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• Topics: 
 3 parts of a generalized (single-level or multilevel) model 
 Link functions and conditional distributions for binary outcomes 
 Effect sizes for binary outcomes 
 From binary to categorical outcomes 



3 Parts of Generalized Linear Models 

1. Non-normal conditional distribution of 𝒚𝒊: 
 General linear models use a normal conditional distribution to describe  

the 𝑦𝑖 variance remaining after prediction via the fixed effects  we 
called this residual variance, which is estimated separately and usually 
assumed constant across observations (unless modeled otherwise) 

 Other distributions are more plausible for categorical/bounded/skewed 
outcomes, so ML function maximizes the likelihood using those instead 

 Why? To get the most correct standard errors for fixed effects  
 Btw, not all conditional distributions will have a single, separately  

estimated residual variance (e.g., binary  Bernoulli, count  Poisson) 
 Agresti calls this part the “random component” 
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3 Parts of Generalized Linear Models 

2. Link Function = 𝒈(⋅): How the conditional mean to be predicted is 
transformed so that the model predicts an unbounded outcome instead 

 Inverse link 𝒈−𝟏(⋅)= how to go back to conditional mean in data scale  
 Predicted outcomes (found via inverse link) will then stay within bounds 
 e.g., binary outcome: conditional mean to be predicted is probability 

of 𝒚𝒊 = 𝟏, so the model predicts a linked version (when inverse-linked, 
the predicted probability outcome will stay between 0 and 1) 

 e.g., count outcome: conditional mean is expected count, so the log of 
the expected count is predicted so that the expected count stays > 0 

 e.g., normal outcome: an “identity” link function (𝑦𝑖 * 1) is used given 
that the conditional mean to be predicted is already unbounded… 
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3 Parts of Generalized Linear Models 

3. Linear Predictor: How the fixed (AND random) effects of predictors 
combine additively to predict a link-transformed conditional mean 

 This works the same as usual, except the linear predictor model  
directly predicts the link-transformed conditional mean, which we 
then convert (via inverse link) back into the original conditional mean 

 That way we can still use the familiar “one-unit change” language to 
describe effects of model predictors (on the linked conditional mean) 

 Fixed effects are no longer determined: they now have to be found 
through the ML algorithm, the same as any variance-related parameters 
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Normal GLM for Binary Outcomes? 
• Let’s say we have a single binary (0 or 1) outcome… 
• The mean of a binary outcome is the proportion of 1 values 
 So given each person’s predictor values, the model tries to predict 

the conditional mean: the probability of having a 1: 𝒑(𝒚𝒊 = 𝟏) 
 The conditional mean has more possible values than the outcome 

 General linear model: 𝒑(𝒚𝒊 = 𝟏) = 𝜷𝟎 + 𝜷𝟏(𝒙𝒙𝒊) + 𝜷𝟐(𝒙𝒙𝒊) + 𝒆𝒊 
 𝜷𝟎 = expected probability of 𝒚𝒊 = 𝟏 when all predictors = 0 
 𝜷’s = expected change in 𝒑(𝒚𝒊 = 𝟏) for a one-unit Δ in predictor 
 𝒆𝒊 = difference between observed and predicted binary values 

 
 Model becomes 𝒚𝒊 = (𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐨𝐨 𝟏)  +  𝒆𝒊 
 What could possibly go wrong? 
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Normal GLM for Binary Outcomes? 
• Problem #1: A linear relationship between X and Y???  
• Probability of a 1 is bounded between 0 and 1, but predicted 

probabilities from a linear model aren’t going to be bounded  
• Linear relationship needs to shut off  made nonlinear 
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Generalized Models for Binary Outcomes 
• Solution to #1: Rather than predicting 𝒑(𝒚𝒊 = 𝟏) directly, we must 

transform it into an unbounded variable with a link function: 
 Transform probability into odds: 𝑝𝑖

1−𝑝𝑖
= prob 𝑦𝑖=1

prob(𝑦𝑖=0)
 

 If 𝑝 𝑦𝑖 = 1 = .7 then Odds(1) = 2.33; Odds(0) = 0.429 
 But odds scale is skewed, asymmetric, and ranges from 0 to +∞  Not helpful 

