
Introduction to Random Effects 

of Time and Model Estimation
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• Topics:

➢ The Big Picture

➢ Multilevel model notation

➢ Fixed vs. random effects of time

➢ Random intercept vs. random slope models

➢ Handling dependency: fixed or random effects?

➢ How MLM = SEM

➢ Fun with maximum likelihood estimation



Modeling Change vs. Fluctuation

Model for the Means:

• WP Change  → describe pattern of average change (over “time”)

• WP Fluctuation → *may* not need anything (if no systematic change)

Model for the Variance:

• WP Change  → describe individual differences in change (random effects)
→ this allows variances and covariances to differ over time

• WP Fluctuation → describe pattern of variances and covariances over time
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Time

Pure WP Change

Time

Pure WP FluctuationOur focus 

for the next 

2-3 weeks



The Big Picture of Longitudinal Data: 

Models for the Means
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• What kind of change occurs on average over time? 

So far, we know of two baseline models:

➢ “Empty” → only a fixed intercept (predicts no change)

➢ “Saturated” → all occasion mean differences from time 0

(ANOVA model that uses # fixed effects= n)

*** may not be possible in unbalanced data

Empty Model:
Predicts NO 
change over time 

1 Fixed Effect

Saturated Means:

Reproduces mean 

at each occasion

# Fixed Effects 

=  # Occasions

Name… that… Trajectory!

In-between options:

polynomial slopes, 

piecewise slopes, 

nonlinear models…



The Big Picture of Longitudinal Data: 

Models for the Variance
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Unstructured (UN)Compound Symmetry (CS)

NAME ...THAT … 

STRUCTURE!

Most useful 

model: likely 

somewhere 

in between!

Univariate

RM ANOVA

Multivariate 

RM ANOVA

What is the pattern of variance and covariance over time?

CS and UN are just two of the many, many options available 

within MLM, including random effects models (for change) 

and alternative covariance structure models (for fluctuation).
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Empty +Within-Person Model

Variance of yti → 2 sources:

Level 2 Random Intercept 

Variance (of U0i, as 𝛕𝐔
𝟐
𝟎
):

→ Between-Person Variance

→ Differences from GRAND mean

→ INTER-Individual Differences

Level 1 Residual Variance

(of eti, as 𝛔𝐞
𝟐):

→ Within-Person Variance

→ Differences from OWN mean

→ INTRA-Individual Differences
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Empty Means, Random Intercept Model

GLM Empty Model:

• yi = β0 + ei

MLM Empty Model:

• Level 1:  

yti = β0i + eti

• Level 2: 

β0i = γ00 + U0i

3 Total Parameters: 
Model for the Means (1): 

• Fixed Intercept γ00

Model for the Variance (2):

• Level-1 Variance of eti → 𝛔𝐞
𝟐

• Level-2 Variance of U0i → 𝛕𝐔
𝟐
𝟎
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Fixed Intercept 

=grand mean of 

person means 

(because no 

predictors yet) 

Random Intercept 

= individual-specific 

deviation from 

predicted intercept

Residual = time-specific deviation 

from individual’s predicted outcome 

Composite equation:  

yti =  (γ00 + U0i ) + eti



Saturated Means, Random Intercept Model

• Although rarely shown this way, a saturated means, random 

intercept model would be represented as a multilevel model 

like this (for example n = 4 here, in which the time predictors 

are dummy codes to distinguish each occasion from time 0):

• Level 1:  
yti = β0i + β1i(Time1ti) + β2i(Time2ti) + β3i(Time3ti) + eti

• Level 2: 
β0i = γ00 + U0i

β1i = γ10 

β2i = γ20 

β3i = γ30
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Composite equation (6 parameters):  
yti =  γ00 + γ10(Time1ti) + γ20(Time2ti) 

+ γ30(Time3ti) + U0i + eti

Given the same random intercept model for the variance, 

the G, R, and V matrices would have the same form for the 

empty means model as for the saturated means model (but 

the latter would estimate remaining variance and covariance 

after controlling for all possible mean differences over time). 



Matrices in a Random Intercept Model
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RI and DIAG: Total (marginal) predicted data matrix is called V matrix, 

created from the G [TYPE=UN] and R [TYPE=VC] matrices as follows:

1 ICC ICC ICC

ICC 1 ICC ICC

ICC ICC 1 ICC

ICC ICC ICC 1
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VCORR then provides the intraclass 

correlation, calculated as: 

ICC = 𝛕𝐔
𝟐
𝟎

/ (𝛕𝐔
𝟐
𝟎

+ 𝛔𝐞
𝟐)

assumes a 

constant 

correlation 

over time

For any random intercept model: 

VCORR provides the “unconditional” 

ICC when requested from an empty 

means model. When paired with 

any other kind of means model (e.g., 

saturated means model), VCORR

provides a “conditional” ICC instead 

(after controlling for fixed effects).



Augmenting the empty means, 

random intercept model with time

• 2 questions about the possible effects of time:

1. Is there an effect of time on average?

➢ Is the line describing the sample means not flat?

➢ If so, we need a FIXED effect of time

2. Does the average effect of time vary across 

individuals?

➢ Does each individual need his or her own line?

