
Introduction to Multivariate 

Generalized Linear Models
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• Topics:

➢ Taxonomy of multivariate dependency: directly vs. indirectly

➢ Indirect induction of residual correlation via random intercepts

➢ Caveats about fitting multivariate generalized linear models 

using univariate software (e.g., SAS GLIMMIX, STATA GLM)



3 Parts of Generalized Linear Models

A. Link Function: Transformation of conditional mean to keep 
predicted outcomes within the bounds of the outcome

B. Same Linear Predictor: How the model linearly predicts 
the link-transformed conditional mean of the outcome

➢ Btw, I call this as the “model for the means” more generally

C. Conditional Distribution: How the outcome residuals could 
be distributed given the possible values of the outcome

• Now we need to consider how the model needs to adapt 
when residuals are correlated → capture “dependency”

➢ Btw, I call this as the “model for the variance” more generally
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Estimating (Balanced) Multivariate Models
• Multivariate models can be estimated by “tricking” univariate software 

for general(ized) linear models (e.g., SAS MIXED, STATA MIXED) if each
variable is either a predictor OR an outcome, not both, such as when:

➢ You want to examine mean differences across the outcomes (e.g., over 
time or across conditions, as in traditional Repeated Measures ANOVA)

➢ You want to test differences in the effects of predictors 
across outcomes (i.e., as in traditional MANOVA)

➢ In this case we can build correlations (directly or indirectly) 
into the model between outcomes from the same person

• Multivariate models will need to be estimated in “truly” multivariate 
software (i.e., as path analysis models or structural equation models) if 
some variables are both predictors and outcomes, such as in mediation

➢ e.g., X → M → Y, in which M is both an outcome of X and a predictor of Y

➢ This involves regressions instead of correlations between outcomes

➢ Otherwise correlations can be built in directly or indirectly… more on that:
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Taxonomy of Multivariate Dependency

• Dependency = correlated outcome residuals from same sampling unit 

• Here is a taxonomy of how residual correlation can be included in 

models for multivariate outcomes when using univariate software:
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Normal 

Conditional 

Distribution

Non-Normal Conditional 

Distribution* using true 

ML (not pseudo-ML)

Balanced Design 

(same possible distinct 

outcomes per sampling unit)

R-Only Pattern 

–OR–

V Pattern from G 

random effects & R

G random effects only

Unbalanced Design

(different possible outcomes 

across sampling units)

V Pattern from G

random effects & R

G random effects only

* Multiple outcomes per sampling unit will require a multivariate 

likelihood version of whatever kind of conditional distribution…



Multivariate Dependency, R-Only Style

• For balanced multivariate sampling designs with plausibly normal 

residuals, multivariate dependency can be specified directly as a 

chosen pattern in the R matrix for each sampling unit:

➢ UNstructured: a separate residual variance for each outcome and 

for each pair of residual covariances are estimated (fits perfectly)

➢ Compound Symmetry Heterogeneous: still a separate residual variance 

for each outcome, but a common (constrained) residual correlation 

➢ Compound Symmetry: two parameters: a common residual variance 

and a common residual covariance/correlation across outcomes

• CS can be specified an equivalent way using two matrices 

instead of one: G & R, which creates a combination V matrix

➢ This strategy is used instead in unbalanced multivariate sampling 

designs and all multivariate models with non-normal distributions
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Introducing G & R→ V (Person is Unit)
• e.g., For three outcomes per person, 

a Compound Symmetry R matrix
would have this pattern:

➢ Shown below is how CS can be produced an equivalent way, in which 
“CS” is the same thing as “random intercept variance” (τU0

2 ) which is 

distinguished from “residual variance” (σe
2)
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Variance-Covariance Matrix is 

called V Matrix (dimensions 

are person-specific)

Random effect 

source(s) of person 

dependency are 

moved to G Matrix 

(dimensions are NOT 

person-specific)

Remaining within-

person variance and 

covariance is in R

matrix (dimensions 

are person-specific)

“+” “=”

But what is a “U” anyway ????



