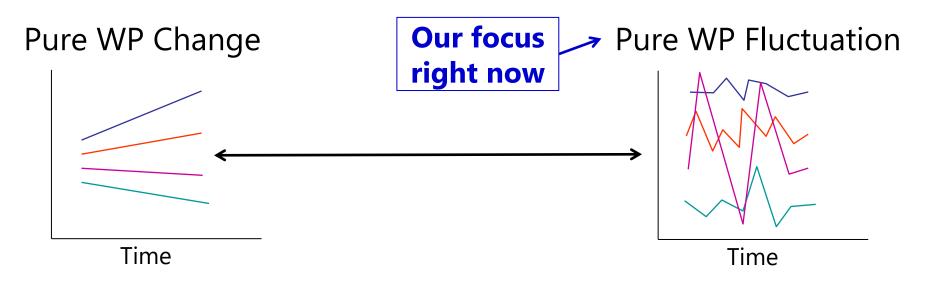
Describing Within-Person Fluctuation over Time using Alternative Covariance Structures

- Topics:
 - > The Big Picture
 - > ACS models using the **R** matrix only
 - > Introducing the **G**, **Z**, and **V** matrices
 - > ACS models combining the **G** and **R** matrices

Modeling Change vs. Fluctuation



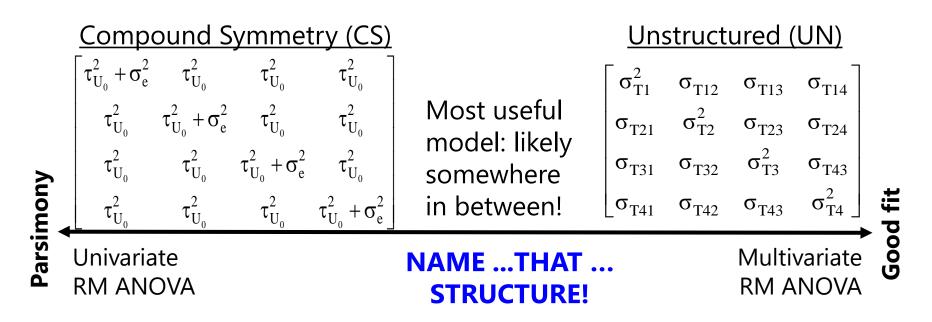
Model for the Means:

- WP Change \rightarrow describe pattern of *average* change (over "time")
- WP Fluctuation \rightarrow *may* not need anything (if no systematic change)

Model for the Variance:

- WP Change → describe *individual differences* in change (random effects)
 → this allows variances and covariances to differ over time
- WP Fluctuation \rightarrow describe pattern of variances and covariances over time

Big Picture Framework: Models for the Variance in Longitudinal Data



What is the pattern of variance and covariance over time?

CS and UN are just two of the many, many options available within MLM, including *random effects models* (for change) and *alternative covariance structure models* (for fluctuation).

Relative Model Fit by Model Side

- Nested models (i.e., in which one is a subset of the other) can now differ from each other in two important ways
- Model for the Means → which predictors and which fixed effects of them are included in the model
 - Does not require assessment of relative model fit using-2LL (can still use univariate or multivariate Wald tests for this)
- Model for the Variance → what the pattern of variance and covariance of residuals from the same unit should be
 - > **DOES** require assessment of relative model fit using -2LL
 - Cannot use the Wald test *p*-values that show up on the output for testing significance of variances because those *p*-values use a two-sided sampling distribution for what the variance could be (but variances cannot be negative, so those *p*-values are not valid)

Comparing Models for the Variance

- ACS models require assessment of **relative model fit**: how well does the model fit relative to other possible models?
- Relative fit is indexed by overall model **log-likelihood** (LL):
 - > Log of likelihood for each person's outcomes given model parameters
 - Sum log-likelihoods across all independent persons = model LL
 - > Two flavors: Maximum Likelihood (ML) or Restricted ML (REML)
- What you get for this on your output varies by software...
- Given as -2*log likelihood (-2LL) in SAS or SPSS MIXED:
 -2LL gives BADNESS of fit, so smaller value = better model
- Given as just log-likelihood (LL) in STATA MIXED, R, and Mplus:
 LL gives GOODNESS of fit, so bigger value = better model

Comparing Models for the Variance

- Two main questions in choosing a model for the variance:
 - > How does the variance of the residuals differ across occasions?
 - > How are the residuals from the same sampling unit correlated?
- Nested models are compared using a "likelihood ratio test":
 -2ΔLL test (aka, "χ² test" in SEM; "deviance difference test" in MLM)

"fewer" = from model with fewer parameters "more" = from model with more parameters Results of 1. & 2. must be positive values!

- 1. Calculate -2 Δ LL: if given -2LL, do -2 Δ LL = (-2LL_{fewer}) (-2LL_{more}) if given LL, do -2 Δ LL = -2 *(LL_{fewer} - LL_{more})
- 2. Calculate $\Delta DF = (\# Parms_{more}) (\# Parms_{fewer})$
- 3. Compare $-2\Delta LL$ to χ^2 distribution with numerator DF = ΔDF
- 4. Get *p*-value (from CHIDIST in excel, LRTEST in STATA, ANOVA in R)

Comparing Models for the Variance

- What your *p*-value for the $-2\Delta LL$ test means:
 - > If you ADD parameters, then your model can get better
 (if −2ΔLL test is significant) or not better (not significant)
 - > If you **REMOVE** parameters, then your model can get **worse** (if −2ΔLL test is significant) or **not worse** (not significant)
- Nested or non-nested models can also be compared by Information Criteria that also reflect model parsimony
 - » No significance tests or critical values, just "smaller is better"
 - ► AIC = Akaike IC = -2LL + 2 *(#parameters)
 - BIC = Bayesian IC = -2LL + log(N)*(#parameters) level-2 units
 - > What "parameters" means depends on flavor (not in R or STATA):
 - ML = ALL parameters; REML = variance model parameters only

N = #

Alternative Covariance Structure Models

- Useful in predicting patterns of variance and covariance that arise from **fluctuation in the outcome** across time:
 - > **Variances**: Same (homogeneous) or different (heterogeneous)?
 - > **Covariances**: Same or different? If different, what is the pattern?
 - Models with heterogeneous variances will directly predict correlations instead of covariances because covariances will differ when variances differ
 - In R GLS and LME, "structures" are always specified using correlations
 - May not need any fixed effects for systematic effects of time in the model for the means (although this is always an empirical question)
- Limitations for most of the ACS models (except AR1):
 - > Require **equal-interval** occasions (if they use the idea of "time lag")
 - Require **balanced** time across persons (no intermediate time values)
 - But do not require complete data (unlike when CS and UN are estimated via least squares in ANOVA instead of ML/REML in MLM)
- ACS models do require some new terminology to introduce...