➢ If so, we need a RANDOM effect of time
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Fixed and Random Effects of Time
(Note:  The intercept is random in every figure)
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No Fixed, No Random Yes Fixed, No Random

No Fixed, Yes Random Yes Fixed, Yes Random



Fixed Linear Time, Random Intercept Model 
(4 total parameters: effect of time is FIXED only)

Multilevel Model

Level 1: yti = β0i + β1i(Timeti) +  eti

Level 2: β0i = γ00 + U0i β1i = γ10 

Composite Model

yti = (γ00 + U0i) + (γ10)(Timeti) + eti
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Fixed Intercept 

= predicted mean 

outcome at time 0

Fixed Linear Time Slope

= predicted mean rate 

of change per unit time

Random Intercept = individual-specific deviation 

from fixed intercept → estimated variance is 𝛕𝐔
𝟐
𝟎

Residual = time-specific deviation from individual’s 

predicted outcome → estimated variance is 𝛔𝐞
𝟐

β0i β1i

Because the effect of 

time is fixed, everyone is 

predicted to change at 

exactly the same rate



Explained Variance from Fixed Linear Time

• Common measure of effect size for fixed effects is pseudo-R2

➢ Approximates variance accounted for by predictors

➢ Multiple piles of variance mean multiple possible values of pseudo R2

(can be calculated per variance component or per model level)

➢ A fixed linear effect of time will reduce level-1 residual variance 𝛔𝐞
𝟐 in R

➢ By how much is the residual variance 𝛔𝐞
𝟐 reduced? 

➢ If time also varies between persons, then level-2 random intercept 

variance 𝛕𝐔
𝟐
𝟎

in G may also be reduced (see Hoffman 2015 ch. 10):

➢ But you are likely to see a (net) INCREASE in 𝛕𝐔
𝟐
𝟎

instead…. Here’s why:

PSQF 7375 Longitudinal: Lecture 5 12

2 fewer more
e
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residual variance  - residual variance
Pseudo R  = 

residual variance

2 fewer more
U0

fewer

random intercept variance  - random intercept variance
Pseudo R  = 

random intercept variance



Increases in Random Intercept Variance
• Level-2 random intercept variance 𝛕𝐔

𝟐
𝟎

will often increase 

as a consequence of reducing level-1 residual variance 𝛔𝐞
𝟐

• Observed level-2 𝝉𝑼
𝟐
𝟎

is NOT just between-person variance

➢ Also has a small part of within-person variance (level-1 𝛔𝐞
𝟐), or:

Observed 𝛕𝐔
𝟐
𝟎

= True 𝛕𝐔
𝟐
𝟎

+ (𝛔𝐞
𝟐/n)

▪ As n occasions increases, bias of level-1 𝛔𝐞
𝟐 is minimized

➢ Likelihood-based estimates of “true” 𝛕𝐔
𝟐
𝟎

use (𝛔𝐞
𝟐/n) as correction factor:

True 𝛕𝐔
𝟐
𝟎

= Observed 𝛕𝐔
𝟐
𝟎

− (𝛔𝐞
𝟐/n)

• e.g., observed level-2 𝝉𝑼
𝟐
𝟎
=4.65, level-1 𝝈𝒆

𝟐=7.06, n=4

➢ True 𝛕𝐔
𝟐
𝟎
= 4.65 −(7.06/4) = 2.88 in empty means model

➢ Add fixed linear time slope → reduce 𝛔𝐞
𝟐 from 7.06 to 2.17 (R2 = .69)

➢ But now True 𝝉𝑼
𝟐
𝟎
= 4.65 −(2.17/4) = 4.10 in fixed linear time model
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Random Intercept Models Imply…
• People differ from each other systematically in only ONE way—

in intercept (U0i), which implies ONE kind of BP variance, which 
translates to ONE source of person dependency (covariance or 
correlation in the outcomes from the same person)

• If so, after controlling for BP intercept differences (by estimating the 
variance of U0i as 𝛕𝐔

𝟐
𝟎
in the G matrix), the eti residuals (whose 

variance and covariance are estimated in the R matrix) should be 
uncorrelated with homogeneous variance across time, as shown:
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Level-2 

G matrix: 

RANDOM 

TYPE=UN

Level-1 R matrix: 

REPEATED TYPE=VC

G and R matrices combine to create 

a total V matrix with CS pattern

R is “conditional” V is “marginal”



Fixed Linear Time, Random Intercept Model 
(4 total parameters: effect of time is FIXED only)

How the model predicts each element of the V matrix:

Level 1:  yti = β0i + β1i(Timeti) + eti

Level 2:  β0i = γ00 + U0i

β1i = γ10 

Composite Model: yti = (γ00 + U0i) + (γ10)(Timeti) + eti
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Fixed Linear Time, Random Intercept Model 
(4 total parameters: effect of time is FIXED only)

Scalar “mixed” model equation per person:
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Xi = n x k values of predictors with 

fixed effects, so can differ per person 

(k = 2: intercept, linear time)

γ = k x 1 estimated fixed effects, 

so will be the same for all persons

(γ00 = intercept, γ10 = linear time)

Zi = n x u values of predictors with 

random effects, so can differ per person 

(u = 1: intercept)

Ui = u x 1 estimated individual random 

effects, so can differ per person

Ei = n x n time-specific residuals, 

so can differ per person



Fixed Linear Time, Random Intercept Model 
(4 total parameters: effect of time is FIXED only)

