
Introduction to Multivariate  
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• Topics: 
 Taxonomy of multivariate dependency: balanced or unbalanced 
 Multivariate models for balanced outcomes in univariate software 
 𝑹 matrix choices for residual variance and covariance 
 Fixed effects parameterization choices 



3 Parts of Generalized Linear Models 

A. Link Function: Transformation of conditional mean to keep 
predicted outcomes within the bounds of the outcome 
 

B. Same Linear Predictor: How the model linearly predicts  
the link-transformed conditional mean of the outcome 

 Btw, I call this as the “model for the means” more generally 
 

C. Conditional Distribution: How the outcome residuals could  
be distributed given the possible values of the outcome 

 
• Now we need to consider how the model needs to adapt 

when residuals are correlated  capture “dependency” 
 Btw, I call this as the “model for the variance” more generally 
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B. Same Linear 
Predictive Model = A. Link 

Function 
C. Actual 

Data 
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Types of Multivariate Dependency 
• Dependency arises whenever multiple outcomes are collected from 

the same sampling unit, for example: 
 A single outcome across repeated occasions or under multiple conditions,  

or multiple outcomes from the same person (“repeated measures” data) 
 Multiple persons from the same pair (“dyadic” data) 
 Multiple persons from the same group (“clustered” data) 

 
• A key distinction in guiding modeling options is whether the sampling 

design is “balanced”—is structured the same for every sampling unit 
 Balanced: all persons have the same potential occasions, conditions,  

or outcomes (where potential allows missingness) from a common set 
 Unbalanced: no common set (e.g., observed occasions differ across 

persons, number of persons within a group differs across groups) 
 

• We will not cover unbalanced outcomes in this class—they will be covered 
instead in classes focused on multilevel models (aka, mixed-effects models, 
hierarchical linear models) involving random intercepts and slopes 
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Estimating (Balanced) Multivariate Models 
• Multivariate models can be estimated by “tricking” univariate software 

for general(ized) linear models (e.g., SAS MIXED, STATA MIXED) if each 
variable is either a predictor OR an outcome, not both, such as when: 
 You want to examine mean differences across the outcomes (e.g., over  

time or across conditions, as in traditional Repeated Measures ANOVA) 
 You want to test differences in the effects of predictors  

across outcomes (i.e., as in traditional MANOVA) 
 In this case we can build correlations (directly or indirectly)  

into the model between outcomes from the same person 
 

• Multivariate models will need to be estimated in “truly” multivariate 
software (i.e., as path analysis models or structural equation models) if 
some variables are both predictors and outcomes, such as in mediation 
 e.g., X  M  Y, in which M is both an outcome of X and a predictor of Y 
 This involves regressions instead of correlations between outcomes 

 

• For both types of analyses we will use likelihood estimation instead  
of least squares, so that cases with missing outcomes are not removed 
from the model (for what happens with missing predictors, stay tuned) 
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Back to General Linear Models… 
• Regardless of software, multivariate relations among outcomes 

from the same sampling unit can be specified in one of two ways: 
 Directly  is only possible for models with normal residuals (GLM) 

 Linear predictor will only include fixed effects, like usual, because  
residual dependency is captured directly via residual covariances 

 Indirectly  is the only option using true likelihood estimation  
for non-normal outcomes (i.e., generalized linear models) 
 Add random intercepts to the linear predictor that capture residual 

dependency (so the usual conditional distributions can still be used) 
 

• To understand the difference, we first need to describe models for 
independent observations using new vocabulary—fun with matrices! 
 Let’s start with this general linear model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊 

 In this “scalar” notation, the assumed independence is hidden…  
 What follows is the “direct” way of including relations among outcomes 

(we will see the “indirect” way at work in generalized linear models) 
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Example: 𝑁 = 6 persons, 𝑛 = 1 outcome  
• This GLM as scalar: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊  with binary 𝑥𝑖 = 0 or 1 
• This GLM using matrices with 𝑘 = 2 fixed effects: 𝒀 = 𝑿𝜷 + 𝑬 

 

   

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6

=

1 𝑥1
1 𝑥2
1 𝑥3
1 𝑥4
1 𝑥5
1 𝑥6

𝛽0
𝛽1

+

𝑒1
𝑒2
𝑒3
𝑒4
𝑒5
𝑒6

 