Two Families of ACS Models

- So far, we've referred to the variance and covariance matrix of the multivariate (longitudinal) outcomes using only the **R matrix**
 - We now refer to these as "R-only models" (use REPEATED only), which can be estimated in SAS MIXED, STATA MIXED, or GLS in R
 - Although the R matrix can be allowed to differ across individuals, ACS models usually assume the same R matrix for everyone
 - R matrix is symmetric with dimensions n x n, in which n = # occasions per person (although people can have missing data, the same set of *possible* occasions is required across people to use most of the **R**-only models)

• 3 other matrices we'll see in "G and R combined" ACS models:

- G = matrix of random effects variances and covariances (stay tuned)
- Z = matrix of values for predictors that have random effects (stay tuned)
- > V = symmetric *n* x *n* matrix of **total** variance and covariance over time
 - If the model also includes random effects, then **G** and **Z** get combined with **R** to make **V** as $V = ZGZ^T + R$ (accomplished by adding the **RANDOM** statement)
 - If the model does NOT include random effects in **G**, then $\mathbf{V} = \mathbf{R}$... so, it's **R**-only

R-Only ACS Models

- The R-only models to be presented next are all specified using the SAS REPEATED statement only (no RANDOM statement)
- They are explained by showing their predicted R matrix, which provides the total variances and covariances across occasions
 - > Total variance per occasion on diagonal (leftover if predictors included)
 - > Total covariances across occasions on off-diagonals (or leftover covariances)
 - > I've included in " " the labels SAS uses for each parameter
- Correlations across occasions can be calculated given variances and covariances, which would be shown in the **RCORR** matrix
 - > 1's on diagonal (standardized variables); correlations on off-diagonal
- Unstructured (TYPE=UN) will always fit best by -2LL
 - > All ACS models are nested within Unstructured (UN = the data)
 - > Goal: find an ACS model that is **simpler** but **not worse fitting** than UN
 - Btw—UN models take forever to fit in STATA MIXED! They also seem to result in incorrect denominator DF (for testing fixed effects) using GLS in R...

R-Only ACS Models: CS/CSH

<u>Compound Symmetry: TYPE=CS</u>

- > 2 parameters:
 - 1 "residual" variance σ_e^2
 - **1 "CS" covariance** across occasions
- > Constant total variance: $CS + \sigma_e^2$
- Constant total covariance: CS

$\int CS + \sigma_e^2$	CS	CS	CS]
CS	$CS + \sigma_e^2$	CS	CS
CS	CS	$CS + \sigma_e^2$	CS
CS	CS	CS	$CS + \sigma_e^2$

• <u>Compound Symmetry Heterogeneous: TYPE=CSH</u>

- > *n*+1 parameters:
 - *n* separate "Var(*n*)" total variances σ²_{Tn}
 - 1 "CSH" total correlation across occasions

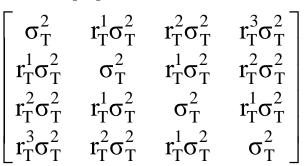
σ_{T1}^2	$\text{CSH}\sigma_{T1}\sigma_{T2}$	$\text{CSH}\sigma_{T1}\sigma_{T3}$	$CSH\sigma_{T1}\sigma_{T4}$
$CSH\sigma_{T2}\sigma_{T1}$	σ_{T2}^2	$CSH\sigma_{T2}\sigma_{T3}$	$CSH\sigma_{T2}\sigma_{T4}$
$CSH\sigma_{T3}\sigma_{T1}$	$CSH\sigma_{T3}\sigma_{T2}$	σ_{T3}^2	$CSH\sigma_{T3}\sigma_{T4}$
$CSH\sigma_{T4}\sigma_{T1}$	$CSH\sigma_{T4}\sigma_{T2}$	$CSH\sigma_{T4}\sigma_{T3}$	σ_{T4}^2

- Separate total variances are estimated directly
- Still constant total correlation: CSH (but has non-constant covariances)

R-Only ACS Models: AR1/ARH1

<u>1st Order Auto-Regressive: TYPE=AR(1)</u>

- > 2 parameters:
 - 1 constant total variance σ²_T (mislabeled "residual")
 - 1 "AR1" total auto-correlation r_T across occasions



• r_T^1 is lag-1 correlation, r_T^2 is lag-2 correlation, r_T^3 is lag-3 correlation....

<u>1st Order Auto-Regressive Heterogeneous: TYPE=ARH(1)</u>

Г

2

- > *n*+1 parameters:
 - *n* separate "Var(*n*)" total variances σ²_{Tn}
 - 1 "ARH1" total autocorrelation r_T across occasions

$$\begin{bmatrix} \sigma_{T1}^{2} & r_{T}^{1}\sigma_{T1}\sigma_{T2} & r_{T}^{2}\sigma_{T1}\sigma_{T3} & r_{T}^{3}\sigma_{T1}\sigma_{T4} \\ r_{T}^{1}\sigma_{T2}\sigma_{T1} & \sigma_{T2}^{2} & r_{T}^{1}\sigma_{T2}\sigma_{T3} & r_{T}^{2}\sigma_{T2}\sigma_{T4} \\ r_{T}^{2}\sigma_{T3}\sigma_{T1} & r_{T}^{1}\sigma_{T3}\sigma_{T2} & \sigma_{T3}^{2} & r_{T}^{1}\sigma_{T3}\sigma_{T4} \\ r_{T}^{3}\sigma_{T4}\sigma_{T1} & r_{T}^{2}\sigma_{T4}\sigma_{T2} & r_{T}^{1}\sigma_{T4}\sigma_{T3} & \sigma_{T4}^{2} \end{bmatrix}$$

• r_T^1 is lag-1 correlation, r_T^2 is lag-2 correlation, r_T^3 is lag-3 correlation....