Let’s Go Way Back: 

An Empty Univariate GLM
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Adding 4 Outcomes (𝑡) Per Person… 

(i.e., to become a Multivariate Model)
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Empty Means Multivariate Model

Start off with Mean of 𝒚𝒊𝒕
as “best guess” for any ෝ𝒚𝒊𝒕 :

= Grand Mean

= Fixed Intercept

Can make better guess 
by taking advantage of 
repeated observations:

= Person Mean 

→ Random Intercept
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Empty Means Multivariate Model
Variance of 𝒚𝒊𝒕 → 2 sources:

Between-Person (BP) Variance:

→ Differences from GRAND mean

→ INTER-Individual Differences

Within-Person (WP) Variance:

→ Differences from OWN mean

→ INTRA-Individual Differences

→ This part is only observable 

through multivariate data.

Now we have 2 piles of 

variance in 𝒚𝒊 to predict.
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Hypothetical Longitudinal Data
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𝒆𝒊𝒕 represents all 𝒚𝒊𝒕 variance

𝒆𝒊𝟏
𝒆𝒕𝟐 𝒆𝒕𝟑

𝒆𝒕𝟒
𝒆𝒕𝟓
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“Error” in a Univariate GLM
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𝑼𝒊𝟎

𝑼𝒊𝟎 = random intercept that represents BP mean variance in 𝒚𝒊𝒕
𝒆𝒊𝒕 = residual that represents WP remaining variance in 𝒚𝒊𝒕

𝒆𝒊𝟏
𝒆𝒊𝟐 𝒆𝒊𝟑 𝒆𝒊𝟒

𝒆𝒊𝟓

In other words: 𝑼𝒊𝟎 represents a source of 

constant dependency (covariance) due to 

mean differences in 𝒚𝒕𝒊 across persons

Sources of “Error” in a Multivariate GLM
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Empty Means Multivariate Model

𝒚𝒊𝒕 variance → 2 sources:

“Random Intercept” Variance:

→ of 𝑼𝒊𝟎 → 𝝉𝑼𝟎

𝟐

→ Between-Person Variance

→ Differences from GRAND mean

“Residual” Variance:

→ of 𝒆𝒊𝒕 → 𝝈𝒆
𝟐

→ Within-Person Variance

→ Differences from OWN mean
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Univariate vs. Multivariate Empty Models

• Empty Univariate Model (used for 1 outcome):

𝒚𝒊 = 𝜷𝟎+ 𝒆𝒊

➢ 𝜷𝟎 = fixed intercept = grand mean

➢ 𝒆𝒊𝒕 = residual deviation from GRAND mean

• Empty Multivariate Model (for >1 outcomes):

𝒚𝒊𝒕 = 𝜷𝟎𝟎+ 𝑼𝒊𝟎+ 𝒆𝒊𝒕

➢ 𝜷𝟎𝟎 = fixed intercept = grand mean

➢ 𝑼𝒊𝟎 = random intercept = individual deviation from GRAND mean

➢ 𝒆𝒊𝒕 = outcome-specific residual deviation from OWN mean
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Outside of longitudinal data, 

this model would also include 

a separate mean per outcome
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Dependency via a Random Intercept
• A scalar example model with 𝑛 = 3 outcomes (A, B, and C): 

𝒚𝒊𝒕 = 𝜷𝟎𝟎 + 𝜷𝟎𝟏 𝒅𝒗𝑨𝒊𝒕 + 𝜷𝟎𝟐 𝒅𝒗𝑪𝒊𝒕 +𝑼𝒊𝟎 + 𝒆𝒊𝒕

• In matrix notation, this becomes 𝒀𝒊 = 𝑿𝒊𝜷 + 𝒁𝒊𝑼𝒊 + 𝑬𝒊

𝑦𝑡1
𝑦𝑡2
𝑦𝑡3

=

1 𝑑𝑣𝐴𝑡1 𝑑𝑣𝐵𝑡1
1 𝑑𝑣𝐴𝑡2 𝑑𝑣𝐵𝑡2
1 𝑑𝑣𝐴𝑡3 𝑑𝑣𝐵𝑡3

𝛽00
𝛽01
𝛽02

+
1
1
1

𝑈𝑖0 +

𝑒𝑡1
𝑒𝑡2
𝑒𝑡3
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𝒀𝒊 = 𝑛 ∗ 1 outcome vector