= 

   

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6

=

𝛽01 + 𝛽1𝑥1
𝛽01 + 𝛽1𝑥2
𝛽01 + 𝛽1𝑥3
𝛽01 + 𝛽1𝑥4
𝛽01 + 𝛽1𝑥5
𝛽01 + 𝛽1𝑥6

+

𝑒1
𝑒2
𝑒3
𝑒4
𝑒5
𝑒6
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𝒀 = 𝑁 ∗ 1 outcome vector 
𝑿 = 𝑁 ∗ 𝑘 “design” matrix for predictors  
                 that have fixed effects 
𝜷 = 𝑘 ∗ 1 fixed effects vector 
𝑬 = 𝑁 ∗ 1 residual vector 
 

where (by default) 𝒆𝒊~N 0,𝜎𝑒2  
Across all 6 
persons, the 
combined 
residual 
variance-
covariance 
matrix is “VC”: 

𝜎𝑒2 0 0 0 0 0
0 𝜎𝑒2 0 0 0 0
0 0 𝜎𝑒2 0 0 0
0 0 0 𝜎𝑒2 0 0
0 0 0 0 𝜎𝑒2 0
0 0 0 0 0 𝜎𝑒2

 

  𝒀          𝑿      𝜷       𝑬 

 Off-diagonal 0 values  independent residuals 
 𝜎𝑒2  all persons share common residual variance 



Review: Univariate Normal PDF 
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• This PDF tells us how 
likely (i.e., tall) any value 
of 𝒚𝒊 is given two things: 
 Conditional mean 𝒚�𝒊 
 Residual variance 𝝈𝒆𝟐 

 

• We can see this work 
using the NORMDIST 
function in excel! 
 Easiest for empty model: 

𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊 
• We can check our math 

via software using ML! 
Sum over persons of log of 𝑓(y𝑖)=  
Model Log-Likelihood  Model Fit 

Image borrowed from: https://en.wikipedia.org/wiki/Normal_distribution  
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Univariate ML via Excel “NORMDIST” 

8     

Mean 5.19 5.24 
Variance 6.56 2.00 

Right Wrong 
Outcome Log(Height) Log(Height) 

1.0 -3.20 -5.76 
2.1 -2.59 -3.73 
3.0 -2.22 -2.52 
4.3 -1.92 -1.49 
4.6 -1.89 -1.37 
6.2 -1.94 -1.50 
7.3 -2.20 -2.33 
7.6 -2.30 -2.66 
7.8 -2.38 -2.90 
8.0 -2.46 -3.17 

SUM =  Model LL = taller is better 
-23.09 -27.42 

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

1 2 3 4 5 6 7 8

Right Answers = 
tallest possible 
function across  

all persons 

Key idea: Normal Distribution formula  data height 
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Review: Conditional Univariate Normal 
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• This function applies 
for any value of 𝑥𝑖 , 
such as in GLM: 
 Fixed effects (intercept, 

predictor slopes) create 
a conditional mean for 
each person, 𝑦�𝑖 

 We assume the same 
residual variance 𝜎𝑒2 
holds for all values of 𝑦�𝑖 
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Left image borrowed from: http://www.omidrouhani.com/research/logisticregression/html/logisticregression.htm  
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From Univariate to Multivariate… 
• What if the 6 observations were 2 outcomes (e.g., T1 and T2  

occasions here) each from 3 persons instead? We need a new  
model that builds in per-person residual dependency (and maybe  
different residual variances across outcomes as well, stay tuned) 

• If the outcomes are in separate columns, then to use univariate  
software we need to “stack” the separate outcomes into a single 
column (i.e., go from a “wide” to “long” data structure) like this: 
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Person yT1 yT2 
1 𝑦1𝑡1 𝑦1𝑡2 
2 𝑦2𝑡1 𝑦2𝑡2 
3 𝑦3𝑡1 𝑦3𝑡2 

Person Time x y 
1 1 0 𝑦1𝑡1 
1 2 1 𝑦1𝑡2 
2 1 0 𝑦2𝑡1 
2 2 1 𝑦2𝑡2 
3 1 0 𝑦3𝑡1 
3 2 1 𝑦3𝑡2 

