
A Re-Introduction to 

General Linear Models (GLM)
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• Topics:

➢ You do know the GLM

➢ Estimation (where the numbers in the output come from): 

From least squares to residual maximum likelihood (REML)

➢ Reviewing specification of fixed effects in GLMs

▪ Centering and interpreting effects of quantitative predictors

▪ Two ways of including categorical predictors

▪ Fun with interaction terms!



You do know the General Linear Model
• The general linear model incorporates many different labels of 

related single-level analyses under one unifying umbrella term:

• The labels across columns are not actually helpful—they create 

artificial distinctions among what is really just one kind of model

• What these models all have in common is the use of a normal 

conditional distribution (i.e., for the residuals that remain after 

creating conditional/expected outcomes from the model predictors)

• Note: Model predictors do NOT have distributional assumptions!
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Categorical

Predictors

Quantitative

Predictors

Both Types of

Predictors

Univariate

(one outcome)

“ANOVA” “Regression” “ANCOVA”

Multivariate

(2+ outcomes)

“MANOVA” “Multivariate 

Regression”

“MANCOVA”



The Two Sides of Any Model
• Model for the Means:

➢ Aka Fixed Effects, Structural Part of Model

➢ What you are used to caring about for testing hypotheses

➢ How the expected outcome for a given observation varies as a 
weighted function of its values on the model predictor variables

▪ Fixed slopes are estimated constants that multiply predictors

• Model for the Variance:

➢ Aka Random Effects and Residuals, Stochastic Part of Model

➢ How residuals are distributed and related across observations

➢ What you are used to making assumptions about instead… 

➢ For the GLM, that residuals come from a normal distribution, 
are independent across persons, and have constant variance 
across persons and predictors (“identically distributed”)
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The Simplest Possible Model:

The “Empty Means” GLM
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Mean = 89.55
Std. Dev. = 15.114
N = 1,334

𝒚𝒊 = 𝜷𝟎+ 𝒆𝒊

Filling in values:

𝟑𝟐 = 𝟗𝟎 + −𝟓𝟖

Model 

for the 

Means

𝒚𝒊 residual 

(“error”) variance:

σ 𝒚𝒊 − ෝ𝒚𝒊
𝟐

𝑵− 𝟏

ෝ𝒚𝒊

ෝ𝒚𝒊 = “y-hat” model-

predicted outcome



“Linear Regression” Model with a 

Quantitative Predictor (𝒙𝒊 = Ability)
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Predictor X1

20

40

60

80

100

120

140 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝒆𝒊

Ability Model (𝒙𝒊= 𝟗) :

𝟑𝟐 = 𝟐𝟗 + 𝟐(𝟗) + −𝟏𝟓

Empty Model:

𝟑𝟐 = 𝟗𝟎 + −𝟓𝟖

Model 

for the 

Means

Predictor 𝒙𝒊 Ability
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ෝ𝒚𝒊

𝒚𝒊 residual 

(“error”) 

variance:

σ 𝒚𝒊 − ෝ𝒚𝒊
𝟐

𝑵− 𝟐



“ANOVA” Model with a 

Categorical Predictor (𝒛𝒊 = Sex)

Predictor 𝒛𝒊: Sex (0=M, 1=W)

Men mean 

= 89.0

Women mean 

= 90.6
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𝒚𝒊 = 𝜷𝟎+ 𝜷𝟏(𝒛𝒊) + 𝒆𝒊

Sex Model (𝒛𝒊= 𝟎) :

𝟑𝟐 = 𝟖𝟗 + 𝟏. 𝟔(𝟎) + −𝟓𝟕

Empty Model:

𝟑𝟐 = 𝟗𝟎 + −𝟓𝟖

Model 

for the 

Means

ෝ𝒚𝒊

𝒚𝒊 residual 

(“error”) 

variance:

σ 𝒚𝒊 − ෝ𝒚𝒊
𝟐

𝑵− 𝟐



The Two Sides of a General Linear Model

𝑦𝑖 = 𝛽0 + 𝛽1(𝑥𝑖) + 𝛽2(𝑧𝑖) + ⋯ + 𝑒𝑖

• Model for the Means → Predicted Values:

➢ Each person’s expected (predicted) outcome is a weighted linear 
function of his/her values on 𝑥𝑖 and 𝑧𝑖 (and any other predictors), 
each measured once per person (i.e., this is a univariate model)

➢ Estimated parameters are called fixed effects (here, 𝛽0, 𝛽1, and 𝛽2)

➢ Number of fixed effects will show up in formulas as 𝒌 (so 𝒌 = 𝟑 here)

• Model for the Variance:

➢ 𝑒𝑖 ∼ N 0, 𝜎𝑒
2
→ ONE source of residual (unexplained) error

➢ In the GLM, 𝑒𝑖 has a mean of 0 with some estimated constant variance 
𝜎𝑒
2, is normally distributed, is unrelated to 𝑥𝑖 and 𝑧𝑖, and is unrelated 

across all observations (which is just one per person here)

➢ Estimated parameter is the residual variance only (not each 𝑒𝑖)

➢ Proportion of variance reduced relative to empty means model = 𝑹𝟐
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Our focus today



See? You do know the GLM!