𝑿𝒊 = 𝑛 ∗ 𝑘 matrix for predictors 

that have fixed effects

𝜷 = 𝑘 ∗ 1 fixed effects vector

𝒁𝒊 = 𝑛 ∗ 𝑢 matrix for predictors 

that have random effects

𝑛 = # outcomes for person 𝑖
𝑘 = # model fixed effects

𝑢 = # model random effects

𝑼𝒊 = 𝑢 ∗ 1 random effects vector

𝑬𝒊 = 𝑛 ∗ 1 residual vector

𝒀𝒊 𝑿𝒊 𝜷 𝒁𝒊 𝑼𝒊 𝑬𝒊



Predicted 𝑽: Total Variance and Covariance 

across 𝑛 = 3 Outcomes for Person 𝑖
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𝒁𝑖 = 𝑛 𝑥 𝑢 values of predictors 

with random effects, so can differ 

per person (u = 1: intercept)

𝒁𝑖
𝑇 = 𝑢 𝑥 𝑛 values of predictors with 

random effects (just 𝒁𝑖 transposed)

𝑮𝑖 = 𝑢 𝑥 𝑢 estimated random effects 

variances and covariances, so will 

be the same for all persons

(𝜏𝑈
2
0

= intercept variance)

𝑹𝑖 = 𝑛 𝑥 𝑛 outcome-specific 

residual variances and covariances, 

so will be same for all persons 

(here, just diagonal 𝜎𝑒
2, although 

it’s possible to add heterogeneous 

variances and/or covariances)
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Same result: 

compound 

symmetry, 

either 

indirectly 

(G&R→V) 

or directly 

(CS for R)

PSQF 7375 Generalized: Lecture 5



Distribution Terminology for MVN

• Scalar: 𝒚𝒊𝒕 = 𝜷𝟎𝟎 + 𝜷𝟎𝟏 𝒅𝒗𝑨𝒊𝒕 + 𝜷𝟎𝟐 𝒅𝒗𝑪𝒊𝒕 +𝑼𝒊𝟎 + 𝒆𝒊𝒕
Matrix: 𝒀𝒊 = 𝑿𝒊𝜷 + 𝒁𝒊𝑼𝒊 + 𝑬𝒊

• This model says the “marginal”

distribution of the total column of 𝒀 outcomes is: 𝒀 ~ N(𝑿𝜷, 𝑽)

• This model says the “conditional” distribution of the 

total column of 𝒀 outcomes is:  𝒀|𝑼 ~ N(𝑿𝜷 + 𝒁𝑼, 𝑹)

➢ Conditional = after controlling for fixed and random effects

➢ Marginal and conditional “general” linear models both have same normal 

distribution (which makes ML estimation relatively straightforward)
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𝒀𝒊 = 𝑿𝒊𝜷 where 𝒀𝒊 is 

the conditional Mean 

created by fixed effects 

in the model for means
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Conditional Distributions for Generalized
• Conditional distribution in multivariate general linear models:
𝒀|𝑼 ~ N(𝑿𝜷 + 𝒁𝑼,𝑹)

• But 𝑹 and choices for its patterns doesn’t exist for generalized
model variants (when using true maximum likelihood; stay tuned)

➢ No separately estimated residual variance (e.g., in Bernoulli, multinomial, 
Poisson, or binomial) means no direct residual covariances are possible 
for multivariate models in any software

➢ Univariate software (SAS GLIMMIX or STATA GLM) does not fit separate 
“stretchy” factors for negative binomial, beta-binomial, or gamma (and 
still no direct residual covariances are possible in any software)

➢ So to maintain independent observations in the conditional distribution, 
all multivariate outcome relationships must be modeled indirectly in the 
linear predictor using regressions among outcomes OR random effects