Predicted total variances and covariances per person:
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Zi = n x u values of predictors with 

random effects, so can differ per 

person (u = 1: intercept)

Zi
T = u x n values of predictors with 

random effects (just Zi transposed)

Gi = u x u estimated random effects 

variances and covariances, so will 

be the same for all persons

(τU
2
0

= intercept variance)

Ri = n x n time-specific residual 

variances and covariances, so 

will be same for all persons 

(here, just diagonal σe
2)
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Intermediate Summary

• Regardless of what kind of model for the means you have…

➢ Empty means = 1 fixed intercept that predicts no change

➢ Saturated means = 1 fixed intercept + n−1 fixed effects for mean 
differences that perfectly predict the means over time

▪ Is a description, not a model, and may not be possible with unbalanced time

➢ Fixed linear time = 1 fixed intercept, 1 fixed linear time slope 
that predicts linear average change across time

▪ Is a model that works with balanced or unbalanced time

▪ May cause an increase in the random intercept variance by explaining residual variance

• A random intercept model for the variance… 

➢ Predicts constant total variance and covariance over time

▪ Should be possible in balanced or unbalanced data

➢ Still has residual variance (always there via default R matrix TYPE=VC)

• Now we’ll see what happens when adding other kinds of 
random effects, such as a random linear effect of time…
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Random Linear Time Model (6 total parameters)

Multilevel Model

Level 1: yti = β0i + β1i(Timeti) +  eti

Level 2: β0i = γ00 + U0i β1i = γ10 + U1i

Composite Model

yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti
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Fixed Intercept 

= predicted mean 

outcome at time 0

Fixed Linear Time Slope

= predicted mean rate 

of change per unit time

Random Intercept = 

individual-specific deviation 

from fixed intercept at time 0 

→ estimated variance is 𝛕𝐔
𝟐
𝟎

Random Linear Time Slope= 

individual-specific deviation 

from fixed linear time slope 

→ estimated variance is 𝛕𝐔
𝟐
𝟏

Residual = time-specific deviation from individual’s 

predicted outcome → estimated variance is 𝛔𝐞
𝟐

β0i β1i

Also has an 

estimated 

covariance

of random 

intercepts 

and slopes  

of 𝛕𝐔𝟎𝟏



Random Linear Time Model
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yti = (γ00 + U0i) +  (γ10+ U1i)(Timeti) +  eti

U0i = -4

γ00 =10

γ10 = 6

U1i = +2

eti = -1

Fixed

Intercept
Random 

Intercept 

Deviation

Fixed

Slope

Random 

Slope 

Deviation

error for 

person i 

at time t

6 Parameters:

2 Fixed Effects:

γ00 Intercept, γ10 Slope

U0i Random Intercept 

Variance = 𝛕𝐔
𝟐
𝟎

U1i Random Slope 

Variance = 𝛕𝐔
𝟐
𝟏

Random Int-Slope 

Covariance = 𝛕𝐔𝟎𝟏

eti Residual 

Variance = 𝛔𝐞
𝟐



Unbalanced Time → Different time 

occasions across persons? No problem!
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0     1     2    3    4    5    6    7    8    9   10   11   12   13   14   15   16                      

Rounding 

time can lead 

to incorrect 

estimates!

Code time as 

exactly as 

possible.

MLM uses 

each complete 

time point for 

each person.

The predicted slope for the 

red dots will probably be 

steeper because it is based 

on less data, though – the 

term for this is “shrinkage”.



Summary: Sequential Models for Effects of Time

Level 1:  yti = β0i + eti

Level 2: β0i = γ00 + U0i

Composite: yti = γ00 + U0i + eti

Level 1:  yti = β0i + β1i(Timeti)+ eti

Level 2: β0i = γ00 + U0i

β1i = γ10 

Composite: yti = (γ00 + U0i) + γ10(Timeti) + eti

Level 1:  yti = β0i + β1i(Timeti)+ eti

Level 2: β0i = γ00 + U0i

β1i = γ10 + U1i

Composite: yti = (γ00 + U0i) + (γ10+ U1i)(Timeti) + eti
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Empty Means, 

Random Intercept Model: 

3 parms = γ00, 𝛔𝐞
𝟐, 𝛕𝐔

𝟐
𝟎

Fixed Linear Time, 

Random Intercept Model: 

4 parms = γ00, γ10, 𝛔𝐞
𝟐, 𝛕𝐔

𝟐
𝟎

Random Linear Time Model: 

6 parms = γ00, γ10, 𝛔𝐞
𝟐, 𝛕𝐔

𝟐
𝟎
,

𝛕𝐔
𝟐
𝟏
,𝛕𝐔𝟎𝟏(→ cov of U0i and U1i)



How MLM “Handles” Dependency
• Common description of the purpose of MLM is that it 

“addresses” or “handles” correlated (dependent) data…

• But where does this correlation come from? 
3 places (here, an example with health as an outcome):

1. Mean differences across persons

▪ Some people are just healthier than others (at every occasion)

▪ This is what a random intercept is for

2. Differences in effects of predictors across persons

▪ Does time (or stress) affect health more in some persons than others?