R-Only ACS Models: TOEPn/TOEPHn

• Toeplitz(n): TYPE=TOEP(n)

- > *n* parameters:
 - 1 constant total variance σ²_T (mislabeled "residual")
 - n-1 "TOEP(lag)" c_{Tn} banded total covariances across occasions

$$\begin{bmatrix} \sigma_{T}^{2} & & & \\ c_{T1} & \sigma_{T}^{2} & & \\ c_{T2} & c_{T1} & \sigma_{T}^{2} & \\ c_{T3} & c_{T2} & c_{T1} & \sigma_{T}^{2} \end{bmatrix}$$

• c_{T1} is lag-1 covariance, c_{T2} is lag-2 covariance, c_{T3} is lag-3 covariance....

<u>Toeplitz Heterogeneous(n): TYPE=TOEPH(n)</u>

- > n + (n-1) parameters:
 - *n* separate "Var(*n*)" total variances σ²_{Tn}
 - n-1 "TOEPH(*lag*)" \mathbf{r}_{Tn} banded total correlations across occasions $\mathbf{r}_{T2}\sigma_{T3}\sigma_{T1}$ $\mathbf{r}_{T1}\sigma_{T3}\sigma_{T2}$ σ_{T3}^2 $\mathbf{r}_{T1}\sigma_{T3}\sigma_{T4}$ $\mathbf{r}_{T3}\sigma_{T4}\sigma_{T1}$ $\mathbf{r}_{T2}\sigma_{T4}\sigma_{T2}$ $\mathbf{r}_{T1}\sigma_{T4}\sigma_{T3}$ σ_{T4}^2
 - r_{T1} is lag-1 correlation, r_{T2} is lag-2 correlation, r_{T3} is lag-3 correlation....

Comparing **R**-only ACS Models

- Baseline models: CS =simplest, UN = most complex
 - Relative to CS, more complex models fit "better" or "not better"
 - > Relative to UN, less complex models fit "worse" or "not worse"
- Other rules of nesting and model comparisons:
 - Homogeneous variance models are nested within heterogeneous variance models (e.g., CS in CSH, AR1 in ARH1, TOEP in TOEPH)
 - CS and AR1 are each nested within TOEP (i.e., TOEP can become CS or AR1 through restrictions of its covariance patterns)
 - CS and AR1 are not nested (because both have 2 parameters)
 - > **R**-only models differ in unbounded parameters, so can be compared using regular $-2\Delta LL$ tests (instead of mixture $-2\Delta LL$ tests, stay tuned)
 - Helpful to start by assuming heterogeneous variances until you settle on the covariance pattern, then test if het. variances are still needed
 - > When in doubt, just compare AIC and BIC (useful even with -2Δ LL tests)

The Other Family of ACS Models

- **R**-only models *directly* predict the **total** variance and covariance
- **G** and **R** models *indirectly* predict the total variance and covariance through **between-person (BP)** and **within-person (WP)** sources of variance and covariance \rightarrow So, for this model: $y_{ti} = \beta_0 + U_{0i} + e_{ti}$
 - > **BP** = **G** matrix of **level-2 random effect (U_{0i})** variances and covariances
 - Which effects get to be random (whose variance and covariances are then included in G) is specified using the RANDOM statement (always* TYPE=UN)
 - Our ACS models have a random intercept only, so **G** is 1x1 scalar of $[\tau_{U_0}^2]$
 - > WP = R matrix of level-1 (e_{ti}) residual variances and covariances
 - The *n* x *n* **R** matrix of **residual** variances and covariances **that remain** after controlling for random intercept variance is then modeled with **REPEATED**
 - > **Total** = $\mathbf{V} = n \times n$ matrix of **total** variance and covariance across occasions that results from putting **G** and **R** together: $\mathbf{V} = \mathbf{Z}\mathbf{G}\mathbf{Z}^{T} + \mathbf{R}$
 - Z is a matrix that holds the values of predictors with random effects, but Z will be an n x 1 column of 1's for now (→ random intercept only)

A "Random Intercept" (G and R) Model

 $\begin{aligned} \tau_{U_0}^2 & \tau_{U_0}^2 & \tau_{U_0}^2 + \sigma_e^2 & \tau_{U_0}^2 \\ \tau_{U_0}^2 & \tau_{U_0}^2 & \tau_{U_0}^2 & \tau_{U_0}^2 + \sigma_e^2 \end{aligned}$

 $\begin{bmatrix} \tau_{U_0}^2 + \sigma_e^2 & \tau_{U_0}^2 & \tau_{U_0}^2 & \tau_{U_0}^2 \\ \tau_{U_0}^2 & \tau_{U_0}^2 + \sigma_e^2 & \tau_{U_0}^2 & \tau_{U_0}^2 \end{bmatrix}$

Total Predicted Data Matrix is called V Matrix

Level 2, BP Variance Unstructured **G** Matrix (RANDOM statement) Each person has same 1 x 1 G matrix (no covariance across persons in two-level model)

Random Intercept Variance only

$$\left[au_{\mathrm{U}_{0}}^{2}
ight]$$

Level 1, WP Variance Diagonal (VC) R Matrix (REPEATED statement) Each person has same **n x n** R matrix \rightarrow equal variances and 0 covariances across time (no covariance across persons)