  “Wide” Structure: 
1 row per person 

  “Long” Structure:  
1 row per outcome 

In the “long” structure 
we add a time column 
to index which occasion 
is in each row 
 
We also make a 
centered version of the 
time index, x, to include 
as a predictor 



Multivariate: 𝑁 = 3 persons, 𝑛 = 2 outcomes 
• Multiv. GLM: 𝒚𝒊𝒕 = 𝜷𝟎𝟎 + 𝜷𝟎𝟎 𝒙𝒊𝒕 + 𝒆𝒊𝒕  with binary 𝑥𝑖 = 0 or 

1 requires a per-person model in matrices: 𝒀𝒊 = 𝑿𝒊𝜷 + 𝑬𝒊 
 

  
𝑦𝑡1
𝑦𝑡2 = 1 𝑥𝑡1

1 𝑥𝑡2
𝛽00
𝛽01

+
𝑒𝑡1
𝑒𝑡𝑡  
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where 𝒆𝒊𝒕~MVN 0,𝑹 , and 2*2 𝑹 is 
chosen to predict 3 unique terms: 

  𝑹 =
𝜎12 𝜎1,2

𝜎1,2 𝜎22
 

(same matrix pattern would be 
repeated including whichever 
complete rows each person has) 
 
Across all 3 persons, the combined 
residual variance-covariance matrix 
now has a “block diagonal” structure 
with three 2*2 per-person pockets of 
variances (𝜎2) and covariance (𝜎): 

  𝒀𝒊           𝑿𝒊        𝜷         𝑬𝒊 

 Off-block-diagonal 0 values  no residual covariances across persons 
Same symbols  all persons share common residual variances and covariance 

𝜎12 𝜎1,2 0 0 0 0
𝜎1,2 𝜎22 0 0 0 0

0 0 𝜎12 𝜎1,2 0 0
0 0 𝜎1,2 𝜎22 0 0
0 0 0 0 𝜎12 𝜎1,2

0 0 0 0 𝜎1,2 𝜎22

 

MVN =  
multivariate normal 



Welcome to Multivariate Normal! 
• Same principle as univariate normal, but LL is calculated for  

each person’s SET of outcomes (then LL is summed over persons) 
• Model parameters to be found include parameters that predict 

EACH outcome’s residual variance and their residual covariances 
• So each outcome’s likelihood height has its own dimension, but  

the joint shape depends on the covariance between outcomes: 
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No covariance Negative covariance 
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Multivariate Normal for 𝒀𝑖 
(height for all 𝑛 outcomes for person 𝑖) 

• In MVN, the single 𝒚�𝒊 per person is replaced with 𝑿𝒊𝜷 from the model 
• The model also gives 𝑹𝑖  the predicted residual variance-covariance 

matrix across outcomes (built using the same terms for each person here) 
• Uses |𝑹𝑖| = determinant of 𝑹𝑖  = summary of non-redundant info 

 Reflects sum of variances across outcomes controlling for covariances 

• (𝑹𝑖)-1  matrix inverse  like dividing (so can’t be 0 or negative) 
 (𝑹𝑖)-1 must be “positive definite”, which in practice means no 0 residual  

variances and no out-of-bounds residual correlations between outcomes 
 Otherwise, SAS uses “generalized inverse”  questionable results 
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What about Missing Data? 
• In univariate software using likelihood 

estimation: each row must be complete 
(otherwise, software drops it from model) 
 So whole people are not removed if  

they are missing some outcomes 
 (Untestable) assumption is then “missing 

at random” which means random after 
taking into account the person’s other 
rows—said differently, the shape of each 
person’s likelihood function would stay the 
same given complete or incomplete cases 

• Whole people will be removed if they are 
missing a person-level predictor, which 
then implies the predictor is missing 
completely at random (what it sounds like) 
 Two solutions: multiple imputation, or 

treat the predictor as an outcome in a 
“truly” multivariate model—both require 
making distributional assumptions for the 
predictor with missing values… stay tuned 
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Person Time x y 
1 1 0 𝑦1𝑡1 
1 2 1 𝑦1𝑡2 
2 1 0 𝑦2𝑡1 
2 2 1 𝑦2𝑡2 
3 1 0 𝑦3𝑡1 
3 2 1 𝑦3𝑡2 

  “Long” Structure:  
1 row per outcome 

For now, we will  
pre-select our sample for 
complete observations to 
keep the sample (and all 

model fit statistics) 
comparable across models. 