• The general linear model incorporates many different labels 

of related single-level analyses under one unifying term:

• What these models all have in common is the use of a normal 

conditional distribution (for the residuals that remain after 

creating conditional outcomes from the model predictors)

• The use of these words almost always implies estimation 

using “least squares” (LS), aka “ordinary least squares” (OLS)
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Categorical

Predictors

Quantitative

Predictors

Both Types of

Predictors

Univariate

(one outcome)

“ANOVA” “Regression” “ANCOVA”

Multivariate

(2+ outcomes)

“MANOVA” “Multivariate 

Regression”

“MANCOVA”



How Estimation Works (In Brief)
• Most statistical estimation routines do one of three things:

• Minimize Something: Typically found with names that have “least” 
in the title. Forms of least squares include “Generalized”, “Ordinary”, 
“Weighted”, “Diagonally Weighted”, “WLSMV”, and “Iteratively 
Reweighted.” Typically the estimator of last resort

• Maximize Something: Typically found with names that have 
“maximum” in the title. Forms include “Maximum likelihood” (ML), 
“Residual Maximum Likelihood” (REML), “Robust ML”. Typically the 
gold standard of estimators, and what we will use this semester. 
REML is the same thing as least squares for complete data

• Use Simulation to Sample from Something: more recent advances 
in simulation use resampling techniques. Names include “Bayesian
Markov Chain Monte Carlo”, “Gibbs Sampling”, “Metropolis 
Hastings”, “Metropolis Algorithm”, and “Monte Carlo”. Used for 
complex models in which ML is not available or feasible
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Ordinary Least Squares (OLS) Estimation
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• 𝑴𝑺𝒎𝒐𝒅𝒆𝒍 = how much info was captured per added fixed slope

• 𝑴𝑺𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 = how much info is leftover, per possible new fixed slope 
→ residual variance = “𝑀𝑆𝐸” error variance

• Variance explained by model fixed slopes: 𝑹𝟐 =
𝑆𝑆𝑡𝑜𝑡𝑎𝑙−𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙

• 𝑹𝟐 = square of correlation between model-predicted ෝ𝒚𝒊 and actual 𝒚𝒊

• 𝑭 test-statistic for significance of 𝑹𝟐 > 𝟎? is given in two equivalent ways: 

𝑭 𝐷𝐹𝑛𝑢𝑚, 𝐷𝐹𝑑𝑒𝑛 =
𝑀𝑆𝑚𝑜𝑑𝑒𝑙

𝑀𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
or   𝑭 𝐷𝐹𝑛𝑢𝑚, 𝐷𝐹𝑑𝑒𝑛 =

𝑁−𝑘 𝑅2

(𝑘−1)(1−𝑅2)

Source of Outcome

Information

Sums of Squares 

(each summed

from 𝒊 = 𝟏 to 𝑵)

Degrees of 

Freedom

Mean 

Square

Model (known because 

of predictor slopes)

𝑺𝑺𝒎𝒐𝒅𝒆𝒍: ෝ𝒚𝒊 − ഥ𝒚 𝟐 𝑫𝑭𝒏𝒖𝒎: 𝒌 − 𝟏 𝑴𝑺𝒎𝒐𝒅𝒆𝒍:
𝑺𝑺𝒎𝒐𝒅𝒆𝒍

𝒌−𝟏

Residual (leftover after 

predictors; still unknown)

𝑺𝐒𝐫𝐞𝐬𝐢𝐝𝐮𝐚𝐥: 𝒚𝒊 − ෝ𝒚𝒊
𝟐 𝑫𝑭𝒅𝒆𝒏: 𝑵 − 𝒌 𝑴𝑺𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍:

𝑺𝑺𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍

𝑵−𝒌

“Corrected” Total (all 

original information in 𝑦𝑖)

𝑺𝐒𝐭𝐨𝐭𝐚𝐥: 𝒚𝒊 − ഥ𝒚 𝟐 𝑫𝑭𝒕𝒐𝒕𝒂𝒍: 𝑵 − 𝟏
(not shown)

𝑴𝑺𝒕𝒐𝒕𝒂𝒍:
𝑺𝑺𝒕𝒐𝒕𝒂𝒍

𝑵−𝟏

(not shown)



Ordinary Least Squares (OLS) Estimation

• OLS uses fixed effect estimates that minimize:

➢ σ𝑖=1
𝑁 (𝑒𝑖

2) = sum of squared residuals across persons

➢ Invented c. 1840, can be done via matrix algebra, so it will always work 

• Has “closed form” solution (= easy formula) when used for 
general linear models (GLM) for single outcomes given:

➢ 𝒆𝒊 ∼ 𝐍 𝟎, 𝝈𝒆
𝟐
→ residuals are normally distributed, independent,

and have constant variance

• For GLM for multiple outcomes, OLS becomes useless…

➢ Cannot have missing outcomes (listwise-deletes entire person instead)

➢ Only two options for modeling covariance between outcomes 

➢ Then why do it this way? Dogma + lack of awareness of alternatives…

• For non-normal outcomes, OLS can’t be used at all… !
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Maximum Likelihood to the Rescue
• Maximum likelihood estimation is the better way of finding the 

model estimates using all the data, and it comes in 2 flavors:

• “Residual (or restricted) maximum likelihood”

➢ Only available for general linear models or general linear mixed models 

(key: based on normally distributed residuals at all levels of analysis)

➢ REML = OLS given complete outcomes, but it doesn’t require them

➢ Estimates variances the same way as in OLS (accurate) →

• “Maximum likelihood” (ML; also called FIML*)

➢ Is more general, is available for all of the above, as well as for non-

normal outcomes and models with latent variables (CFA/SEM/IRT/DCM)

➢ Is NOT the same as OLS: it under-estimates variances by 

not accounting for number of estimated fixed effects →

• *FI = Full information→ it uses all original data (they both do)
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σ 𝒚𝒊 − ෝ𝒚𝒊
𝟐

𝑵

σ 𝒚𝒊 − ෝ𝒚𝒊
𝟐

𝑵− 𝒌



Maximum Likelihood to the Rescue

• Even though REML = OLS for complete outcomes, we 
will switch to software that uses REML or ML instead of OLS

➢ So “sums of squares” and “mean squares” are no longer a thing

➢ In SPSS, SAS, or STATA:  one routine called “MIXED” that subsumes 
and expands the capabilities of GLM (SPSS, SAS) or REGRESS (STATA)

➢ In R: There are lots of packages instead of just “MIXED”! Stay tuned

• Why use MIXED (even when it is the same as OLS)? 

➢ Same conveniences: Like SAS (but not SPSS) GLM or STATA REGRESS, 
MIXED can still produce estimates and SEs for linear combinations of 
fixed effects (e.g., pairwise comparisons, simple slopes of interactions), 
as well as joint 𝐹-tests for multiple slopes (e.g., for change in 𝑅2)

➢ Generalizability: We can estimate univariate or multivariate models 
for normal outcomes using the same MIXED routine

➢ For non-normal outcomes, there are parallel routines in SAS (GLIMMIX) 
and STATA (several), but not in SPSS (“pseudo-ML” estimation only)
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Intermediate Summary
• What is not new:

➢ We will be starting with the same kind of univariate general linear 

models for single outcomes per person you already know 

(regression, ANOVA, ANCOVA)

➢ Up next: we will see how their model for the variance must differ when 

predicting multiple outcomes per person (that are likely correlated)

• What is new:

➢ Rather than finding the fixed effects and residual variance through OLS 

(which yields sums of squares, mean squares, and so forth), the program 

will find them using residual maximum likelihood, of which OLS is a 

special case with limited applicability for real-life multivariate data

➢ MLMs will have way more fixed effects needed to address the

effects of predictor variables, and will often include interactions

➢ So let’s make sure we are comfortable with fixed effects first!
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Testing Significance of Fixed Effects
• Each 𝜷 fixed effect has 6 relevant characteristics (report at least Est, SE):

➢ Estimate = best guess for the fixed slope from our data 

➢ Standard Error = 𝑺𝑬 = average distance of sample slope from population slope 

→ expected inconsistency of slope across samples   

➢ 𝒕-value = (Estimate − 𝐻0) / 𝑆𝐸 = test-statistic for fixed slope against 𝐻0(= 0)

➢ Denominator DF = 𝑁 − 𝑘 (where 𝑘 = total number of fixed effects)

➢ 𝒑-value = (two-tailed) probability of fixed slope estimate as or more extreme if 

𝐻0 is true → how unexpected our result is on a t-distribution with M=𝐻0, SD=𝑆𝐸

➢ (95%) Confidence Interval = 𝑪𝑰 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ∗ 𝑆𝐸 = range in which 

true (population) value of estimate is expected to fall across 95% of samples

• Compare 𝒕 test-statistic to 𝑡 critical-value at pre-chosen alpha level 

(where % unexpected = alpha): this is a “univariate Wald test”

➢ Btw, we will only be using two-tailed tests for fixed effects

➢ Btw, if denominator DF are not used, then 𝒕 is treated as a 𝒛 instead

➢ In MLM, whether the 𝑝-value is based on t or 𝒛 varies by program
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Multivariate Wald Tests of Fixed Effects
• “Multivariate Wald Test” is a general way to test for significance 

of multiple fixed effects at once (i.e., by lumping fixed slopes 

together to test a joint null hypothesis that all slopes = 0)

• Special cases of this you have likely already seen:

➢ 𝐹-test of model 𝑅2 or change in 𝑅2 after adding new predictor slopes 

(neither of may be provided for you anymore in MLM software)

➢ “Omnibus” 𝐹-test for the effect of a categorical variable (e.g., for 3 

dummy-coded contrasts that create differences between 4 groups)

➢ Implies numerator DF>1 (otherwise it would just be a 𝑡-test for DF=1)

• Available for sets of fixed effects via CONTRAST (in SAS or STATA) 

or TEST (in STATA, SPSS, or Mplus), or GLHT (in R; CONTRAST too)

➢ To indicate separate numerator DF:

▪ SAS CONTRAST: Separate each fixed effect by commas

▪ STATA TEST: List fixed effects in separate sets of parentheses

➢ We will use this in nearly every example this semester!
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Significance of Fixed Effects in MLM*

Denominator DF 

is infinite

(Proper Wald test)

Denominator DF is 

estimated instead

(“Modified” Wald test)