▪ In univariate software, can use random effects only

▪ In software for path analysis or structural equation models (SEM), 
can use regressions between outcomes OR random effects

➢ Estimation becomes harder when including random effects…
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A Little Bit about Estimation
• Goal: End up with maximum likelihood estimates for all model 

parameters (because they are consistent and most efficient)

➢ When we have a conditional normal distribution (e.g., 𝑽𝒊 matrix based 

on MVN 𝒆𝒊𝒕 outcome residuals and MVN 𝑼𝒊 person random effects), 

ML is relatively easy because we don’t need to know the 𝑼𝒊 values: 

the marginal log-likelihood does not include them

➢ When we have a non-normal conditional distribution (i.e., binary 

outcomes are Bernoulli after conditioning on the MVN 𝑼𝒊 person 

random effects) ML is much harder because we do need the 𝑼𝒊 values 

in creating linear predictor outcomes and a log-likelihood per person

• 3 main families of estimation approaches:

➢ Quasi-Likelihood methods (“marginal/penalized quasi ML”)

➢ Numerical Integration (“adaptive Gaussian quadrature”)

➢ Also Bayesian methods (MCMC, now available in SAS, STATA, or Mplus)
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Quasi-Likelihood Estimation
• Older methods, also known as “pseudo-likelihood”

➢ Predict link-transformed conditional mean using a general MLM    

➢ “Marginal QL” → linear approximation using fixed part of model

➢ “Penalized QL” → linear approximation using fixed + random

➢ Come in ML and REML variants (MSPL and RSPL in SAS GLIMMIX)

➢ Are the DEFAULT in SAS GLIMMIX and only option in SPSS!

• Why not use them?

➢ Provide too small random effects variances (2nd-order PQL is 
supposed to be better than 1st-order MQL in this regard)

➢ THEY DO NOT PERMIT MODEL −2ΔLL TESTS

▪ Modern software may also add a Laplace approximation to QL, which 
does permit −2ΔLL tests (also in SAS GLIMMIX and STATA MEGLM)
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Marginal Maximum Likelihood Estimation

• ML via Numeric(al) Integration → gold standard

➢ Synonyms: (adaptive) Gaussian quadrature

➢ Provides much better variance estimates and valid −2ΔLL tests

(ML only; no REML) in “large enough” samples

➢ Can take forever or not converge at all in models with many random 

effects; not often available for models with crossed random effects

▪ “Laplace” approximation is used, which is equivalent to 1 integration point (???)

➢ Start values can help speed estimation (i.e., from QL methods)

➢ Relies on assumptions of local independence → all outcome 

dependency has been modeled; sampling units are independent

22PSQF 7375 Generalized: Lecture 5



ML via Numeric(al) Integration
• Step 1: Select starting values for all fixed effects

• Step 2: Compute the likelihood of each observation given by the 

current parameter values using chosen distribution of residuals

➢ Model gives link-predicted outcome given parameter estimates, but the U’s 

themselves are not parameters—their variances and covariances are instead

➢ But so long as we can assume the U’s are MVN, we can still proceed…

➢ Computing the likelihood for each set of possible parameters requires removing

the contribution of the individual U values from the model equation—by 

integrating across possible U values for each sampling unit (person here)

➢ Integration is accomplished by “Gaussian Quadrature” → summing up rectangles 

that approximate the integral (area under the curve) for each sampling unit

• Step 3: Decide if you have the right answers, which occurs when the 

log-likelihood changes very little across iterations (i.e., it converges)

• Step 4: If you aren’t converged, choose new parameters values

➢ Newton-Rhapson or Fisher Scoring (calculus), EM algorithm (U’s =missing data)
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ML via Numerical Integration

• More on Step 2: Divide the U distribution into rectangles

➢ → “Gaussian Quadrature” (# rectangles = # “quadrature points”)

➢ First divide the whole U distribution into rectangles, then repeat by 

taking the most likely section for each level-2 unit and rectangling that

▪ This is “adaptive quadrature” and is computationally more demanding, but 

gives more accurate results with fewer rectangles (SAS will pick how many)

The likelihood of each level-2 unit’s 

outcomes at each U rectangle is then 

weighted by that rectangle’s 

probability of being observed (from 

the multivariate normal distribution). 