Multivariate: 𝑁 = 2 persons, 3 outcomes 
• Multiv. GLM: 𝒚𝒊𝒕 = 𝜷𝟎𝟎 + 𝜷𝟎𝟎 𝒙𝟏𝒊𝒊 + 𝜷𝟎𝟐 𝒙𝟐𝒊𝒕 + 𝒆𝒊𝒕  with  

2 binary predictors per-person model: 𝒀𝒊 = 𝑿𝒊𝜷 + 𝑬𝒊 
 

  
𝑦𝑡1
𝑦𝑡2
𝑦𝑡𝑡

=
1 𝑥1𝑡𝑡 𝑥2𝑡𝑡
1 𝑥1𝑡𝑡 𝑥2𝑡2
1 𝑥1𝑡𝑡 𝑥2𝑡3

𝛽00
𝛽01
𝛽02

+
𝑒𝑡𝑡
𝑒𝑡2
𝑒𝑡𝑡
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where 𝒆𝒊𝒕~MVN 0,𝑹 , and 3*3 𝑹 is 
chosen to predict 6 unique terms: 

𝑹 =
𝜎12 𝜎1,2 𝜎1,3

𝜎1,2 𝜎22 𝜎2,3

𝜎1,3 𝜎2,3 𝜎32
 

(same matrix pattern would be 
repeated including whichever 
complete rows each person has) 
 
Across both persons, the combined 
residual variance-covariance matrix 
now has a “block diagonal” structure 
with two 3*3 per-person pockets of 
variances (𝜎2) and covariances (𝜎): 

  𝒀𝒊                 𝑿𝒊            𝜷         𝑬𝒊 

 Off-block-diagonal 0 values  no residual covariances across persons 
Same symbols  all persons share common residual variances and covariances 

𝜎12 𝜎1,2 𝜎1,3 0 0 0
𝜎1,2 𝜎22 𝜎2,3 0 0 0
𝜎1,3 𝜎2,3 𝜎32 0 0 0

0 0 0 𝜎12 𝜎1,2 𝜎1,3

0 0 0 𝜎1,2 𝜎22 𝜎2,3

0 0 0 𝜎1,3 𝜎2,3 𝜎32

 



What should the 𝑹 Matrix Look Like?  
• Goal: predict all unique variances and covariances in 𝑹 

 The “direct” way of doing so uses only different 𝑹 patterns  
(“R-side” models, as opposed to “G-side” models, stay tuned) 

 
• Next are 3 “direct” choices for unordered multiple outcomes  

(btw, there are more choices for outcomes ordered in time or space) 
 SAS MIXED: REPEATED DVindex /TYPE=?? SUBJECT=PersonID R RCORR; 
 SAS GLIMMIX: RANDOM DVindex /TYPE=?? SUBJECT=PersonID RESIDUAL; 
 Stata MIXED: Goes into option residuals(??, t(DVindex)) 

 Not possible in STATA GLM or MEGLM (as far as I know) 
 

• The 3 choices for 𝑹 patterns we will use differ in 2 respects: 
 Is residual variance (𝜎2) the same across outcomes? 

 If so, then are residual covariances (𝜎) are also the same across  
outcome pairs (remember: covariance is unstandardized correlation) 

 If not, might residual correlations (𝑟) still be the same across  
outcome pairs (because covariances will differ if variances differ) 
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Option 1 for 𝑹 Patterns: The Answer Key 
• Option 1 is an “unstructured” 𝑹 matrix: all variances and covariances are 

estimated separately (i.e., non-constant, outcome-specific dependency) 
 UN is a description, not a prediction,  

so it will fit best (i.e., as tallest LL) 

 Requires parameters = 𝑛 ∗(𝑛+1)
2

 for  
𝑛 outcomes  (so is hard to estimate  
past 5ish outcomes in smaller samples) 

 Left: 𝑹𝐜𝐜𝐜 is a covariance matrix; 𝑹𝐜𝐜𝐜 is a correlation matrix 
 

• Btw, an unstructured 𝑹 matrix is also known as a “multivariate (MANOVA)  
model” or the “multivariate approach” to repeated measures (RM) ANOVA  
 Why the difference? When people say “RM ANOVA” or “MANOVA” they are 

often referring to the use of least squares instead of likelihood estimation 
 Same model, but least squares uses only complete outcomes per person  