Numerator DF = 1 

(test one fixed effect) is 

Univariate Wald Test

use 𝒛 distribution

(Mplus, 

STATA default)

use 𝒕 distribution

(SAS, SPSS, STATA with 

dfmethod option)

Numerator DF > 1

(test 2+ fixed effects) is 

Multivariate Wald Test

use 𝝌𝟐 distribution

(Mplus, 

STATA default)

use 𝑭 distribution

(SAS, SPSS, STATA with 

dfmethod option)

Options for estimating 

Denominator DF (DDF)

not applicable SAS, STATA 14+: 

Kenward-Roger 

SAS, STATA 14+, SPSS: 

Satterthwaite
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* Btw, I am still figuring this out in R… default and optional

DDF behavior seem to vary by package (like everything else)



Standard Errors for GLM* Fixed Effects
• Standard Error (SE) for the 

fixed effect estimate 𝜷𝒙

in a one-predictor GLM 

• Btw, SE ≈ SD of the estimated parameter across samples

• When more than one predictor is included, SE turns into:

SE𝛽𝑥 =
𝝈𝒆
𝟐

𝜎𝑥
2∗ 1−𝑅𝑥

2 ∗ 𝑁−𝑘

• So all things being equal, SE is smaller when:

➢ More of the outcome variance has been reduced (better predictive model)

➢ The predictor has less covariance with other predictors (less collinearity)

• If SE is smaller → 𝑡-value (or 𝑧-value) is bigger→ 𝑝-value is smaller

* In MLM, the SE numerator will differ by predictor level!

𝑅𝑥
2 = 𝑥𝑖 variance accounted 

for by other predictors, so 

1 − 𝑅𝑥
2 = unique 𝑥𝑖 variance
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SE𝛽𝑥 =
residual variance of Y

variance of 𝑥𝑖 ∗ 𝑁 − 𝑘
=

𝝈𝒆
𝟐

𝜎𝑥
2 ∗ 𝑁 − 𝑘



Representing the Effects of Predictors
• From now on, we will think carefully about exactly how the 

predictor variables are entered into the model for the means 

(i.e., by which a predicted outcome is created for each person)

• Why don’t people always care? Because the scale of predictors:

➢ Does NOT affect the amount of outcome variance accounted for (𝑅2)

➢ Does NOT affect the outcome values predicted by the model for 

the means (so long as the same predictor fixed effects are included)

• Why should this matter to us? 

➢ Because the Intercept = expected outcome when all predictors = 0

➢ Can end up with nonsense values for intercept if 𝑥 = 0 isn’t in the data, 

so we need to center: change the scale of the predictors to include 0

➢ Centering is even more important once interactions are included or once 

random intercepts are included (i.e., variability around fixed intercept)
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Why the Intercept 𝜷𝟎

*Should* Be Meaningful…
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This is a very detailed map…

But what do we need to know 

to be able to use the map at all?



What the Intercept 𝜷𝟎 *Should* Mean to You…
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The model for the means 

will describe what happens 

to the predicted outcome 𝑦𝑖
“as 𝑥𝑖 increases” or

“as 𝑧𝑖 increases” 

and so forth…

But you won’t know what 

the predicted outcome is 

supposed to be unless you 

know where the predictor 

variables are starting from!

Therefore, the intercept is the 
“YOU ARE HERE” sign in the 
map of your data… so it should 
be somewhere in the map*!

* There is no wrong way to center (or not), only weird…
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Centering Quantitative Predictors
• Centering = subtract a constant to create a new “0” for the predictor

➢ e.g., “mean-center” using predictor’s mean:  𝑥𝑚𝑖 = 𝑥𝑖 − ҧ𝑥

➢ e.g., center using meaningful constant 𝐶: 𝑥𝑐𝑖 = 𝑥𝑖 − 𝐶
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Using original years of education: 

𝑥𝑖 =education, 𝑦𝑖 = income

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊
ෝ𝒚𝒊 = −𝟕. 𝟖𝟗 + 𝟏. 𝟖𝟐 𝒙𝒊

Using education centered at 12: 

𝑥𝑖 =educ−12, 𝑦𝑖 = income

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊
ෝ𝒚𝒊 = 𝟏𝟒. 𝟎𝟎 + 𝟏. 𝟖𝟐 𝒙𝒊

Intercept 𝜷𝟎 Intercept 𝜷𝟎



What if I want a different intercept?
• Choosing a location for your model-estimated intercept does 

not lock you into only that value for the reference location…

• ESTIMATE/LSMEANS statements (in SAS) to the rescue!