 Take natural log of odds  called “logit” link:  𝐋𝐋𝐋 𝒑𝒊
𝟏−𝒑𝒊

 
 If 𝑝 𝑦𝑖 = 1 = .7, then Logit(1) = 0.846; Logit(0) = −0.846 
 Logit scale is now symmetric about 0, range is ±∞  DING 
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Solution #1:  Probability into Logits 
• A Logit link is a nonlinear transformation of probability: 

 Equal intervals in logits are NOT equal intervals of probability 
 The logit goes from ±∞ and is symmetric around prob = .5 (logit = 0) 
 Now we can use a linear model  The model will be linear with respect to 

the predicted logit, which translates into a nonlinear prediction with respect to 
probability  the outcome conditional mean shuts off at 0 or 1 as needed 

Probability: 
𝒑(𝒚𝒊 = 𝟏) 

Logit  
(log odds): 
𝐋𝐋𝐋 𝒑𝒊

𝟏−𝒑𝒊
 

Zero-point on 
each scale: 
 
Prob = .5 
Odds = 1 
Logit = 0 
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Odds: 𝒑𝒊
𝟏−𝒑𝒊

 

Image borrowed from: Snijders, T. A. B., & Bosker, R. J. (2000). Multilevel analysis:  
An introduction to basic and advanced multilevel modeling. Thousand Oaks, CA: Sage. 
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Normal GLM for Binary Outcomes? 
• General linear model:  𝒑(𝒚𝒊 = 𝟏) = 𝜷𝟎 + 𝜷𝟏(𝒙𝒙𝒊) + 𝜷𝟐(𝒙𝒙𝒊) + 𝒆𝒊 
• If 𝐲𝐢 is binary, then 𝒆𝒊 can only be 2 things:  𝒆𝒊 = 𝒚𝒊 − 𝒚�𝒊 

 If 𝒚𝒊 = 0 then 𝒆𝒊 = (0 − predicted probability) 
 If 𝒚𝒊 = 1 then 𝒆𝒊= (1 − predicted probability) 

• Problem #2a: So the residuals can’t be normally distributed 
• Problem #2b: The residual variance can’t be constant over 𝒚�𝒊 

as in GLM because the mean and variance are dependent 
 Variance of binary variable: 𝑽𝑽𝑽 𝒚𝒊 = 𝒑 ∗ (𝟏 − 𝒑) 
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Solution to #2:  Bernoulli Distribution 
• Rather than using a normal conditional distribution for the 

outcome, we will use a Bernoulli conditional distribution 
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Top image borrowed from: https://en.wikipedia.org/wiki/Normal_distribution  
Bottom image borrowed from: https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/dist_ref/dists/bernoulli_dist.html 
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3 Scales of Predicted Binary Outcomes 
• Logit:  𝐋𝐋𝐋 𝒑(𝒚𝒊=𝟏)

𝟏−𝒑(𝒚𝒊=𝟏)
= 𝜷𝟎 + 𝜷𝟏(𝒙𝒙𝒊) + 𝜷𝟐(𝒙𝒙𝒊) 

 Predictor effects are linear and additive like in GLM,  
but 𝜷 = change in logit per one-unit change in predictor 

• Odds:  𝒑(𝒚𝒊=𝟏)
𝟏−𝒑(𝒚𝒊=𝟏)

= 𝒆𝒆𝒆 𝜷𝟎 + 𝜷𝟏𝒙𝒙𝒊 + 𝜷𝟐𝒙𝒙𝒊  

• Probability:     𝒑 𝒚𝒊 = 𝟏 =       𝒆𝒆𝒆 𝜷𝟎+𝜷𝟏𝒙𝒙𝒊+𝜷𝟐𝒙𝒙𝒊
𝟏+𝒆𝒆𝒆 𝜷𝟎+𝜷𝟏𝒙𝒙𝒊+𝜷𝟐𝒙𝒙𝒊

 

or equivalently   𝒑 𝒚𝒊 = 𝟏 = 𝟏
𝟏+𝒆𝒆𝒆 −𝟏(𝜷𝟎+𝜷𝟏𝒙𝒙𝒊+𝜷𝟐𝒙𝒙𝒊)
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Converting Across the 3 Scales 
• e.g., for 𝐋𝐋𝐋 𝒑(𝒚𝒊=𝟏)