(so outcomes are assumed missing completely at random), but likelihood 
estimation uses all possible outcomes (assumed missing at random instead) 
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Two More Choices for Patterns of 𝑹 
• Option 2 is a “compound symmetry heterogeneous” 𝑹 matrix: separate 

variances, but covariances are created using a common correlation (“CSH”): 
 Uses 𝒏 + 𝟏 total parameters; after correcting for different outcome variances, all 

outcome residuals are correlated to the same extent (i.e., constant dependency) 
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2
1 1 2 1 3

2
cov 2 1 2 2 3

2
3 1 3 2 3

σ CSH CSH
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CSH CSH σ

 σ σ σ σ
 

= σ σ σ σ 
 σ σ σ σ  

R co r

1 CSH CSH
CSH 1 CSH
CSH CSH 1

 
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R

• Option 3 is a “compound symmetry” 𝑹 matrix:  
equal variances and equal covariances (so only  
2 parameters no matter how many outcomes) 
 All dependency is constant  

across outcomes and is  
caused by person mean  
diffs: the “CS” parameter 

 Also known as the “univariate” approach to RM ANOVA (if using least squares) and  
a “random intercept only” model (in the “indirect” way of capturing dependency) 
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CSH is still not 
available within  
STATA MIXED  



How to Choose among 𝑹 Matrices 
• Use likelihood ratio tests (LRT): treat difference in −2LL as regular 𝜒2  

with DF = # parameters different (also, smallest AIC and BIC win) 
 VC (equal variances, no covariances) is the default and is nested in all others 

 CS fit better than VC? There’s covariance (dependency) across outcomes 
 CS is nested in CSH, which are both nested in UN (= the data) 

 CSH fit better than CS? Then variances need to differ by outcome 
 UN fit better than CSH? Then correlations need to differ across outcome pairs 

 

• Goal: find a simpler model that fits not worse than UN  
 UN will always fit best by −2LL because it is trying to recreate  

the complete data results (assuming missing at random) 
 Why not just use UN always? If may not always be estimable,  

and using a simpler model that fits not worse can lead to greater  
power (because more unnecessary parameters  less power) 

 

• Btw, 𝑹 matrix residual variances and covariances can also be allowed  
to differ across groups (see example 4a); test if that helps with LRTs 

• And in univariate models, residual variance can differ by predictors, too! 
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Assessing Relative Model Fit, In General 
• Model for the Means (linear predictor of fixed effects)  

which fixed effects of predictors are included in the model  
 Because fixed effects of predictors are unbounded, you can always use 

univariate or multivariate Wald tests to see if they contribute to the 
model (with denominator DF depending on software availability) 

 Could use LRTs, but only for models estimated with maximum likelihood 
(not residual maximum likelihood, a better choice for normal residuals) 
 

• Model for the Variance  what the pattern of variance and 
covariance of residuals from the same sampling unit should be 
 DOES require assessment of relative model fit using LRTs: Because 

variances cannot be negative, you cannot use Wald test p-values  
(i.e., that show up in MIXED output next to the variance estimate) 

 Conditional distributions can only be compared using LRTs (usually  
with a  mixture 𝜒2) or information criteria (AIC, BIC) if they are nested 
 e.g., Poisson and Negative Binomial differ by “stretchy 𝑘”; binomial and 

beta-binomial differ by “stretchy 𝜙”; zero-inflation models add an 
intercept in another submodel that predicts the logit of being an extra 0 
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Why Use Multivariate Models? 
• Repeated measures designs (e.g., sampling over occasions or 

conditions) readily lend themselves to multivariate models 
 Goal is to examine mean differences across the per-person outcomes  

(i.e., as in traditional RM ANOVA but using likelihood for missing data) 
 Usual “general intercept” fixed effects strategy is likely most useful 

 

• Multivariate models are also the optimal way to predict multiple 
outcomes (DVs)—simultaneously rather than in separate models 
 Examine differences in predictor effects across outcomes (and then 

constrain effects that are similar in size to be equal for greater power) 
 Outcomes should be transformed to common scale (such as by z-scoring them)  

if not *similarly interpretable* already (e.g., such as variants of same scale) 
 If so, a “DV-specific intercepts” fixed effects strategy may be more useful  

 Predicting each outcome is a better alternative to predicting difference 
scores or to “controlling for time 1” ANCOVA (“residualized change”, bleh) 
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Differences in Effect Size across DVs 

Absolute Value of Effect Size 

0 

p = .05 

Significant for DV A?     Yes 

Significant for DV B?     Yes 

Difference in effect size 
between DV A and DV B? 