The weighted likelihoods are then 

summed across all rectangles… 

→ ta da! “numerical integration”
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Example of Numeric Integration: 
Binary DV, Two Outcomes, Random Intercept Model 
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1. Start with values for fixed effects: intercept: 𝛽00 = 0.5, 𝛽01 = 1.5,

2. Compute likelihood for real data based on fixed effects and plausible 

𝑈𝑖0 (−2, 0, or 2) using model:   Logit(𝑦𝑖𝑡 = 1) = 𝛽00 + 𝛽01(𝑥𝑖𝑡) + 𝑈𝑖0
• Here for one person for two outcomes with 𝑦𝑖𝑡 = 1 for both outcomes

PSQF 7375 Generalized: Lecture 5

IF y=1 IF y=0 Likelihood U0 U0 Product

U0 = -2 Logit Prob 1-Prob if both y=1 prob width per U0

x=0 (0.5 -2) -1.5 0.18 0.82 0.091213 0.05 2 0.00912

x=1 (0.5+1.5-2) 0.0 0.50 0.50

U0 = 0 Logit Prob 1-Prob

x=0 (0.5-0) 0.5 0.62 0.38 0.54826 0.40 2 0.43861

x=1 (0.5+1.5-0) 2.0 0.88 0.12

U0 = +2 Logit Prob 1-Prob

x=0 (0.5+2) 2.5 0.92 0.08 0.897053 0.05 2 0.08971

x=1 (0.5+1.5+2) 3.5 0.97 0.03

Overall Likelihood (Sum of Products over All U0 Values): 0.53743

(do this for each person, then multiply this whole thing over all persons)

(repeat with new values of fixed effects until find highest overall likelihood)



Univariate software restricts what 

outcomes can be predicted together
• SAS GLIMMIX has a “byobs” option that directs the LINK= and DIST= options to 

variables that specify what should be used for each row (no analog in STATA I could find)

➢ e.g., could predict separate binary and count outcomes to get a joint test for each predictor

➢ Does not include multinomial (so no ordinal or nominal outcomes)

• If-and-How-Much models are harder to fit in univariate software, too 

➢ SAS GLIMMIX does not have zero-truncated counts, so it cannot fit hurdle models for discrete 
“how much”, but it could be used for continuous “how much” part (e.g., lognormal or gamma)

➢ STATA NLMIXED can do almost anything—IF you can figure out how to program it!

➢ STATA has hurdle models for a single outcome but they have no way to add the random effects 
needed in order to model multiple sets of hurdle outcomes simultaneously 

➢ STATA’s GLLAMM can do continuous “how much” using gamma (other families available too)

• “Truly” multivariate software (for path analysis or SEM) affords greater flexibility for 
multivariate dependency, but fewer choices for an outcome’s conditional distribution

➢ Mplus: Normal, Bernoulli, multinomial, Poisson, negative binomial (and zero-truncated for each)

➢ STATA GSEM: Normal, Bernoulli, multinomial (ordinal or nominal specifically), Poisson, negative 
binomial , and gamma
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Wrapping Up…
• When each sampling unit has >1outcome → multivariate models

➢ Our model needs to capture dependency (correlated residuals)

➢ For plausibly normal outcomes, dependency can be modeled directly: 

we can allow same or different residual variances and covariances across 

outcomes (in a person-specific R matrix of type UN, CSH, or CS)

➢ For other outcome types, dependency must be modeled indirectly by 

including random effects (which means more challenging estimation)

• For convenience, fixed effects can be specified in 2 different ways 

➢ Single general intercept → DV terms reflect DV differences

➢ Multiple DV-specific intercepts → DV terms are switches for own effects

• Univariate software for multivariate generalized linear models is less 

flexible than “truly” multivariate software—so onto path models!!
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