𝟏−𝒑(𝒚𝒊=𝟏)
= 𝒚𝒊� = 𝜷𝟎 + 𝜷𝟏(𝒙𝒙𝒊) + 𝜷𝟐(𝒙𝒙𝒊) 

 
 
 
 

 
 
   

• You can unlogit the model-predicted conditional mean all the way back 
into probability to express predicted outcomes, but you can only unlogit 
the slopes back into odds ratios (not all the way back to probability) 
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Direction Conditional 
Mean 

Slope  
for 𝒙𝟏𝒊 

Slope  
for 𝒙𝟐𝒊 

Using logits to predict 
probability (i.e., the “link”): 

𝒚𝒊�  𝜷𝟏 𝜷𝟐 

From logits to odds or 
odds ratios for effect sizes: 

Odds:  
𝐞𝐞𝐞 (𝒚�𝒊) 

Odds ratio: 
𝐞𝐞𝐞 (𝜷𝟏) 

Odds ratio: 
𝐞𝐞𝐞 (𝜷𝟐) 

From logits to probability 
(i.e., the “inverse link”): 

𝐞𝐞𝐞 (𝒚�𝒊)
𝟏 + 𝐞𝐞𝐞 (𝒚�𝒊)

 Doesn’t make 
any sense! 

Doesn’t make  
any sense! 



Intercepts (𝛽0) vs. Thresholds (−𝛽0) 
• This model is sometimes expressed by calling the logit(𝒚𝒊)  

an underlying continuous (“latent”) response of 𝒚𝒊∗ instead: 
         

       Empty Model: 𝒚𝒊∗ = −𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝒆𝒊 
 In which 𝒚𝒊 = 𝟏 if 𝑦𝑖∗ > 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , or 𝒚𝒊 = 𝟎 if 𝑦𝑖∗ ≤ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
So when predicting 𝒚𝒊∗, then 
𝑒𝑖  ~ Logistic 0,𝝈𝒆𝟐 = 3.29  
 
Logistic Distribution: 
Mean = μ, Variance = 𝜋

2

3
𝑠2, 

where s = scale factor that 
allows for “over-dispersion” 
(must be fixed to 1 in binary 
outcomes for identification) 

Logistic 
Distributions 
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𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝜷𝟎 ∗ −𝟏  

Image borrowed from: https://en.wikipedia.org/wiki/Logistic_distribution 
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Other Link Functions for Binary Data 
• The idea that a “latent” continuous variable underlies an observed 

binary response also appears in a Probit Regression model: 
 

 A probit link, such that now your model predicts a different transformed 𝒚𝒊:  
     Probit 𝑦𝑖 = 1 = Φ−1[𝑝 𝑦𝑖 = 1 ] = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
 Where Φ = standard normal cumulative distribution function, so the transformed 

𝑦𝑖 is the z-score that corresponds to the value of standard normal curve below 
which conditional mean probability is found (requires integration to inverse link) 

 

 Same Bernoulli distribution for the conditional binary outcomes, in which 
residual variance cannot be separately estimated (so no 𝑒𝑖 in the model) 

 Model scale: Probit can also predict “latent” response:   𝒚𝒊∗ = −𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝒆𝒊  

 But Probit says 𝒆𝒊 ~ 𝑵𝑵𝑵𝑵𝑵𝑵 𝟎,𝝈𝒆𝟐 = 1.00 , whereas logit 𝝈𝒆𝟐 = 𝝅
𝟐

𝟑
= 3.29 

 

 So given this difference in variance, probit coefficients are on a different 
scale than logit coefficients, and so their estimates won’t match… however… 

𝐠 ⋅  𝐥𝐥𝐥𝐥 
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Probit vs. Logit: Should you care? Pry not. 

• Other fun facts about probit: 
 Probit = “ogive” in the Item Response Theory (IRT) world 
 Probit has no odds ratios (because it’s not based on odds) 

 

• Both logit and probit assume symmetry of the probability 
curve, but there are other asymmetric options as well… 

Probit 𝝈𝒆𝟐 = 1.00 
(SD=1) 

Logit  
𝛔𝐞𝟐 = 3.29 
(SD=1.8) 