Residual
$$\begin{bmatrix} \sigma_e^2 & 0 & 0 & 0 \\ 0 & \sigma_e^2 & 0 & 0 \\ 0 & 0 & \sigma_e^2 & 0 \\ 0 & 0 & 0 & \sigma_e^2 \end{bmatrix}$$
Variance only $\begin{bmatrix} 0 & \sigma_e^2 & 0 & 0 \\ 0 & 0 & \sigma_e^2 & 0 \\ 0 & 0 & 0 & \sigma_e^2 \end{bmatrix}$

CS as a "Random Intercept" Model

<u>RI and DIAG</u>: Total predicted data matrix is called V matrix, created from the G [TYPE=UN] and R [TYPE=VC] matrices as follows:

$$\mathbf{V} = \mathbf{Z} * \mathbf{G} * \mathbf{Z}^{\mathrm{T}} + \mathbf{R} = \mathbf{V}$$

$$\mathbf{V} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \begin{bmatrix} \tau_{U_0}^2 \end{bmatrix} \begin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix} + \begin{bmatrix} \sigma_{e}^2 \ 0 \ 0 \ 0 \end{bmatrix} \begin{bmatrix} \sigma_{e}^2 \ 0 \ 0 \ 0 \end{bmatrix} = \begin{bmatrix} \tau_{U_0}^2 + \sigma_{e}^2 \ \tau_{U_0}^2 \ \tau_{U_0}^2 + \sigma_{e}^2 \ \tau_{U_0}^2 \ \tau_{U_0}^2 \end{bmatrix} = \begin{bmatrix} \tau_{U_0}^2 + \sigma_{e}^2 \ \tau_{U_0}^2 \ \tau_{U_0}^2 + \sigma_{e}^2 \ \tau_{U_0}^2 + \sigma_{e}^2 \ \tau_{U_0}^2 \end{bmatrix}$$

Does the end result of V look familiar? It should: $CS = \tau_{U_0}^2$ $\begin{bmatrix} CS + \sigma_e^2 & CS & CS \\ CS & CS + \sigma_e^2 & CS & CS \\ CS & CS & CS + \sigma_e^2 & CS \\ CS & CS & CS + \sigma_e^2 & CS \end{bmatrix}$ So if the **R-only CS model** (the simplest baseline) can be specified equivalently using **G and R**, can we do the same for the **R-only UN model** (the most complex baseline)?

Absolutely! ... with one small catch

UN via a "Random Intercept" Model

<u>RI and UN*n*-1</u>: Total predicted data matrix is called V matrix, created from the G [TYPE=UN] and R [TYPE=UN(*n*-1)] matrices as follows:

$$\mathbf{V} = \mathbf{Z} * \mathbf{G} * \mathbf{Z}^{\mathrm{T}} + \mathbf{R} = \mathbf{V}$$

$$\mathbf{V} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \begin{bmatrix} \tau_{U_{0}}^{2} \end{bmatrix} \begin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix} + \begin{bmatrix} \sigma_{e1}^{2} & \sigma_{e12} & \sigma_{e13} & \mathbf{0} \\ \sigma_{e21} & \sigma_{e2}^{2} & \sigma_{e23} & \sigma_{e24} \\ \sigma_{e31} & \sigma_{e32} & \sigma_{e3}^{2} & \sigma_{e34} \\ \mathbf{0} & \sigma_{e42} & \sigma_{e43} & \sigma_{e4}^{2} \end{bmatrix} = \begin{bmatrix} \tau_{U_{0}}^{2} + \sigma_{e1}^{2} & \tau_{U_{0}}^{2} + \sigma_{e13} & \mathbf{1} \\ \tau_{U_{0}}^{2} + \sigma_{e21} & \tau_{U_{0}}^{2} + \sigma_{e22} & \tau_{U_{0}}^{2} + \sigma_{e23} & \tau_{U_{0}}^{2} + \sigma_{e24} \\ \tau_{U_{0}}^{2} + \sigma_{e31} & \tau_{U_{0}}^{2} + \sigma_{e32} & \tau_{U_{0}}^{2} + \sigma_{e33} & \tau_{U_{0}}^{2} + \sigma_{e34} \\ \tau_{U_{0}}^{2} + \sigma_{e31} & \tau_{U_{0}}^{2} + \sigma_{e32} & \tau_{U_{0}}^{2} + \sigma_{e33} & \tau_{U_{0}}^{2} + \sigma_{e34} \\ \tau_{U_{0}}^{2} + \sigma_{e31} & \tau_{U_{0}}^{2} + \sigma_{e42} & \tau_{U_{0}}^{2} + \sigma_{e43} & \tau_{U_{0}}^{2} + \sigma_{e44} \end{bmatrix}$$

This **RI and UN***n***–1 model** is equivalent to (makes same predictions as) the **R-only UN model**. But **R** shows the *residual* (not total) covariances.

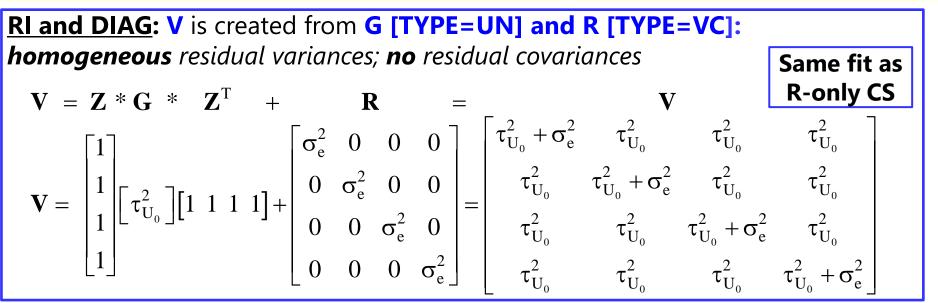
Because we can't estimate all possible variances and covariances in the **R** matrix and also estimate the random intercept variance $\tau_{U_0}^2$ in the **G** matrix, we are eliminating the highest-lag **R** matrix covariance by setting it to 0.