➢ TEST in SPSS, LINCOM/MARGINS in STATA, NEW in Mplus, 
GLHT/EMMEANS/LSMEANS in R (varies by package, of course)

• These statements allow to you to request linear combinations 
of fixed effects given any values of your predictors 

➢ In other words, new intercept values = predicted outcomes

• Rules for ESTIMATE-type statements:

➢ If you want a predicted outcome, you MUST include the intercept

➢ Variable names sometimes refer to their predictor values, and sometimes to 
their fixed effects, depending on what is being estimated (ugh, I know)

➢ The default value for quantitative predictors is 0 (i.e., if excluded, = 0)

➢ The default value for categorical predictors varies by program
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Categorical Predictors (3+ Groups)
• Two alternatives for how to include grouping predictors

1. Manually create and include dummy-coded group contrasts 

➢ Need 𝐶 − 1 contrasts for 𝐶 categories, added all at once, treated as 

quantitative (WITH in SPSS, by default in SAS and R, c. in STATA) 

➢ Corresponds more directly to linear model representation

➢ Can be easier to set own reference group and contrasts of interest

2. Let the program create and include group contrasts for you

➢ Treated as categorical: BY in SPSS, CLASS in SAS, i. in STATA, factor in R

▪ SPSS and SAS: reference = highest/last group; STATA: reference = lowest/first group

➢ Can be more convenient if you have many groups, want many contrasts, 

or have interactions among grouping predictors

➢ But it marginalizes over main effects when estimating other effects 
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Categorical Predictors Via Manual Contrasts

• Model:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) + 𝒆𝒊

➢ “group” variable:  Control=0, Treat1=1, Treat2=2, Treat3=3

➢ New variables d1= 0, 1, 0, 0  → difference between Control and Treat1 

to be created d2= 0, 0, 1, 0  → difference between Control and Treat2

for the model: d3= 0, 0, 0, 1  → difference between Control and Treat3

➢ These interpretations only hold if all three new predictors are included!

• How does the model give us all possible group differences? 

By determining each group’s mean, and then the difference…

• The model directly provides 3 differences (control vs. each treatment), and 

indirectly provides another 3 differences (differences between treatments) 

as linear combinations… let’s see how this works

25

Control Mean

(Reference)

Treatment 1 

Mean

Treatment 2 

Mean

Treatment 3

Mean

𝜷𝟎 𝜷𝟎+𝜷𝟏(𝒅𝟏𝒊) 𝜷𝟎+𝜷𝟐(𝒅𝟐𝒊) 𝜷𝟎+𝜷𝟑(𝒅𝟑𝒊)
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Categorical Predictors Via Manual Contrasts

• Model:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) + 𝒆𝒊

Alt Group Ref Group Difference

• Control vs. T1 = (𝛽0+𝛽1) − (𝛽0) = 𝛽1
• Control vs. T2 = (𝛽0+𝛽2) − (𝛽0) = 𝛽2
• Control vs. T3 = (𝛽0+𝛽3) − (𝛽0) = 𝛽3
• T1 vs. T2 =        (𝛽0+𝛽2) − (𝛽0+𝛽1) = 𝛽2 − 𝛽1
• T1 vs. T3 =        (𝛽0+𝛽3) − (𝛽0+𝛽1) = 𝛽3 − 𝛽1
• T2 vs. T3 =        (𝛽0+𝛽3) − (𝛽0+𝛽2) = 𝛽3 − 𝛽2

26

Control Mean

(Reference)

Treatment 1 

Mean

Treatment 2 

Mean

Treatment 3

Mean

𝜷𝟎 𝜷𝟎+𝜷𝟏(𝒅𝟏𝒊) 𝜷𝟎+𝜷𝟐(𝒅𝟐𝒊) 𝜷𝟎+𝜷𝟑(𝒅𝟑𝒊)
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Program-Created Contrast Predictors
• Designate a predictor as “categorical” in program syntax

➢ Use CLASS in SAS; BY in SPSS; i. prefix in STATA; factor variable in R

• For a predictor with 𝐶 categories, the program automatically then 
creates 𝐶 new contrast variables, for example “group” with 𝐶 = 4: 

27

New Predictors Created 

Internally Mean this:

Control Treat1 Treat2 Treat3

IsControl 1 0 0 0

IsTreat1 0 1 0 0

IsTreat2 0 0 1 0

IsTreat3 0 0 0 1

• It then figures out how many of these internal contrast variables are 
needed—if using an intercept (the default), then it’s 𝐶 − 1, not all 𝐶

• It enters them until it hits that criterion—if it leaves the last one out (as 
when you have an intercept), then last category becomes your reference

• Everywhere in syntax you refer to the categorical predictor, you must tell 
the program what to do with EACH of these internal contrast variables
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Program-Created Contrast Predictors
• If you let SAS/SPSS do the dummy coding via CLASS/BY, 

then the highest/last group is default reference

➢ In SAS 9.4 you can change reference group: REF=’level’ | FIRST | LAST 
but it changes that group to be last in the data (→ confusing, so don’t do it)

➢ “Type III test of fixed effects” provide multivariate Wald tests by default

➢ LSMEANS/EMMEANS can be used to get all cell means and comparisons without 
specifying each individual contrast, but you still have to ask for interaction contrasts 
(add / E to end of ESTIMATE to see the order of category values)

• If you let STATA/R do the dummy coding via i.group/factor , 
then the lowest/first group is default reference 

➢ In STATA, can change reference group, e.g., last = ref → ib(last).group

➢ In R, you can use RELEVEL to change the reference group (says The Google)

➢ STATA CONTRAST (R ANOVA) used to get omnibus tests (not provided by default)

➢ STATA MARGINS (R EMMEANS) can be used to get all means and comparisons 
with much less code than describing each individual contrast