Rescale to equate 
model coefficients: 
𝜷𝒍𝒍𝒍𝒍𝒍 = 
𝜷𝒑𝒑𝒑𝒑𝒑𝒑 ∗ 𝟏.𝟕 

You’d think it would 
be 1.8 to rescale, 
but it’s actually 1.7… 

𝑦𝑖 = 0 

Threshold 
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𝑦𝑖 = 1 

Link-Transformed 𝑦𝑖∗  

Link-Transformed 𝑦𝑖∗  

15     

Image source now unknown, but I think it was from Don Hedeker 
 
PSQF 7375 Generalized: Lecture 1 

Pr
ob

ab
ili

ty
 

 

 



Other Link Functions for Binary Outcomes 

Model 𝒚�𝒊 Logit Probit Log-Log Complement. Log-Log 
g(⋅) link  Log 𝑝𝑖

1−𝑝𝑖
=𝑦�𝑖 Φ−1 𝑝𝑖 =𝑦�𝑖 −Log −Log 𝑝𝑖 =𝑦�𝑖 Log −Log 1 − 𝑝𝑖 =𝑦�𝑖 

g−1(⋅) 
inverse link 
(go back to 
probability): 

𝑝𝑖 =
𝑒𝑒𝑒 𝑦�𝑖

1 + 𝑒𝑒𝑒 𝑦�𝑖
 𝑝𝑖 = Φ−1 𝑦�𝑖  𝑝𝑖 = exp −exp −𝑦�𝑖  𝑝𝑖 = 1 − exp −exp 𝑦�𝑖  

In SAS LINK= LOGIT PROBIT LOGLOG CLOGLOG 

-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0

0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91
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Original Probability 

Logit Probit = Z*1.7

Log-Log Complementary Log-Log

Logit = Probit*1.7 
which both assume 
symmetry of prediction 
 
Log-Log is for outcomes in 
which 1 is more frequent 
 
Complementary  
Log-Log is for outcomes in 
which 0 is more frequent 
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𝑒𝑖~log − Weibull extreme value 0.577,𝜎𝑒2 =
𝜋2

6
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Significance Testing for Binary Outcomes 
• Wald tests can still be used 

to test fixed effects (slopes), 
but many programs do not 
use denominator DF 
 If so, 𝑝-values may be too lenient in small samples 

 

• For models estimated using ML, the model log-likelihood (𝑳𝑳) can 
also be used to assess relative fit (i.e., through model comparisons) 
 𝑳𝑳 = sum across individual LL values that results from the optimum 

values of the parameters for that model (that make the data the tallest) 
 Two flavors: Maximum Likelihood (ML) or Restricted ML (REML)  

 REML is only possible for conditionally normal outcomes and  
works better for smaller samples (is same as ordinary least squares) 

 Two directions: 𝑳𝑳 (bigger is better) or −𝟐𝟐𝟐 (smaller is better)  
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Uses Denominator 
Degrees of Freedom? 

Test 1 
Slope* 

Test >1 
Slope* 

No: implies infinite 𝑁 𝑧 𝜒2(= 𝑧2) 
Yes: adjusts based on 𝑁 𝑡 𝐹(= 𝑡2) 



Likelihood Ratio Tests (LRTs) 
 Nested models can be compared using an LRT: (−2ΔLL Test) 
1. Calculate −2ΔLL:   (−2LLfewer) – (−2LLmore) OR −2*(LLfewer− LLmore) 
2. Calculate  Δdf:  (# Parmsmore) –(# Parmsfewer) 
3. Compare −2ΔLL to χ2 distribution with df = Δdf 

CHIDIST in excel gives exact p-values for the difference test; so will STATA LRTEST 
 

•  Add parameters? Model fit can be BETTER (signif) or NOT BETTER  
•  Remove parameters? Model fit can be WORSE (signif) or NOT WORSE 

 
• Non-nested models can be compared by Information  

Criteria (IC) that also reflect model parsimony 
 No 𝑝-values or critical values, just “smaller is better” 
 AIC = Akaike IC     = −2LL +        2 *(#parameters) 
 BIC = Bayesian IC  = −2LL + log(𝑁)*(#parameters)  
 AIC and BIC can also be used to compare the fit of  

different link functions for the same distribution 
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Effect Sizes for Binary Outcomes 
• Odds Ratio (OR)  effect size for predictors of binary outcomes 
• e.g., if 𝑥11 is binary  

and 𝑥2𝑖 is quantitative 
 OR for unique effect of 𝑥1𝑖 = exp 𝛽1 = 𝑝 𝑦𝑖=1 𝑥1𝑖=1 /𝑝 𝑦𝑖=0 𝑥1𝑖=1

