount and rate

2) Different Amounts, same 

asymptote and rate

3) Different Rates, same 

asymptote and amount
1.0
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1)
Asymptote=1.8

Asymptote=1.5

Asymptote=1.2
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2)
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3)
Rate= −0.5

Rate= −1.0

Rate= −1.5
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Exponential Models of Change over Time

• The name positive or negative reflects whether the data 
are moving away or towards asymptote

➢ Accelerating trajectory (up or down) = “positive” exponential

➢ Decelerating trajectory (up or down) = “negative” exponential

• Amount reflects distance from asymptote to time 0, 
multiplied by exp(rate*time)

➢ Decrease across time to asymptote = positive amount

➢ Increase across time to asymptote = negative amount

• Amount can also be replaced by an intercept

➢ Asymptote + Amount = Intercept

• Cannot be estimated in SAS PROC MIXED given its 
nonlinear parameters (use SAS PROC NLMIXED instead)
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Exponential Model (with 3 Random Effects)

Level 1: yti = β0i + β1i*exp(β2i*Timeti) + eti

Level 2 Equations (one per β):

β0i = γ00 +      U0i

β1i = γ10 +      U1i

β2i = γ20 +      U2i
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Fixed Effect Subscripts:

1st = which level-1 term

2nd = which level-2 term

# of Possible Time-Related 

Slopes by # of Occasions (n):

# Fixed time slopes = n – 1

# Random time slopes = n – 2

Also need 4 occasions to fit 

random exponential model

(Likely need way more 

occasions to find U2i, though)
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Estimating Truly Nonlinear Models

• Not all forms of change fit polynomial models

➢ Quadratic models imply that what goes up must come down 
(and vice-versa), which doesn’t often fit patterns of change

➢ Change frequently needs to “shut off” (at 1-2 asymptotes)

• Many kinds of truly nonlinear models can be used for 
predicting trajectories of change over time

➢ Linear in variables vs. linear in parameters (exp → nonlinear)

➢ Logistic, power, exponential… see end of chapter 6 for ideas

• Require extra steps to evaluate estimation quality

➢ Start values are needed, especially for random variances

➢ Check that “gradient” values are as close to 0 as possible 
(partial first derivative of that parameter in LL function)

➢ Only ML is available, so what to do in small samples???
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How to Mimic an Exponential Model
If you need to use REML, a predictor of natural-log-transformed 

time may be a decent substitute for a truly nonlinear model
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Which change family should I choose?

• Within a given family, nested models can usually be 
compared to judge the need for each parameter

➢ e.g., linear vs. quadratic? One slope vs. two slopes?

➢ Usual nested model comparison rules apply (Wald test p-values 
for fixed effects, −2ΔLL test p-values for random effects)

➢ When using REML, you can test absolute fit of each side 
separately if you have balanced data to see if you are “there yet”

• Between families, however, alternative models of change 
may not be nested, so deciding among them can be tricky

➢ e.g., quadratic vs. two-slope vs. log time vs. exponential?

➢ Use ML AIC and BIC to see what is “preferred” across the families

➢ In balanced data, you can also compare each alternative to a 
saturated means, UN model using ML as test of absolute fit

➢ Also consider plausibility of alternative models in terms of both 
data predictions and theoretical predictions in deciding
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