• Btw, no such thing as “categorical” predictors in Mplus 

➢ You must create contrasts manually for all grouping variables
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A Taxonomy of Fixed Effect Interpretations
• In the most common statistical models, fixed effects will be either:

➢ an intercept that provides an expected (conditional) 𝒚𝒊 outcome, 

➢ or a slope for the difference in 𝒚𝒊 per unit difference in 𝒙𝒊 predictor

• All slopes can be described as falling within one of three categories: 

bivariate marginal, unique marginal, or unique conditional

➢ In models with only one fixed slope, that slope’s main effect is 

bivariate marginal (is uncontrolled and applies across all persons)

➢ In models with more than one fixed slope, each slope’s main effect is 

unique (it controls for the overlap in contribution with each other slope) 

▪ If a predictor is not part of an interaction term, its unique effect is marginal 

(it controls for the other slopes, but its effect still applies across all persons)

▪ If a predictor is part of one or more interaction terms, its unique effect is 

conditional, which means it is specific to each interacting predictor = 0

– Unique conditional effects are also called “simple main effects” (simple slopes) 
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Fixed Slope Interpretations: Example
• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝒆𝒊

➢ 𝜷𝟏 is “bivariate marginal”: difference in 𝒚𝒊 per unit 𝒘𝒊

• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊 + 𝒆𝒊
➢ 𝜷𝟏 is “unique marginal”: diff in 𝒚𝒊 per unit 𝒘𝒊, controlling for 𝒙𝒊 and 𝒛𝒊

➢ 𝜷𝟐 is “unique marginal”: diff in 𝒚𝒊 per unit 𝒙𝒊, controlling for 𝒘𝒊 and 𝒛𝒊

➢ 𝜷𝟑 is “unique marginal”: diff in 𝒚𝒊 per unit 𝒛𝒊, controlling for 𝒘𝒊 and 𝒙𝒊

• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊
➢ 𝜷𝟏 is “unique marginal”: diff in 𝒚𝒊 per unit 𝒘𝒊, controlling for 𝒙𝒊 and 𝒛𝒊

➢ 𝜷𝟐 is “unique conditional”: diff in 𝒚𝒊 per unit 𝒙𝒊, controlling for 𝒘𝒊 and 𝒛𝒊, 
specifically when 𝒛𝒊 = 𝟎 (i.e., 𝜷𝟐 is a “simple” main effect slope)

➢ 𝜷𝟑 is “unique conditional”: diff in 𝒚𝒊 per unit 𝒛𝒊, controlling for 𝒘𝒊 and 𝒙𝒊,
specifically when 𝒙𝒊 = 𝟎 (i.e., 𝜷𝟑 is a “simple” main effect slope)

➢ 𝜷𝟒 is “unique marginal” (unconditional), but how do we interpret it???
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Interpreting Interaction Terms
• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊

➢ 𝜷𝟒 is “unique marginal” → slope controlling for other slopes in model

➢ Rather than talk about what happens to the predicted outcome 𝒚𝒊, 
interaction slopes are described by what they do to their main effects

• Two-way interaction has two equally correct interpretations:

➢ How slope of 𝒙𝒊 is moderated by 𝒛𝒊: 𝜷𝟒 = difference in 𝜷𝟐 per unit 𝒛𝒊

➢ How slope of 𝒛𝒊 is moderated by 𝒙𝒊: 𝜷𝟒 = difference in 𝜷𝟑 per unit 𝒙𝒊

• This means that effects of 𝒙𝒊 and 𝒛𝒊 are linear combinations 
(find common terms, factor out predictor the slope is for, and 
then the term in brackets is the equation for the simple effect)

➢ Model-implied effect of 𝒙𝒊:  𝜷𝟐 𝒙𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 → 𝜷𝟐 + 𝜷𝟒 𝒛𝒊 𝒙𝒊

➢ Model-implied effect of 𝒛𝒊:  𝜷𝟑 𝒛𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 → 𝜷𝟑 + 𝜷𝟒 𝒙𝒊 𝒛𝒊

➢ Result can be found using SAS ESTIMATE, STATA LINCOM, or R GLHT

➢ Many of our examples this semester will have interaction terms!
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The 4 Kinds of Interactions
• There are only 4 kinds of interactions: they make each 

of their main effect slopes more/less positive/negative 

➢ More positive or more negative → effect becomes stronger, 

known as “over-additive” interaction

➢ Less positive or less negative → effect becomes weaker,

known as “under-additive” interaction

• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊
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Slope of 𝒙𝒊
is 𝜷𝟐=

Interaction 

Slope is 𝜷𝟒=

So 𝜷𝟒 makes effect of 𝒙𝒊
??? per unit higher 𝒛𝒊

10 2 more positive

10 -2 less positive

-10 -2 more negative

-10 2 less negative



When There’s More than One Interaction
• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊

+ 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 + 𝒆𝒊

• Now all main effect slopes are “unique conditional” (simple):

➢ 𝜷𝟏 = diff in 𝒚𝒊 per unit 𝒘𝒊 specifically when 𝒛𝒊 = 𝟎

➢ 𝜷𝟐 = diff in 𝒚𝒊 per unit 𝒙𝒊 specifically when 𝒛𝒊 = 𝟎

➢ 𝜷𝟑 = diff in 𝒚𝒊 per unit 𝒛𝒊 specifically when 𝒘𝒊 = 𝟎 and 𝒙𝒊 = 𝟎

• Interaction slopes (𝜷𝟒 and 𝜷𝟓) are “unique marginal”