Scenario 1: Fixed effect is significant for both DVs: 

Just because a predictor is significant for both DVs does not 
mean it has the same magnitude of relationship across DVs! 
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Differences in Effect Size across DVs 

Absolute Value of Effect Size 

0 

Significant for DV A?     No 

Significant for DV B?     Yes 

Difference in effect size 
between DV A and DV B? 

Scenario 2: Fixed effect is significant for DV B only: 

p = .05 

Also, just because a predictor is non-significant for one DV 
but significant for another DV does not mean it has 
different magnitudes of relationships across DVs! 
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Fixed Effects Parameterizations 
• Here are 2 ways of fitting the same model predicting 𝑦𝑖𝑖  (a stacked 

outcome including DV = A, B, or C indexed by a categorical variable 
𝐷𝐷) from a general intercept (i.e., a column of 1s), a person-level 
predictor 𝑥𝑖 , and 3 dummy-coded contrasts: dvA, dvB, and dvC:  
 If DV=A, then dvA=1, dvB=0, dvC=0 
 If DV=B, then dvA=0, dvB=1, dvC=0 
 If DV=C, then dvA=0, dvB=0, dvC=1 

 

1. “General intercept”: provides fixed effects for a reference DV  
and DV differences in fixed effects relative to the reference DV 

 So fixed effects for non-reference DV are found as linear combinations 
2. “DV-specific intercepts”: provides effects separately by DV 

 So DV differences in fixed effects are found as linear combinations 
 This is always how path models are parameterized (stay tuned) 
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DV as a Categorical Predictor 
• DV-specific dummy codes can be replaced by a categorical DV predictor 

 SAS: put in on the CLASS statement; STATA: use i. prefix for predictor 
• For a predictor with 𝐶 categories, the program automatically then  

creates 𝑪 new internal variables, for example “DV” with 𝐶 = 3:  
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DV _IsA _IsB _IsC 

A 1 0 0 

B 0 1 0 

C 0 0 1 

• It then figures out how many of these internal variables are needed to create  
𝐶 means—if using an intercept, then it’s 𝐶 − 1; without the intercept, is 𝐶 

• It enters them until it hits that criterion—the one left out is your reference;  
if all 𝐶 internal variables are included, then each is a custom intercept 

• When referring the categorical predictor (e.g., ESTIMATE, LINCOM, CONTRAST),  
you must tell it what to do with EACH of these internal variables [e.g., 1 0 0 ] 

Default reference category by program: 
• SAS (and SPSS): highest/last is reference 
• STATA: lowest/first is default reference  

 Can easily change reference category,  
e.g., last = ref  ib(last).DV 



“General Intercept” Parameterization 
• Empty Model:  𝒚�𝒊𝒅 = 𝜷𝟎𝟎 + 𝜷𝟎𝟏 𝒅𝒅𝑨𝒊𝒅 + 𝜷𝟎𝟐 𝒅𝒅𝑩𝒊𝒅  

 𝛽00 = intercept for DV=C (i.e., when dvA=0 and dvB=0) 
 𝛽01 = mean difference for DV=C vs. DV=A 
 𝛽02 = mean difference for DV=C vs. DV=B 
 𝛽02 − 𝛽01 = mean difference for DV=A vs. DV=B 
 𝛽00 + 𝛽01 = intercept for DV=A 
 𝛽00 +  𝛽02 = intercept for DV=B 

 