▪ This is what random slopes are for

3. Non-constant within-person correlation for unknown reasons

▪ Occasions closer together may just be more related 

▪ This is what ACS models are for (add residual correlations)
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MLM “Handles” Dependency
• Where does each kind of person dependency go? Into a new 

random effects variance component (or “pile” of variance):
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Piles of Variance for Handling Dependency
• By adding a random slope, we carve up our total variance into 3 piles:

➢ BP (error) variance around intercept

➢ BP (error) variance around slope

➢ WP (error) residual variance

• But making piles does NOT make error variance go away…
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Level 2 (two sources of) 

Between-Person Variation:

gets accounted for by 

person-level predictors

Level 1 (one source of) 

Within-Person Variation:

gets accounted for by 

time-level predictors

Residual

Variance

(𝛔𝐞
𝟐)

BP Slope

Variance

(𝛕𝐔
𝟐
𝟏
)

BP Int

Variance

(𝛕𝐔
𝟐
𝟎
)

FIXED effects make variance 

go away (explain variance).

RANDOM effects just make 

a new pile of variance.

These 2 piles are 1 confounded pile of 

“error variance” in Univ. RM ANOVA

𝛕
𝐔𝟎𝟏

covariance



Fixed vs. Random Effects of Persons
• Person dependency: via fixed effects in the model for the 

means or via random effects in the model for the variance?

➢ Individual intercept differences can be included as:

▪ 𝑵− 𝟏 person dummy code fixed main effects OR 1 random U0i variance

➢ Individual time slope differences can be included as:

▪ 𝑵− 𝟏*time person dummy interactions OR 1 random U1i*timeti variance

➢ Either approach would appropriately control for dependency (fixed 

effects are used in some programs that “control” SEs for sampling)

• Two important advantages of random effects:

➢ Quantification: Direct measure of how much of the outcome variance 

is due to person differences (in intercept or in effects of predictors)

➢ Prediction: Person differences (main effects and effects of time) then 

become predictable quantities – this can’t happen using fixed effects

➢ Summary: Random effects give you predictable control of dependency
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Two Ways of Conveying Effect Size 

for Random Effects
• −2ΔLL tests tell us if a random effect is significant, but random 

effects variances are not likely to have inherent meaning

➢ e.g., “I have a significant fixed linear time effect of γ10 = 1.72, so people 
increase by 1.72/time on average. I also have a significant random linear 
time slope variance of 𝛕𝐔

𝟐
𝟏
= 0.91, so people need their own slopes (people 

change differently). But how much is a variance of 0.91, really?”

• We need to convey effect size for random slopes, but pseudo-R2

is not appropriate* because variance has not been explained

➢ Fixed effects reduce variance; random effects make new variances (piles)

➢ *There are “conditional” R2 measures with random effects, but ugh

• Two ways of conveying effect size for random effects:

➢ 95% random effects confidence intervals (CI)—not a typical fixed effect CI!

➢ Indices of random effect reliability (less common; useful for power analyses)
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Effect Size via 95% Random Effect CIs
• −2ΔLL tests tell us if a random effect is significant, but 

random effects variances do not have inherent meaning…

➢ e.g., “I have a significant fixed linear time effect of γ10 = 1.72, so people 
increase by 1.72/time on average. I also have a significant random 
linear time slope variance of 𝛕𝐔

𝟐
𝟏
= 0.91, so people need their own slopes 

(people change differently). But how much is a variance of 0.91, really?”

• (1) 95% Random Effects Confidence Intervals

➢ Can be calculated for each effect that is random in your model

➢ Provide range around the fixed effect in which 95% of your sample 
is predicted to fall given your random effect variance: 

➢ So although people improve on average, individual time slopes are 
predicted to range from −0.15 to 3.59 (so some people may decline)

➢ This is NOT the same as a fixed effect CI (→ imprecision of fixed effect)!
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( )

( ) ( )
1

2
10 U

Random Effect 95% CI = fixed effect ± 1.96* Random Variance

Linear Time Slope 95% CI = γ  ± 1.96* τ   1.72  ± 1.96* 0.91  = 0.15 to 3.59    → −



Effect Size via Reliability Indices
(2): How reliable is a given level-2 unit’s random effect?
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SR =
𝝉𝑼
𝟐
𝟏

𝝉𝑼
𝟐
𝟏
+

𝝈𝒆
𝟐

𝑳𝟏𝒏 ∗ 𝝈𝑳𝟏
𝟐

Slope Reliability (SR):

𝝉𝑼
𝟐
𝟏
= random slope variance

𝝈𝒆
𝟐 = residual variance

𝑳𝟏𝒏 = L1 sample size per L2 unit

𝝈𝑳𝟏
𝟐 = variance of L1 predictor

IR =
𝝉𝑼
𝟐
𝟎

𝝉𝑼
𝟐
𝟎
+

𝝈𝒆
𝟐

𝑳𝟏𝒏 ∗ 𝟏

Intercept Reliability (IR); 

also known as “ICC2”:

𝝉𝑼
𝟐
𝟎
= random intercept variance

𝝈𝒆
𝟐 = residual variance

𝑳𝟏𝒏 = L1 sample size per L2 unit

Although these reliability indices are not commonly reported in many 

fields (especially SR), they can be very useful in doing power analyses.