Accordingly, in the **RI and UN**n-1 model, the random intercept variance $\tau_{U_0}^2$ takes on the value of the covariance for the first and last occasions.

Rationale for **G** and **R** ACS models

- Modeling WP fluctuation traditionally involves using R only (no G)
 → Total BP + WP variance described by just R matrix (so R=V)
 - Correlations would still be expected even at distant time lags because of constant individual differences (i.e., the BP level-2 random intercept)
 - Resulting **R**-only model (of BP+WP combined) may require lots of estimated parameters as a result (e.g., 8 occasions? Pry need a 7-lag Toeplitz(8) model)
- Why not take out the primary reason for the covariance across occasions (the random intercept variance) and see what's left?
 - > Random intercept variance $\tau^2_{U_0}$ in $\mathbf{G} \rightarrow$ control for person mean differences
 - > THEN predict just the **residual** variance and covariance in **R**, not the **total**
 - > Resulting model may be more parsimonious (e.g., maybe only lag1 or lag2 occasions are still related after removing $\tau_{U_0}^2$ as a source of covariance)
 - Has the advantage of still distinguishing BP from WP variance (useful for descriptive purposes and for calculating effect sizes later)
 - > Can be estimated in SAS MIXED, STATA MIXED, or LME in R

Random Intercept + Diagonal **R** Models



<u>**RI and DIAGH: V</u>** is created from **G [TYPE=UN] and R [TYPE=UN(1)]:** *heterogeneous* residual variances; **no** residual covariances **NOT same fit**</u>

$$\mathbf{V} = \mathbf{Z} * \mathbf{G} * \mathbf{Z}^{\mathrm{T}} + \mathbf{R} = \mathbf{V} \qquad \begin{array}{c} \text{as R-only CSH} \\ \mathbf{V} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} \tau_{U_0}^2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} \sigma_{e_1}^2 & 0 & 0 & 0 \\ 0 & \sigma_{e_2}^2 & 0 & 0 \\ 0 & 0 & \sigma_{e_3}^2 & 0 \\ 0 & 0 & \sigma_{e_3}^2 & 0 \\ 0 & 0 & \sigma_{e_3}^2 \end{bmatrix} = \begin{bmatrix} \tau_{U_0}^2 + \sigma_{e_1}^2 & \tau_{U_0}^2 & \tau_{U_0}^2 & \tau_{U_0}^2 \\ \tau_{U_0}^2 & \tau_{U_0}^2 + \sigma_{e_3}^2 & \tau_{U_0}^2 \\ \tau_{U_0}^2 & \tau_{U_0}^2 & \tau_{U_0}^2 + \sigma_{e_3}^2 & \tau_{U_0}^2 \\ \tau_{U_0}^2 & \tau_{U_0}^2 & \tau_{U_0}^2 & \tau_{U_0}^2 + \sigma_{e_3}^2 \\ \end{array} \right]$$

Random Intercept + ARI R Models

<u>**RI and AR1</u>: V is created from G [TYPE=UN] and R [TYPE=AR(1)]:** *homogeneous* residual variances; *auto-regressive lagged* residual covariances</u>

$$\mathbf{V} = \mathbf{Z} * \mathbf{G} * \mathbf{Z}^{\mathrm{T}} + \mathbf{R} = \mathbf{V}$$

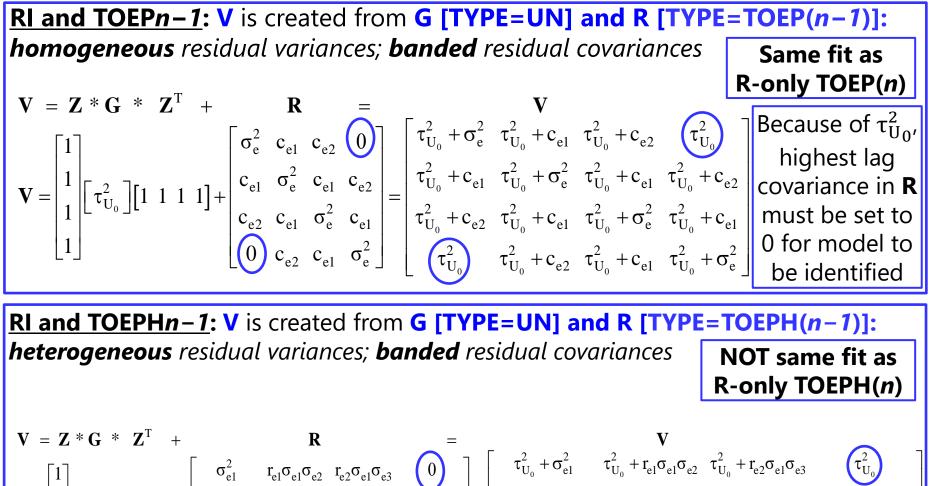
$$\mathbf{V} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \begin{bmatrix} \tau_{U_{0}}^{2} \end{bmatrix} \begin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix} + \begin{bmatrix} \sigma_{e}^{2} & r_{e}^{1} \sigma_{e}^{2} & r_{e}^{2} \sigma_{e}^{2} & r_{e}^{3} \sigma_{e}^{2} \\ r_{e}^{1} \sigma_{e}^{2} & \sigma_{e}^{2} & r_{e}^{1} \sigma_{e}^{2} & r_{e}^{2} \sigma_{e}^{2} \\ r_{e}^{2} \sigma_{e}^{2} & r_{e}^{1} \sigma_{e}^{2} & \sigma_{e}^{2} & r_{e}^{2} \sigma_{e}^{2} \\ r_{e}^{2} \sigma_{e}^{2} & r_{e}^{1} \sigma_{e}^{2} & \sigma_{e}^{2} & r_{e}^{1} \sigma_{e}^{2} \\ r_{e}^{2} \sigma_{e}^{2} & r_{e}^{1} \sigma_{e}^{2} & \sigma_{e}^{2} & r_{e}^{1} \sigma_{e}^{2} \\ r_{e}^{2} \sigma_{e}^{2} & r_{e}^{1} \sigma_{e}^{2} & \sigma_{e}^{2} \\ r_{e}^{2} \sigma_{e}^{2} & r_{e}^{1} \sigma_{e}^{2} & \sigma_{e}^{2} \\ r_{e}^{2} \sigma_{e}^{2} & r_{e}^{2} \sigma_{e}^{2} \\ r_{e}^{2} \sigma_{e}^{2} & r_{e}^{2} \sigma_{e}^{2} \\ r_{e}^{2} \sigma_{e}^{2} & r_{e}^{2} \sigma_{e}^{2} \end{bmatrix} = \begin{bmatrix} \tau_{U_{0}}^{2} + \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{1} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} \\ \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} \\ \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} \\ \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} \\ \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} \\ \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} \\ \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} \\ \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} \\ \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} \\ \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} \\ \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} \\ \tau_{U_{0}}^{2} + r_{e}^{2} \sigma_{e}^{2} & \tau_{U_{0}^{2} + r$$