𝑝 𝑦𝑖=1 𝑥1𝑖=0 /𝑝 𝑦𝑖=0 𝑥1𝑖=0
  

 OR for unique effect of 𝑥2𝑖 = exp 𝛽2 : same principle, but  
denominator is some reference value (e.g., mean by default)  
and numerator is “one unit” higher (and “unit” can be defined) 

 For each, you’ll have to decide at what value to hold other predictors  
to get the exact probabilities, but the odds ratio will only change if the 
predictors are part of an interaction (from marginal  conditional) 

 

• OR is asymmetric: ranges from 0 to +∞; where 1 = no relationship 
 e.g., if 𝜷𝟏 = 𝟏, then exp 𝛽1 = 2.72  odds of  
𝑦𝑖 = 1 are 2.72 times higher per unit greater 𝑥1𝑖  

 e.g., if 𝜷𝟏 = −𝟏, then exp 𝛽1 = 0.37 odds of  
𝑦𝑖 = 1 are 0.37 times higher per unit greater 𝑥1𝑖  
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Image borrowed from: https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-how-do-i-interpret-odds-ratios-in-logistic-regression/ 
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𝑅2 for binary outcomes? 
• General Linear Models use a conditional normal distribution  

for 𝑦𝑖 (i.e., the 𝑒𝑖 residuals are normal) in which a residual variance 
is estimated separately from the conditional mean 
 Allows direct calculation of 𝑅2 for variance explained and  

change in 𝑅2 between nested models (and 𝐹-tests thereof) 
 

• In contrast, Generalized Linear Models for binary outcomes  
use a conditional Bernoulli distribution for 𝑦𝑖 in which there is  
no single (constant) separately estimated residual variance 
 Instead, residual variance is determined by AND varies with the 

conditional mean, so an exact 𝑅2 is not possible in the same way  
 There are lots of attempts at “pseudo-𝑅2“ variants that disagree  

wildly in practice, see here: https://stats.idre.ucla.edu/other/mult-
pkg/faq/general/faq-what-are-pseudo-r-squareds/ 
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Pseudo-𝑅2 through Expected Variances 
• This approach (credited to McKelvey & Zavoina, 1975) applies to 

many kinds of generalized linear (and mixed effects) models: 
 M&Z pseudo-𝑅2 on logit scale = 𝑽𝑽𝑽(𝒚�𝒊

∗)
𝑽𝑽𝑽 𝒚�𝒊

∗ +𝑽𝑽𝑽(𝒆𝒊)
= 𝑽𝑽𝑽(𝒚�𝒊

∗)
𝑽𝑽𝑽 𝒚�𝒊

∗ +𝟑.𝟐𝟐
 

 M&Z pseudo-𝑅2 on probit scale = 𝑽𝑽𝑽(𝒚�𝒊
∗)

𝑽𝑽𝑽 𝒚�𝒊
∗ +𝑽𝑽𝑽(𝒆𝒊)

= 𝑽𝑽𝑽(𝒚�𝒊
∗)

𝑽𝑽𝑽 𝒚�𝒊
∗ +𝟏.𝟎𝟎

 

 
 𝑽𝑽𝑽(𝒚�𝒊∗) = variance of the predicted logit outcomes 

 Save model-scale predicted outcomes, then calculate their variance 
 𝑽𝑽𝑽(𝒆𝒊) = model-scale conditional variance (of “residuals”) 

 Substitute known value based on underlying distribution of 𝑦𝑖∗ 
 Keep in mind this is model scale, not data scale (not probabilities),  

and so these 𝑅2 values are not really comparable to OLS variants 
 

 Btw, this expected variance approach generalizes to calculation of 
intraclass correlation (ICC) when random effects are also included… 
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Too Logit to Quit* https://www.youtube.com/watch?v=HFCv86Olk8E 

• The logit is the basis for many other generalized models for 
categorical (ordinal or nominal; “polytomous”) outcomes 

 

• Next we’ll see how 𝐶 possible response categories can be 
predicted using 𝐶 − 1 binary “submodels” that involve carving 
up the categories in different ways, in which each binary 
submodel (usually) uses a logit link to predict its outcome 