Random Linear Time Models Imply:
• People differ from each other systematically in TWO ways—in 

intercept (U0i) and slope (U1i), which implies TWO kinds of BP 
variance, which translates to TWO sources of person dependency 
(covariance or correlation in the outcomes from the same person)

• If so, after controlling for both BP intercept and slope differences 
(by estimating the 𝛕𝐔

𝟐
𝟎

and 𝛕𝐔
𝟐
𝟏

variances in the G matrix), the eti

residuals (whose variance and covariance are estimated in the R
matrix) should be uncorrelated with homogeneous variance 
across time, as shown:
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TYPE=UN
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(marginal) V matrix whose per-person 
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time occasions each person has 

(very flexible for unbalanced time)
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Random Linear Time Model 
(6 total parameters: effect of time is now RANDOM)

How the model predicts each element of the V matrix:

Level 1:  yti = β0i + β1i(Timeti) + eti

Level 2:  β0i = γ00 + U0i

β1i = γ10 + U1i

Composite Model: yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti
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Random Linear Time Model 
(6 total parameters: effect of time is now RANDOM)

How the model predicts each element of the V matrix:

Level 1:  yti = β0i + β1i(Timeti) + eti

Level 2:  β0i = γ00 + U0i

β1i = γ10 + U1i

Composite Model: yti = (γ00 + U0i) + (γ10 + U1i)(Timeti) + eti
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Predicted Time-Specific Covariances (Time A with Time B):



Random Linear Time Model 
(6 total parameters: effect of time is now RANDOM)

Scalar “mixed” model equation per person:
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Xi = n x k values of predictors with 

fixed effects, so can differ per person 

(k = 2: intercept, linear time)

γ = k x 1 estimated fixed effects, 

so will be the same for all persons

(γ00 = intercept, γ10 = linear time)

Zi = n x u values of predictors with 

random effects, so can differ per person 

(u = 2: intercept, linear time)

Ui = u x 2 estimated individual random 

effects, so can differ per person

Ei = n x n time-specific residuals, 

so can differ per person
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Random Linear Time Model 
(6 total parameters: effect of time is now RANDOM)

Predicted total variances and covariances per person:

PSQF 7375 Longitudinal: Lecture 5 34

Zi = n x u values of predictors with 

random effects, so can differ per 

person (u = 2: int., time slope)

Zi
T = u x n values of predictors with 

random effects (just Zi transposed)

Gi = u x u estimated random 

effects variances and covariances, 

so will be the same for all persons

(τU
2
0

= int. var., τU
2
1

= slope var.)

Ri = n x n time-specific residual 

variances and covariances, so will 

be same for all persons 

(here, just diagonal σe
2)
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• V for two persons with unbalanced time observations:

• The giant marginal V matrix across persons is how the 
multilevel or mixed model is actually estimated in SAS

• Known as “block diagonal” structure → predictions are 
given for each person, but 0’s are given for the elements 
that describe relationships between persons (because 
level-2 persons are supposed to be independent here!)

Building V across persons: 

Random Linear Time Model
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• V for two persons also with different n per person:

• The “block diagonal” does not need to be the same size 
or contain the same time observations per person…

• R matrix can also include non-0 covariance or differential 
residual variance across time (as in ACS models), although 
the models based on the idea of a “lag” won’t work for 
unbalanced or unequal-interval time

Building V across persons: 

Random Linear Time Model
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G, R, and V:  The Take-Home Point
• The partitioning of variance into piles…

➢ Level 2 = BP → G matrix of random effects variances/covariances

➢ Level 1 = WP → R matrix of residual variances/covariances

➢ G and R combine via Z to create V matrix of total variances/covariances

➢ Many flexible options that allows the variances and covariances to 

vary in a time-dependent way that better matches the actual data

▪ Can allow variance and covariance due to other predictors, too
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Translating MLMs into SEMs...
• “Random effects” = “pile of variance’’ = “variance components”

➢ Random effects represent “person*predictor” interaction terms

➢ Random intercept → person*intercept (person “main effect”)

➢ Random linear slope → person*time interaction

➢ Capture specific patterns of covariation of unknown origin…

▪ Why do people need their own random intercepts and slopes?

We can add person-level predictors to answer these questions

• Random effects can also be seen as latent variables

➢ Latent variable = unobservable construct (ability or trait)

▪ Latent variables are created by the common variance across indicators

▪ In longitudinal data, the latent variables can be thought of as “general 

tendency” and “propensity to change” as created by measuring the same 

outcome over time (occasions → indicators)

PSQF 7375 Longitudinal: Lecture 5 38



Confirmatory Factor Analysis (CFA)
• CFA model: yis = μi + λiFs + eis (SEM is just relations among F’s)

➢ Observed response for item i and subject s
= intercept of item i (μi)

+ subject s’s latent trait/factor (Fs), item-weighted by λi

+ residual error (eis) of item i and subject s

• Two big differences when using two factors for longitudinal data:

➢ Usually two factors for “level” and “change” (intercept and slope):
yti = (γ00 + U0i) + (γ10 + U1i)timeti + eti → so U → F

➢ Fixed effects → factor means; random effects → factor variances

➢ The indicator (outcome) intercepts μi cannot be separately identified 
from the “intercept” latent factor and therefore must be fixed to 0

➢ Factor loadings λi for how each outcome relates to the latent factor 
are (usually) pre-determined by how much time has passed →
fixed to the difference in time across longitudinal outcomes

➢ Unbalanced time requires (Mplus) TSCORES option → use variables for 
person-specific loadings rather than fixing loadings to same values for all
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Random Effects as Latent Variables