<u>**RI and ARH1: V</u>** is created from **G [TYPE=UN] and R [TYPE=ARH(1)]:** *heterogeneous* residual variances; *auto-regressive lagged* residual covariances</u>

$$\mathbf{V} = \mathbf{Z} * \mathbf{G} * \mathbf{Z}^{\mathrm{T}} + \mathbf{R} = \mathbf{V}$$

$$\mathbf{V} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \begin{bmatrix} \tau_{U_{0}}^{2} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} \sigma_{e1}^{2} & r_{e}^{1}\sigma_{e1}\sigma_{e2} & r_{e}^{2}\sigma_{e1}\sigma_{e3} & r_{e}^{3}\sigma_{e1}\sigma_{e4} \\ r_{e}^{1}\sigma_{e2}\sigma_{e1} & \sigma_{e2}^{2} & r_{e}^{1}\sigma_{e2}\sigma_{e3} & r_{e}^{2}\sigma_{e2}\sigma_{e4} \\ r_{e}^{2}\sigma_{e3}\sigma_{e1} & r_{e}^{1}\sigma_{e3}\sigma_{e2} & \sigma_{e3}^{2} & r_{e}^{1}\sigma_{e3}\sigma_{e4} \\ r_{e}^{3}\sigma_{e4}\sigma_{e1} & r_{e}^{2}\sigma_{e4}\sigma_{e2} & r_{e}^{1}\sigma_{e4}\sigma_{e3} & \sigma_{e4}^{2} \end{bmatrix} = \begin{bmatrix} \tau_{U_{0}}^{2} + \sigma_{e1}^{2} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e1}\sigma_{e2} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e1}\sigma_{e4} \\ \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e3}\sigma_{e1} & \tau_{U_{0}}^{2} + \sigma_{e2}^{2} & \tau_{U_{0}}^{2} + r_{e}^{1}\sigma_{e2}\sigma_{e3} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e2}\sigma_{e4} \\ \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e3}\sigma_{e1} & \tau_{U_{0}}^{2} + r_{e}^{1}\sigma_{e3}\sigma_{e2} & \tau_{U_{0}}^{2} + r_{e}^{1}\sigma_{e3}\sigma_{e4} \\ \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e3}\sigma_{e1} & \tau_{U_{0}}^{2} + r_{e}^{1}\sigma_{e3}\sigma_{e2} & \tau_{U_{0}}^{2} + r_{e}^{1}\sigma_{e3}\sigma_{e4} \\ \tau_{U_{0}}^{2} + r_{e}^{3}\sigma_{e4}\sigma_{e1} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e4}\sigma_{e2} & \tau_{U_{0}}^{2} + r_{e}^{1}\sigma_{e3}\sigma_{e4} \\ \tau_{U_{0}}^{2} + r_{e}^{3}\sigma_{e4}\sigma_{e1} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e4}\sigma_{e2} & \tau_{U_{0}}^{2} + r_{e}^{1}\sigma_{e4}\sigma_{e3} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e4}\sigma_{e3} \\ \tau_{U_{0}}^{2} + r_{e}^{3}\sigma_{e4}\sigma_{e1} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e4}\sigma_{e2} & \tau_{U_{0}}^{2} + r_{e}^{1}\sigma_{e4}\sigma_{e3} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e4}\sigma_{e4} \\ \tau_{U_{0}}^{2} + r_{e}^{3}\sigma_{e4}\sigma_{e1} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e4}\sigma_{e2} & \tau_{U_{0}}^{2} + r_{e}^{1}\sigma_{e4}\sigma_{e3} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e4}\sigma_{e4} \\ \tau_{U_{0}}^{2} + r_{e}^{3}\sigma_{e4}\sigma_{e1} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e4}\sigma_{e2} & \tau_{U_{0}}^{2} + r_{e}^{1}\sigma_{e4}\sigma_{e3} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e4}\sigma_{e3} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e4}\sigma_{e4} \\ \tau_{U_{0}}^{2} + r_{e}^{3}\sigma_{e4}\sigma_{e1} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e4}\sigma_{e2} & \tau_{U_{0}}^{2} + r_{e}^{2}\sigma_{e4}\sigma_{e3} & \tau_{U_{0}}^{2} + \sigma_{e4}^{2} \\ \tau_{U_{0}}^{2} + r_{e}^{3}\sigma_{e4}\sigma_{e1} & \tau_{U_{0}}^{2} + r_{e}^{3}\sigma_{e4}\sigma_{e2} & \tau_{U_{0}}^{2} + r_{e}^{3}\sigma_{e4}\sigma_{e3} & \tau_{U_{0}}^{2} + r_{e}^{3}$$