• Add 𝒙𝒊 predictor: + 𝜷𝟏𝟎 𝒙𝒊 + 𝜷𝟏𝟏 𝒅𝒅𝑨𝒊𝒅 𝒙𝒊 + 𝜷𝟏𝟐 𝒅𝒅𝑩𝒊𝒅 𝒙𝒊  
 𝛽10 = 𝑥𝑖 slope for DV=C (i.e., when x*dvA=0 and x*dvB=0) 
 𝛽11 = difference in 𝑥𝑖 slope for DV=C vs. DV=A 
 𝛽12 = difference in 𝑥𝑖 slope for DV=C vs. DV=B 
 𝛽12 − 𝛽11 = difference in 𝑥𝑖 slope for DV=A vs. DV=B 
 𝛽10 + 𝛽11 = 𝑥𝑖 slope for DV=A 
 𝛽10 + 𝛽12 = 𝑥𝑖 slope for DV=B 
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With the general 
intercept (=1 for 
all), the dvA and 
dvB variables act 
like typical group 
differences (just 
between outcomes 
instead of groups). 



“General Intercept” Parameterization 
• Including a general intercept is convenient when differences 

between occasions or conditions are of most interest (i.e., then  
the difference scores are captured directly by fixed effects) 

• Here are 2 equivalent versions of this model in SAS MIXED: 
 CLASS PersonID DV; 

MODEL y = dvA dvB x dvA*x dvB*x  
            / SOLUTION DDFM=Satterthwaite; 
REPEATED DV / R RCORR TYPE=?? SUBJECT=PersonID; 

 CLASS PersonID DV; 
MODEL y = DV x DV*x  
            / SOLUTION DDFM=Satterthwaite; 
REPEATED DV / R RCORR TYPE=?? SUBJECT=PersonID; 

• Here are 2 equivalent versions of this model in STATA MIXED: 
 mixed y c.dvA c.dvB c.x c.dvA#c.x c.dvB#c.x,  ///  

        variance reml dfmethod(satterthwaite) ///      
        residuals(??,t(DV))  

 mixed y ib(last).DV c.x ib(last).DV#c.x,      ///  
        variance reml dfmethod(satterthwaite) ///      
        residuals(??,t(DV)) 
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Note SAS REPEATED 
and STATA RESIDUALS 
stay the same across 
syntax variants 

I used ib(last) 
to make C the 
reference DV 
(as in SAS) 



“DV-Specific Intercept” Parameterization 
• Empty Model:  𝒚�𝒊𝒅 = 𝜷𝟎𝟎 𝒅𝒅𝑪𝒊𝒅 + 𝜷𝟎𝟏 𝒅𝒅𝑨𝒊𝒅 + 𝜷𝟎𝟐 𝒅𝒅𝑩𝒊𝒅  

 𝛽00 = intercept for DV=C (i.e., when dvA=0 and dvB=0) 
 𝛽01 = intercept for DV=A (i.e., when dvB=0 and dvC=0)  
 𝛽02 = intercept for DV=B (i.e., when dvA=0 and dvC=0)  
 𝛽01 − 𝛽00 = mean difference for DV=C vs. DV=A 
 𝛽02 − 𝛽00 = mean difference for DV=C vs. DV=B 
 𝛽02 − 𝛽01 = mean difference for DV=A vs. DV=B 

 

• Add 𝒙𝒊 predictor: + 𝜷𝟏𝟎 𝒙𝒊 𝒅𝒅𝑪𝒅𝒅 + 𝜷𝟏𝟏 𝒙𝒊 𝒅𝒅𝑨𝒅𝒅 + 𝜷𝟏𝟐 𝒙𝒊 𝒅𝒅𝑩𝒅𝒅  
 𝛽10 = 𝑥𝑖 slope for DV=C (i.e., when x*dvA=0 and x*dvB=0) 
 𝛽11 = 𝑥𝑖 slope for DV=A (i.e., when x*dvB=0 and x*dvC=0) 
 𝛽12 = 𝑥𝑖 slope for DV=B (i.e., when x*dvA=0 and x*dvC=0) 
 𝛽11 − 𝛽10 = difference in 𝑥𝑖 slope for DV=C vs. DV=A 
 𝛽12 − 𝛽10 = difference in 𝑥𝑖 slope for DV=C vs. DV=B 
 𝛽12 − 𝛽11 = difference in 𝑥𝑖 slope for DV=A vs. DV=B 
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Without the 
general intercept 
(=1 for all), the 
dvA, dvB, and dvC 
variables act like 
“switches” that turn 
on the fixed effects 
for its DV. 