• BP model: eti-only model for the variance

➢ yti = γ00 + eti

➢ After controlling for the fixed intercept (factor mean), 

level-1 residuals are predicted to be uncorrelated

L2 Int

Y1 Y2 Y3 Y4

e1 e2 e3 e4

1 1 1 1

Int Var

𝛕𝐔𝟎
𝟐 = 𝟎

Mean of the intercept factor

= fixed intercept γ00

Loadings of intercept factor = 1 

(all occasions contribute equally)

Indicator intercepts = 0 (always)

L2 variance of intercept factor

𝛕𝐔
𝟐
𝟎
= 0 so far

L1 residual variance (𝛔𝐞
𝟐) is predicted

to be equal across occasions= = =
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Random Effects as Latent Variables

• +WP model: U0i + eti model for the variance

➢ yti = γ00 + U0i + eti

➢ After controlling for the random intercept (factor mean and 

variance), level-1 residuals are predicted to be uncorrelated
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L2 Int

Y1 Y2 Y3 Y4

e1 e2 e3 e4

1 1 1 1

Int Var 

𝛕𝐔𝟎
𝟐 =?

Mean of the intercept factor

= fixed intercept γ00

Loadings of intercept factor= 1 

(all occasions contribute equally)

L2 variance of intercept factor

𝛕𝐔
𝟐
𝟎
= random intercept variance

L1 residual variance (𝛔𝐞
𝟐) is predicted

to be equal across occasions

= = =



Random Effects as Latent Variables

• Fixed linear time, random intercept model:

➢ yti = γ00 + (γ10Timeti) + U0i + eti

➢ After controlling for the fixed linear time slope (factor mean)

and random intercept (factor mean and variance), 

level-1 residuals are predicted to be uncorrelated
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Y1 Y2 Y3 Y4
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1 1

1
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𝛕𝐔𝟎
𝟐 =?

Mean of the linear time factor

= fixed linear slope γ10

Loadings of linear time factor

= occasions (keep real time)

L2 variance of linear time factor

𝛕𝐔
𝟐
𝟏
= 0

L2 Linear

Time0
1

2 3

Linear

Time Var 

𝛕𝐔𝟏
𝟐 =0
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Random Effects as Latent Variables

• Random linear time model:

➢ yti = γ00 + (γ10Timeti) + U0i + (U1iTimeti) + eti

➢ After controlling for the random linear time slope and

random intercept (both factor means and variances), 

level-1 residuals are predicted to be uncorrelated
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𝛕𝐔𝟎
𝟐 =?

Mean of the linear slope factor

= fixed linear slope γ10

Loadings of linear slope factor

= occasions (keep real time)

Variance of linear time factor

𝛕𝐔
𝟐
𝟏
= random slope variance
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Time0
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2 3

Linear

Time Var 
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yti = γ00 + (γ10Timeti) + U0i + (U1iTimeti) + eti

Random Linear Time Model
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𝟐 =?

= = =

Level-1 R Matrix

Level-1 

Z Matrix

𝛕𝐔𝟎𝟏= ?

Level-2 G Matrix
For unbalanced time, 

you need “definition 

variables” (like Mplus 

TSCORES) to allow 

different factor 

loadings per person

Btw, nonlinear change 

can be captured using 

a “latent basis model” 

(fix a loading to 0, 

a loading to 1, and 

estimate the rest)



Two Sides of Any Model: Estimation

• Fixed Effects in the Model for the Means:

➢ How the expected outcome for a given observation varies 
as a function of values on known predictor variables

➢ Fixed effects predict the yti values per se but are not parameters 
that are solved for iteratively in maximum likelihood estimation***

• Random Effects in the Model for the Variance:

➢ How model residuals are related across observations 
(persons, groups, time, etc) – unknown things due to sampling

➢ Random effects variances and covariances are a mechanism by which 
complex patterns of variance and covariance among the yti residuals 
can be predicted (not the yti values, but their dispersion)

➢ Anything besides level-1 residual variance σe
2 must be solved for 

iteratively – increases the dimensionality of estimation process

➢ Estimation utilizes the predicted V matrix for each person

➢ In the material to follow, V will be based on a random linear time model
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End Goals of Maximum Likelihood Estimation

1. Obtain “most likely” values for each unknown model 

parameter (random effects variances and covariances, 

residual variances and covariances, which then are 

used to calculate the fixed effects) → the estimates

2. Obtain an index as to how likely each parameter value 

actually is (i.e., “really likely” or pretty much just a guess?) 

→ the standard error (SE) of the estimates

3. Obtain an index as to how well the model we’ve specified 

actually describes the data → the model fit indices

How does all this happen? The magic of multivariate 

normal…(but let’s start with univariate normal first)
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Remember Univariate Normal?
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➢ residual variance σe
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Multivariate Normal for Yi
(height for all n outcomes for person i)

• In a random linear time model, the only fixed effects (in γ) that predict the 

Yi outcome values are the fixed intercept and fixed linear time slope

• The model also gives us Vi → the model-predicted marginal variance and 

covariance matrix across the occasions, taking into account the time values

• Uses |Vi| = determinant of Vi = summary of non-redundant info

➢ Reflects sum of variances across occasions controlling for covariances

• (Vi)
-1
→ matrix inverse → like dividing (so can’t be 0 or negative)

➢ (Vi)
-1 must be “positive definite”, which in practice means no 0 random 

variances and no out-of-bound correlations between random effects

➢ Otherwise, SAS uses “generalized inverse” → questionable results
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Now Try Some Possible Answers... 
(e.g., for the 4 V parameters in this random linear model example)

• Plug Vi predictions into log-likelihood function, sum over persons:

• Try one set of possible parameter values for Vi, compute LL

• Try another possible set for Vi, compute LL….