➢ 𝜷𝟒 is now controlling for 𝜷𝟓, but interpretation of 𝜷𝟒 is unchanged:

How slope of 𝒙𝒊 is moderated by 𝒛𝒊: 𝜷𝟒 = difference in 𝜷𝟐 per unit 𝒛𝒊
How slope of 𝒛𝒊 is moderated by 𝒙𝒊: 𝜷𝟒 = difference in 𝜷𝟑 per unit 𝒙𝒊

➢ New 𝜷𝟓 has two equally correct interpretations:

How slope of 𝒘𝒊 is moderated by 𝒛𝒊: 𝜷5 = difference in 𝜷𝟏 per unit 𝒛𝒊
How slope of 𝒛𝒊 is moderated by 𝒘𝒊: 𝜷5 = difference in 𝜷𝟑 per unit 𝒘𝒊
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When There’s More than One Interaction
• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊

+ 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 + 𝒆𝒊

• Model-implied effects of 𝒘𝒊, 𝒙𝒊 and 𝒛𝒊 are linear combinations 

(find common terms, factor out predictor the slope is for, and 

then the term in brackets is the equation for the simple effect)

➢ Effect of 𝒘𝒊: 𝜷𝟏 𝒘𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 → 𝜷𝟏 + 𝜷𝟓 𝒛𝒊 𝒘𝒊

➢ Effect of 𝒙𝒊:  𝜷𝟐 𝒙𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 → 𝜷𝟐 + 𝜷𝟒 𝒛𝒊 𝒙𝒊

➢ Effect of 𝒛𝒊:  𝜷𝟑 𝒛𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 → 𝜷𝟑 + 𝜷𝟒 𝒙𝒊 + 𝜷𝟓 𝒘𝒊 𝒛𝒊

• For quantitative moderators, regions of significance (see examples 

in Hoffman 2015 ch. 2) can be used to identify moderator boundary 

values for direction and significance of main effect slope

➢ e.g., at what values of moderator 𝒛𝒊 does the effect of 𝒘𝒊 go from: 

(a) significantly negative to nonsignificant? 

(b) nonsignificant to significantly positive?
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Interactions Involving Categorical Predictors
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• When using manual contrasts for predictors with 3 or more categories, 
interactions must be specified with separate dummy-coded contrast

• If you let the program create the dummy-coded contrasts for you, 
all needed interaction contrasts will be automatically included

• e.g., adding an interaction of 4-category group with age (0=85):

➢ New variables d1= 0, 1, 0, 0  → difference between Control and Treat1 
to be created d2= 0, 0, 1, 0  → difference between Control and Treat2
for the model: d3= 0, 0, 0, 1  → difference between Control and Treat3

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) +𝜷𝟒 𝑨𝒈𝒆𝒊 − 𝟖𝟓
+ 𝜷𝟓(𝒅𝟏𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 + 𝜷𝟔(𝒅𝟐𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 +𝜷𝟕(𝒅𝟑𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 + 𝒆𝒊

• Multivariate Wald test would be needed to lump together the interaction 
contrasts (𝜷𝟓, 𝜷𝟔, and 𝜷𝟕) in order to test the “group*age” interaction

• Group difference slopes (𝜷𝟏, 𝜷𝟐, and 𝜷𝟑) are each conditional on age = 85

• Age slope (𝜷𝟒) is specific to the control group (when interactions = 0)

• But the model provides age slopes for each group, as well as group
differences at any age as linear combinations of the fixed effects…



Interactions Involving Categorical Predictors
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• Adding an interaction of 4-category group with age (0=85):

➢ New variables d1= 0, 1, 0, 0  → difference between Control and Treat1 
to be created d2= 0, 0, 1, 0  → difference between Control and Treat2
for the model: d3= 0, 0, 0, 1  → difference between Control and Treat3

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) +𝜷𝟒 𝑨𝒈𝒆𝒊 − 𝟖𝟓
+ 𝜷𝟓(𝒅𝟏𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 + 𝜷𝟔(𝒅𝟐𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 +𝜷𝟕(𝒅𝟑𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 + 𝒆𝒊

• Equations for model-implied simple effects

➢ Effect of age in Control group:  𝜷𝟒 + 𝜷𝟓 0 + 𝜷𝟔 0 + 𝜷𝟕 0 𝑨𝒈𝒆𝒊 − 𝟖𝟓

➢ Effect of age in Treat1 group: 𝜷𝟒 + 𝜷𝟓 𝟏 + 𝜷𝟔 0 + 𝜷𝟕 0 𝑨𝒈𝒆𝒊 − 𝟖𝟓

➢ Effect of age in Treat2 group:    𝜷𝟒 + 𝜷𝟓 0 + 𝜷𝟔 𝟏 + 𝜷𝟕 0 𝑨𝒈𝒆𝒊 − 𝟖𝟓

➢ Effect of age in Treat3 group:    𝜷𝟒 + 𝜷𝟓 0 + 𝜷𝟔 0 + 𝜷𝟕 𝟏 𝑨𝒈𝒆𝒊 − 𝟖𝟓

➢ Control vs. Treat1 for any age: 𝜷𝟏 + 𝜷𝟓 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟏𝒊

➢ Control vs. Treat2 for any age: 𝜷𝟐 + 𝜷𝟔 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟐𝒊

➢ Control vs. Treat3 for any age: 𝜷𝟑 + 𝜷𝟕 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟑𝒊

➢ T1 vs T2 for any age: 𝜷𝟐 + 𝜷𝟔 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟐𝒊 − 𝜷𝟏 + 𝜷𝟓 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟏𝒊

➢ T1 vs T3 for any age: 𝜷𝟑 + 𝜷𝟕 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟑𝒊 − 𝜷𝟏 + 𝜷𝟓 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟏𝒊

➢ T2 vs T3 for any age: 𝜷𝟑 + 𝜷𝟕 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟑𝒊 − 𝜷𝟐 + 𝜷𝟔 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟐𝒊



What about 3-way interactions???
• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊

+ 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 + 𝜷𝟔 𝒙𝒊)(𝒘𝒊

+ 𝜷𝟕 𝒘𝒊 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊

• Simple main effects make the predicted outcome higher or lower

➢ 1 possible interpretation for each simple main effect slope

➢ Each simple main effect is conditional on other two variables = 0

• Each 2-way interaction (3 of them in a 3-way model) makes 

its simple main effect slopes more/less positive/negative

➢ So there are 2 possible interpretations for each 2-way interaction

➢ Each simple 2-way interaction is conditional on third variable = 0

• The 3-way interaction makes each of its 2-way simple 

interaction slopes more/less positive/negative

➢ So there are 3 possible interpretations of the 3-way interaction

➢ Is highest-order term in model, so is unconditional (marginal)
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Yes, we will do 3-way interactions!

• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊
+ 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 + 𝜷𝟔 𝒙𝒊)(𝒘𝒊

+ 𝜷𝟕 𝒘𝒊 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊

• Equations for each simple (conditional) main effect:

➢ Effect of 𝒘𝒊: 𝜷𝟏 + 𝜷𝟓 𝒛𝒊 + 𝜷𝟔 𝒙𝒊 + 𝜷𝟕 𝒙𝒊)(𝒛𝒊 𝒘𝒊

➢ Effect of 𝒙𝒊:  𝜷𝟐 + 𝜷𝟒 𝒛𝒊 + 𝜷𝟔 𝒘𝒊 + 𝜷𝟕 𝒘𝒊)(𝒛𝒊 𝒙𝒊

➢ Effect of 𝒛𝒊:  𝜷𝟑 + 𝜷𝟒 𝒙𝒊 + 𝜷𝟓 𝒘𝒊 + 𝜷𝟕 𝒘𝒊)(𝒙𝒊 𝒛𝒊

• Equations for each simple (conditional) 2-way interaction:

➢ Effect of 𝒙𝒊 by 𝒛𝒊:  𝜷𝟒 + 𝜷𝟕 𝒘𝒊 𝒙𝒊 𝒛𝒊

➢ Effect of 𝒘𝒊 by 𝒛𝒊:  𝜷𝟓 + 𝜷𝟕 𝒙𝒊 𝒘𝒊 𝒛𝒊

➢ Effect of 𝒙𝒊 by 𝒘𝒊:  𝜷𝟔 + 𝜷𝟕 𝒛𝒊 𝒙𝒊 𝒘𝒊
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Interpreting Interactions:  Summary

• Interactions represent “moderation” – the idea that the effect 

of one predictor depends upon the level of the other(s)

• The main effect slopes WILL CHANGE once their predictors are 

part of an interaction, because they now mean different things:

➢ Main effect → Simple effect specifically when interacting predictor(s) = 0

➢ Need to have 0 as a meaningful value for each predictor for that reason

• Rules for interpreting conditional (simple) fixed slopes:

➢ Intercepts are conditional on (i.e., get adjusted by) main effect slopes

➢ Main effects are conditional on two-way interactions

➢ Two-way interactions are conditional on three-way interactions

➢ Highest-order term is unconditional → same regardless of centering
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Summary
• Today was all about fixed effects in the model for the means 

➢ Within the context of GLM as a unifying starting point, 
but these same concepts will readily apply to longitudinal MLM

➢ Output will result from REML or ML instead of ordinary least squares

• Key points to take with you:

➢ Fixed slopes are tested for significance using:

▪ 1 slope: Univariate Wald tests (𝑡-value or 𝑧-value from ratio of estimate / SE)

▪ 2+ slopes: Multivariate Wald tests (𝐹 or 𝜒2 analog for “lumps” of slopes) 

➢ All predictors should always have a meaningful 0 value
(adjusting predictor scales is called “centering” or “recoding”)

➢ You can represent one categorical predictor variable through 
separate dummy-coded variables, which are then “quantitative”

▪ Code and some results will look different if you let the program create the 
dummy-coded variables for you internally (SAS CLASS, STATA i., R factor variable)

➢ Model-implied fixed effects can be created through linear combinations

▪ e.g., for predicted outcomes, differences among non-reference groups, or simple 
slopes within interaction terms (SAS ESTIMATE, STATA LINCOM, R GLHT)
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