Random Intercept + TOEPn-1 R Models



$$\mathbf{V} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \begin{bmatrix} \tau_{U_0}^2 \end{bmatrix} \begin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix} + \begin{bmatrix} \sigma_{e1}^2 & r_{e1}\sigma_{e1}\sigma_{e2} & r_{e2}\sigma_{e1}\sigma_{e3} & \mathbf{0} \\ r_{e1}\sigma_{e2}\sigma_{e1} & \sigma_{e2}^2 & r_{e1}\sigma_{e2}\sigma_{e3} & r_{e2}\sigma_{e2}\sigma_{e4} \\ r_{e2}\sigma_{e3}\sigma_{e1} & r_{e1}\sigma_{e3}\sigma_{e2} & \sigma_{e3}^2 & r_{e1}\sigma_{e3}\sigma_{e4} \\ 0 & r_{e2}\sigma_{e4}\sigma_{e2} & r_{e1}\sigma_{e4}\sigma_{e3} & \sigma_{e4}^2 \end{bmatrix} = \begin{bmatrix} \tau_{U_0}^2 + \sigma_{e1}^2 & \tau_{U_0}^2 + r_{e1}\sigma_{e2}\sigma_{e1} & \tau_{U_0}^2 + r_{e2}\sigma_{e1}\sigma_{e3} \\ \tau_{U_0}^2 + r_{e1}\sigma_{e2}\sigma_{e1} & \tau_{U_0}^2 + \sigma_{e2}^2 & \tau_{U_0}^2 + r_{e1}\sigma_{e2}\sigma_{e3} & \tau_{U_0}^2 + r_{e2}\sigma_{e2}\sigma_{e4} \\ \tau_{U_0}^2 + r_{e2}\sigma_{e3}\sigma_{e1} & \tau_{U_0}^2 + r_{e1}\sigma_{e3}\sigma_{e2} & \tau_{U_0}^2 + r_{e1}\sigma_{e3}\sigma_{e3} \\ \tau_{U_0}^2 + r_{e2}\sigma_{e3}\sigma_{e1} & \tau_{U_0}^2 + r_{e1}\sigma_{e3}\sigma_{e2} & \tau_{U_0}^2 + r_{e1}\sigma_{e3}\sigma_{e4} \\ \tau_{U_0}^2 & \tau_{U_0}^2 + r_{e2}\sigma_{e4}\sigma_{e2} & \tau_{U_0}^2 + r_{e1}\sigma_{e4}\sigma_{e3} & \tau_{U_0}^2 + \sigma_{e4}^2 \end{bmatrix}$$

Random Intercept + TOEP2 R Models

<u>**RI and TOEP2: V**</u> is created from **G** [**TYPE=UN**] **and R** [**TYPE=TOEP(2**)]: *homogeneous* residual variances; **banded** residual covariance at **lag1** only

$$\mathbf{V} = \mathbf{Z} * \mathbf{G} * \mathbf{Z}^{\mathrm{T}} + \mathbf{R} = \mathbf{V}$$

$$\mathbf{V} = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \begin{bmatrix} \tau_{U_0}^2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} \sigma_{e}^2 & c_{e1} & 0 & 0\\ c_{e1} & \sigma_{e}^2 & c_{e1} & 0\\ 0 & c_{e1} & \sigma_{e}^2 & c_{e1} \\ 0 & 0 & c_{e1} & \sigma_{e}^2 \end{bmatrix} = \begin{bmatrix} \tau_{U_0}^2 + \sigma_{e}^2 & \tau_{U_0}^2 + c_{e1} & \tau_{U_0}^2 & \tau_{U_0}^2 \\ \tau_{U_0}^2 + c_{e1} & \tau_{U_0}^2 + \sigma_{e}^2 & \tau_{U_0}^2 + c_{e1} & \tau_{U_0}^2 \\ \tau_{U_0}^2 & \tau_{U_0}^2 + c_{e1} & \tau_{U_0}^2 + \sigma_{e}^2 & \tau_{U_0}^2 + c_{e1} \\ \tau_{U_0}^2 & \tau_{U_0}^2 & \tau_{U_0}^2 + c_{e1} & \tau_{U_0}^2 + \sigma_{e}^2 \end{bmatrix}$$
Now we can test the need for residual covariances at higher lags

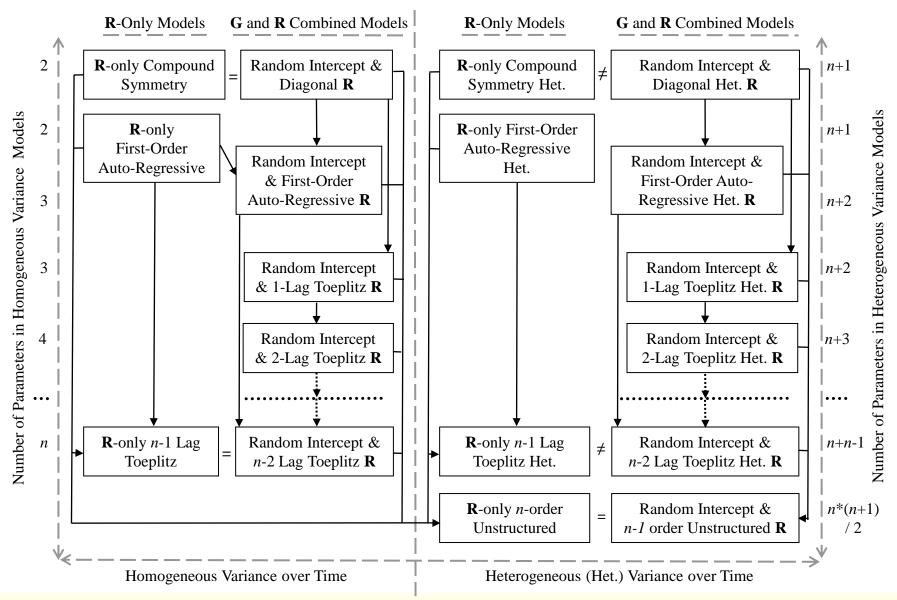
<u>**RI and TOEPH2</u>: V is created from G [TYPE=UN] and R [TYPE=TOEPH(2)]:** *heterogeneous* residual variances; *banded* residual covariance at *lag1* only</u>