➢ Different algorithms are used to decide which values to try given that 
each parameter has its own distribution → like an uncharted mountain

➢ Calculus helps the program scale this multidimensional mountain

▪ At the top, all first partial derivatives (linear slopes at that point) ≈ 0

▪ Positive first partial derivative? Too low, try again. Negative? Too high, try again.

▪ Matrix of partial first derivatives = “score function” = “gradient” 
(as in NLMIXED output for models with truly nonlinear effects)
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End Goals 1 and 2: Model Estimates and SEs

• Process terminates (the model “converges”) when the next 

set of tried values for Vi don’t improve the LL very much…

➢ e.g., SAS default convergence criteria = .00000001 

➢ Those are the values for the parameters that, relative to the other 

possible values tried, are “most likely” → the variance estimates

• But we need to know how trustworthy those estimates are…

➢ Precision is indexed by the steepness of the multidimensional mountain, 

where steepness → more negative partial second derivatives

➢ Matrix of partial second derivatives = “Hessian matrix”

➢ Hessian matrix * -1 = “information matrix”

➢ So steeper function = more information = more precision = smaller SE
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What about the Fixed Effects?

• Likelihood mountain does NOT include fixed effects as additional 
search dimensions (only variances and covariances that make Vi)

• Fixed effects are determined*** given the parameters for Vi:

• This is actually what happens in regular regression (GLM), too:

• Implication: fixed effects don’t cause estimation problems…
(at least in general linear mixed models with normal residuals)
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What about ML vs. REML?
• REML estimates of random effects variances and covariances 

are unbiased because they account for the uncertainty that 

results from simultaneously also estimating fixed effects 

(whereas ML estimates do not, so they are too small) 

• What does this mean? Remember “population” 

vs. “sample” formulas for computing variance?

➢ N – 1 is used because the mean had to be estimated 

from the data (i.e., the mean is the fixed intercept)…

• Similar idea: ML estimates of random effects variances will be 

too small by a factor of (N – k) / N, where N = # persons and 

k = #fixed effects… it just looks way more complicated…
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What about ML vs. REML?

• Extra part in REML is the sampling variance of the fixed effects… it is added 

back in as a way to account for uncertainty in estimating fixed effects

• REML maximizes the likelihood of the residuals specifically, so models with 

different fixed effects are not on the same scale and are not comparable

➢ This is why you can’t do −2ΔLL tests in REML when the models to be compared 

have different fixed effects → the model residuals are defined differently
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End Goal #3: How well do the model 

predictions match the data?
• End up with ML or REML LL from predicting Vi → so how good is it?

• Absolute model fit assessment is only possible when the Vi matrix is 
organized the same for everyone – in other words, balanced data

➢ Indicators are usually fixed, so can get absolute fit in CFA and SEM 
→ 𝜒2 test is based on match between actual and predicted data matrix

➢ Time is often a quantitative variable, so no absolute fit is provided in MLM 
(or in SEM when using random slopes or TSCORES for unbalanced time)

▪ Can compute*** absolute fit when the saturated means, unstructured variance 
model is estimable in ML → is -2ΔLL versus “perfect” model for time

▪ For absolute fit tests on balanced time using REML, stay tuned!

• Relative model fit is given as −2LL in SAS, in which smaller is better

➢ -2* needed to conduct “likelihood ratio” or “deviance difference” tests

➢ Also information criteria: 

▪ AIC: −2LL + 2*(#parms)   BIC: −2LL + log(N)*(#parms)

▪ #parms = all parameters in ML; #parms = variance model parameters only in REML
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What about testing variances > 0?

• −2ΔLL between two nested models is χ2-distributed only when 

the added parameters do not have a boundary (like 0 or 1)

➢ Ok for fixed effects (could be any positive or negative value)

➢ NOT ok for tests of random variances (must be > 0)

➢ Ok for tests of heterogeneous variances and covariances 

(extra parameters can be phrased as unbounded deviations)

• When testing addition of parameters that have a boundary, 

−2ΔLL will follow a mixture of χ2 distributions instead

➢ e.g., when adding random intercept variance (test > 0?)

▪ When estimated as positive, will follow χ2 with df=1

▪ When estimated as negative… can’t happen, will follow χ2 with df=0

➢ End result: −2ΔLL will be a little conservative in boundary cases
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Comparing χ2 Distributions
small pictures from Stoel et al., 2006

χ2 for df=1

χ2 for mixture

of df=0, df=1

χ2 for df=2

χ2 for mixture

of df=1, df=2

df

obtained χ2 value 

2.71 vs. 3.84 5.14 vs. 5.99
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Critical values such that the right-hand tail probability = 

0.5 x Pr (χ2
q > c) + 0.5 x Pr (χ2

q+1 > c)

Source: Appendix C (p. 484) from Fitzmaurice, Laird, & Ware (2004). 