“DV-Specific Intercept” Parameterization 
• Removing the general intercept is convenient when fixed effects per 

DV are of most interest or when not all DVs get all fixed effects  
• Here are 2 equivalent versions of this model in SAS MIXED: 

 CLASS PersonID DV; 
MODEL y = dvC dvA dvB dvC*x dvA*x dvB*x  
            / NOINT SOLUTION DDFM=Satterthwaite; 
REPEATED DV / R RCORR TYPE=?? SUBJECT=PersonID; 

 CLASS PersonID DV; 
MODEL y = DV DV*x  
            / NOINT SOLUTION DDFM=Satterthwaite; 
REPEATED DV / R RCORR TYPE=?? SUBJECT=PersonID; 

• Here are 2 equivalent versions of this model in STATA MIXED: 
 mixed y c.dvC c.dvA c.dvB c.DVc#c.x c.dvA#c.x c.dvB#c.x, ///  

        noconstant variance reml dfmethod(satterthwaite) ///      
        residuals(??,t(DV))  

 mixed y ib(last).DV ib(last).DV#c.x,                     ///  
        noconstant variance reml dfmethod(satterthwaite) ///      
        residuals(??,t(DV)) 
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Note SAS REPEATED 
and STATA RESIDUALS 
stay the same; in 
STATA I used ib(last) to 
make C the reference 
DV (same as in SAS) 



Specifying Fixed Effects: Caveats 
• Btw, to constrain the 𝑥𝑖  slope to be equal across DVs, remove its  

DV-interaction terms—just enter 𝑥𝑖 as a main effect (either version) 
• You can mix-and-match parameterizations, but do so carefully! 

 e.g., here is how to retain separate effects of 𝑥1𝑖 for DVs A, B, and C, 
       but have an effect of 𝑥2𝑖 only for DV=A and DV=B 

 General intercept version:  
     𝑦�𝑖𝑑 = 𝛽00 + 𝛽01 𝑑𝑑𝐴𝑖𝑑 + 𝛽02 𝑑𝑑𝐵𝑖𝑑  
               + 𝛽10 𝑥1𝑖 + 𝛽11 𝑑𝑑𝐴𝑖𝑑 𝑥1𝑖 + 𝛽12 𝑑𝑑𝐵𝑖𝑑 𝑥1𝑖  
                                + 𝛽21 𝑑𝑑𝐴𝑖𝑑 𝑥2𝑖 + 𝛽22 𝑑𝑑𝐵𝑖𝑑 𝑥2𝑖  

 DV-specific intercept version:  
     𝑦�𝑖𝑑 = 𝛽00 𝑑𝑑𝐶𝑖𝑑 + 𝛽01 𝑑𝑑𝐴𝑖𝑑 + 𝛽02 𝑑𝑑𝐵𝑖𝑑  
              + 𝛽10 𝑑𝑑𝐶𝑖𝑑 𝑥1𝑖 + 𝛽11 𝑑𝑑𝐴𝑖𝑑 𝑥1𝑖 + 𝛽12 𝑑𝑑𝐵𝑖𝑑 𝑥1𝑖                  
                                           + 𝛽21 𝑑𝑑𝐴𝑖𝑑 𝑥2𝑖 + 𝛽22 𝑑𝑑𝐵𝑖𝑑 𝑥2𝑖  

 Either way, 𝛽21 and 𝛽22 give the effect of 𝑥2𝑖 for DV=A and DV=B  
(but it looks logically inconsistent in the general intercept version) 
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Wrapping Up… 
• So far the generalized linear models we have examined have been 

univariate models—their LLs assume persons are independent 
 

• But analyzing data in which each sampling unit has more  
than one outcome requires multivariate models instead 
 We need to add model terms that capture dependency, this semester 

for balanced designs (i.e., all persons have the same potential outcomes)  
 For plausibly normal outcomes, dependency can be modeled directly: 

we can allow same or different residual variances and covariances across 
outcomes (in a person-specific R matrix of type UN, CSH, or CS) 

 We have to use likelihood ratio tests (−2ΔLL as 𝜒2) to compare nested 
models to decide which fits least worse to protect our fixed effect SEs 

 

• For convenience, fixed effects can be specified in 2 different ways  
 Single general intercept  DV terms reflect DV differences 
 Multiple DV-specific intercepts  DV terms are switches for own effects 
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