$$\mathbf{V} = \mathbf{Z} * \mathbf{G} * \mathbf{Z}^{\mathrm{T}} + \mathbf{R} = \mathbf{V}$$

$$\mathbf{V} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \begin{bmatrix} \tau_{U_{0}}^{2} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} \sigma_{e1}^{2} & r_{e1}\sigma_{e1}\sigma_{e2} & 0 & 0\\ r_{e1}\sigma_{e2}\sigma_{e1} & \sigma_{e2}^{2} & r_{e1}\sigma_{e2}\sigma_{e3} & 0\\ 0 & r_{e1}\sigma_{e3}\sigma_{e2} & \sigma_{e3}^{2} & r_{e1}\sigma_{e3}\sigma_{e4} \end{bmatrix} = \begin{bmatrix} \tau_{U_{0}}^{2} + \sigma_{e1}^{2} & \tau_{U_{0}}^{2} + r_{e1}\sigma_{e2} & \tau_{U_{0}}^{2} & \tau_{U_{0}}^{2} \\ \tau_{U_{0}}^{2} + r_{e1}\sigma_{e2}\sigma_{e1} & \tau_{U_{0}}^{2} + \sigma_{e2}^{2} & \tau_{U_{0}}^{2} + r_{e1}\sigma_{e2}\sigma_{e3} & \tau_{U_{0}}^{2} \\ \tau_{U_{0}}^{2} & \tau_{U_{0}}^{2} + r_{e1}\sigma_{e3}\sigma_{e2} & \tau_{U_{0}}^{2} + r_{e1}\sigma_{e3}\sigma_{e4} \\ \tau_{U_{0}}^{2} & \tau_{U_{0}}^{2} & \tau_{U_{0}}^{2} + r_{e1}\sigma_{e4}\sigma_{e3} & \tau_{U_{0}}^{2} + \sigma_{e4}^{2} \end{bmatrix}$$

Map of **R**-only and **G** and **R** ACS Models

Hoffman (2015) Figure 4.1: Arrows indicate nesting (end is more complex model)



PSQF 7375 Longitudinal: Lecture 4

Stuff to Watch Out For...

- If using a random intercept, don't forget to drop 1 parameter in:
 - > *n***-1 order UN R**: Can't get all possible elements in **R**, plus $\tau_{U_0}^2$ in **G**
 - > **TOEP***n***-1**: Have to eliminate last-lag covariance
- If using a random intercept...
 - > Can't do RI + CS R: Can't get a constant in R, and then another constant in G
 - > Can often test if random intercept helps (e.g., AR1 is nested within RI + AR1)
- If "time" is treated as quantitative in the fixed effects, you will need another variable for time that is categorical to use in SAS syntax:
 - > "Quantitative Time" \rightarrow predictor on MODEL (and RANDOM) statements
 - > "Categorical Time" \rightarrow ID variable on CLASS and REPEATED statements
- Most alternative covariance structure models assume time is balanced across persons with equal intervals across occasions
 - > If not, holding correlations of same lag equal doesn't make sense
 - > Other structures can be used for unbalanced time
 - In SAS, SP(POW)(time) = AR1; In R GLS or LME, corCAR1 = AR1

Summary: Two Families of ACS Models

- **R**-only models:
 - Specify R model on REPEATED statement without any random effects variances in G (so no RANDOM statement is used)
 - Include UN, CS, CSH, AR1, AR1H, TOEPn, TOEPHn (among others)
 - *Total* variance and *total* covariance kept in **R**, so **R** = **V**
 - > Other than CS, does not partition total variance into BP vs. WP
- **G** and **R** combined models (so **G** and **R** make **V**):
 - > Specify random intercept variance $\tau_{U_0}^2$ in **G** using RANDOM, then specify **R** model using REPEATED statement
 - > **G** matrix = Level-2 BP variance and covariance due to U_{0i} , so **R** = Level-1 WP variance and covariance of the e_{ti} residuals
 - > **R** predicts leftover variance and covariance after accounting for BP mean differences (via the random intercept variance $\tau_{U_0}^2$ in **G**)

Syntax for Models for the Variance

- Does your model include random intercept variance $\tau_{U_0}^2$ (for U_{0i})?
 - > Use the **RANDOM** statement \rightarrow **G matrix**
 - > Random intercept models BP interindividual differences in mean outcome
- What about **residual variance** σ_e^2 (for e_{ti})?
 - > Use the **REPEATED** statement \rightarrow **R matrix**
 - WITHOUT a RANDOM statement: R is BP and WP variance together = σ_T^2 \rightarrow Total variances and covariances (to model all variation, so R = V)
 - WITH a RANDOM statement: R is WP variance only = σ_e²
 → Residual variances and covariances to model WP intraindividual variation
 → G and R put back together = V matrix of total variances and covariances
- In SAS, the **REPEATED** statement is always there implicitly...
 - > Any model **always** has at least one residual variance in **R** matrix
- In SAS, the **RANDOM** statement is only there if you write it
 - **G** matrix isn't always necessary (don't always need random intercept)
 - > In STATA MIXED, random intercepts are included by default
 - > In R, the default for random effects varies across packages

Wrapping Up: ACS Models

- Even if you just expect fluctuation over time rather than change, you still should be concerned about accurately predicting the variances and covariances across occasions
- Baseline models (from ANOVA least squares) are CS & UN:
 - > Compound Symmetry (CS): Equal variance and covariance over time
 - > Unstructured (UN): All variances & covariances estimated separately
 - > Fitting CS or UN via ML or REML estimation allows missing data
- MLM gives us choices in the middle
 - > Goal: Get as close to UN as parsimoniously as possible
 - **R**-only: Structure TOTAL variation in one matrix (**R** only)
 - G+R: Put constant covariance due to random intercept in G, then structure residual covariance in R (so that G and R make V TOTAL)