Applied Longitudinal Analysis. Hoboken, NJ: Wiley

Critical Values for 50:50 Mixture of Chi-Square Distributions 

      

 Significance Level 

df (q) 0.10 0.05 0.025 0.01 0.005 

0 vs. 1 1.64 2.71 3.84 5.41 6.63 

1 vs. 2 3.81 5.14 6.48 8.27 9.63 

2 vs. 3 5.53 7.05 8.54 10.50 11.97 

3 vs. 4 7.09 8.76 10.38 12.48 14.04 

4 vs. 5 8.57 10.37 12.10 14.32 15.97 

5 vs. 6 10.00 11.91 13.74 16.07 17.79 

6 vs. 7 11.38 13.40 15.32 17.76 19.54 

7 vs. 8 12.74 14.85 16.86 19.38 21.23 

8 vs. 9 14.07 16.27 18.35 20.97 22.88 

9 vs. 10 15.38 17.67 19.82 22.52 24.49 

10 vs. 11 16.67 19.04 21.27 24.05 26.07 

 

This may work ok if 

only one new 

parameter is bounded 

… for example:

+ Random Intercept 

df=1: 2.71 vs. 3.84

+ Random Linear

df=2: 5.14 vs. 5.99

+ Random Quad

df=3: 7.05 vs. 7.82
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Solutions for Boundary Problems 

when using −2ΔLL tests
• If adding random intercept variance only, use p < .10; χ2(1) > 2.71

➢ Because χ2 (0) = 0, can just cut p-value in half to get correct p-value

• If adding ONE random slope variance (and covariance with random 

intercept), can use mixture p-value from χ2(1) and χ2(2)

• However – using a 50/50 mixture assumes a diagonal information matrix 

for the random effects variances (assumes the values for each are arrived 

at independently, which pry isn’t the case)

• Two options for more complex cases:

➢ Simulate data to determine actual mixture for calculating p-value

➢ Accept that −2ΔLL is a little conservative in these cases, and use it anyway

→ In the book I used ~ to acknowledge this: e.g., −2ΔLL(~2) > 5.99, p < .05 
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5.14, not 5.99
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Predicted Level-2 Ui Random Effects
(aka Empirical Bayes or BLUP Estimates)

• Level-2 Ui random effects require further explanation... 

➢ Empty two-level model: yti = γ00 + U0i + eti

➢ U0i’s are deviated person means, right? Well, not exactly…

• 3 ways of representing size of individual differences 
in individual intercepts and slopes across people:

➢ Get people’s OLS intercepts and slopes; calculate their variance

➢ Estimate variance of the person Ui’s (what we do in MLM)

➢ Predict person Ui’s; calculate their variance (2-stage MLM)

• Expected order of magnitude of variance estimates:

➢ OLS variance > MLM variance > Predicted Ui’s variance

➢ Why are these different? Shrinkage.
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What about the U’s?

• Person Ui values are NOT estimated in the ML process

➢ G matrix variances and covariances are sufficient statistics for the 
estimation process assuming multivariate normality of Ui values

➢ Person Ui random effects are predicted by asking for the SOLUTION on 
the RANDOM statement as:

▪ Which then create individual estimates as β0i = γ00 + U0i and β1i = γ10 + U1i

• What isn’t obvious: the composite βi values are weighted 
combinations of the fixed effects (γ) and individual OLS 
estimates (βOLSi) :

➢ The more “true” variation in intercepts and slopes there is in the data 
(in G), the more the βi estimates are based on individual OLS estimates

➢ But the more “unexplained” residual variation there is around the 
individual trajectories (in R), the more the fixed effects are heavily 
weighted instead

▪ = SHRINKAGE (more so for people with fewer occasions, too)
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What about the U’s?

• Point of the story – Ui values are NOT single scores:

➢ They are the mean of a distribution of possible values for each person 
(i.e., as given by the SE for each Ui, which is also provided)

➢ These “best estimates” of the Ui values are shrunken anyway

• Good news: you don’t need those Ui values in the first place!

➢ Goal of MLM is to estimate and predict the variance of the Ui values 
(in G) with person-level characteristics directly within the same model

➢ If you want your Ui values to be predictors instead, then you need to 
buy your growth curve model at the SEM store instead of the MLM store

➢ We could use the predicted Ui values to examine violations of model 
MVN assumptions (although research suggests this doesn’t matter)

▪ Get Ui values by adding: ODS OUTPUT SolutionR=dataset;

▪ Get eti residuals by adding OUTP=dataset after / on MODEL statement

▪ Add RESIDUAL option after / on MODEL statement to make plots
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Estimation:  The Grand Finale

• Estimation in MLM is all about the finding the model for 
the variance (random effects variances and covariances)

➢ The more there are, the harder it is to find them (the more 
dimensions of the likelihood mountain there are to scale)

➢ “Non-positive-definite” G matrix means “broken model”

➢ Fixed effects are solved for after-the-fact, so they rarely cause 
estimation problems (except in generalized MLM variants)

➢ Person random effects are not model parameters, but can be 
predicted after-the-fact (but try never to use these as data)

• Estimation comes in two flavors:

➢ ML → maximize the data; −2ΔLL to compare any nested models

➢ REML → maximize the residuals; −2ΔLL to compare models that 
differ in their model for the variance ONLY
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