 

• Types of categorical outcomes: 
 Definitely ordered categories: “cumulative logit”  ordinal 
 Maybe ordered categories: “adjacent category logit” (not used much) 
 Definitely NOT ordered categories: “generalized logit”  nominal 

 
* Starts about 8 minutes into 15-minute video 
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Logit Models for 𝐶 Ordinal Categories 
• Known as “cumulative logit” or “proportional odds” model in  

generalized models; known as “graded response model” in IRT 
 LINK=CLOGIT, (DIST=MULT) in SAS GLIMMIX; MEOLOGIT or MEGLM in STATA 

• Models the probability of lower vs. higher cumulative categories via  
𝐶 − 1 submodels (e.g., if 𝐶 = 4 possible responses of 𝑐 = 0,1,2,3):  

           0 vs. 1,2,3        0,1 vs. 2,3         0,1,2 vs. 3 
 

 

• In SAS, what the binary submodels predict depends on whether the model 
is predicting DOWN (𝒚𝒊 = 𝟎) or UP (𝒚𝒊 = 𝟏) cumulatively  

• Example predicting UP in an empty model (subscripts=parm, submodel) 
• Submodel 1:  𝐿𝐿𝐿𝐿𝐿[𝑝(𝑦𝑖 > 0)] = 𝛽01   𝑝 𝑦𝑖 > 0 = 𝑒𝑒𝑒 𝛽01 / 1 + 𝑒𝑒𝑒 𝛽01  
• Submodel 2:  𝐿𝐿𝐿𝐿𝐿[𝑝(𝑦𝑖 > 1)] = 𝛽02   𝑝 𝑦𝑖 > 1 = 𝑒𝑒𝑒 𝛽02 / 1 + 𝑒𝑒𝑒 𝛽02  
• Submodel 3:  𝐿𝐿𝐿𝐿𝐿[𝑝(𝑦𝑖 > 2)] = 𝛽03   𝑝 𝑦𝑖 > 2 = 𝑒𝑒𝑒 𝛽03 / 1 + 𝑒𝑒𝑒 𝛽03  

Submodel3 Submodel2 Submodel1 
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I’ve named these submodels 
based on what they predict, 
but each program output will 
name them their own way… 
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Logit Models for 𝐶 Ordinal Categories 
• Models the probability of lower vs. higher cumulative categories via 
𝐶 − 1 submodels (e.g., if 𝐶 = 4 possible responses of 𝑐 = 0,1,2,3):  

 0 vs. 1,2,3        0,1 vs. 2,3         0,1,2 vs. 3 
 

 
 

• In software, what the binary submodels predict depends on whether model 
is predicting DOWN (𝒚𝒊 = 𝟎) or UP (𝒚𝒊 = 𝟏) cumulatively  
 Either way, the model predicts the middle category responses indirectly 

 

• Example if predicting UP with an empty model: 
 Probability of 0 =       1 – Prob1    

Probability of 1 = Prob1– Prob2 
Probability of 2 = Prob2– Prob3 
Probability of 3 = Prob3– 0 

Submodel3  
 Prob3 

Submodel2  
 Prob2 

Submodel1 
 Prob1 

The cumulative submodels that create these 
probabilities are each estimated using all the 
data (good, especially for categories not chosen 
often), but assume order in doing so (may be 
bad or ok, depending on your response format). 

Logit[𝑝(𝑦𝑖 > 2)] = 𝛽03     
 
 𝑝 𝑦𝑖 > 2 = 𝑒𝑒𝑒 𝛽03

1+𝑒𝑒𝑒 𝛽03
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Logit Models for 𝐶 Ordinal Categories 
• Ordinal models usually use a logit link transformation, but they can also use 

cumulative log-log or cumulative complementary log-log links 
 LINK= CUMLOGLOG or CUMCLL in SAS GLIMMIX; CLOGLOG link in MEGLM in STATA 

 

• Assume proportional odds: that effects of predictors are the same  
across binary submodels—for example (subscripts = parm, submodel) 
 Submodel 1:  𝐿𝐿𝐿𝐿𝐿[𝑝(𝑦𝑖 > 0)] = 𝜷𝟎𝟎 + 𝛽1𝑥𝑥𝑖 + 𝛽2𝑥𝑥𝑖 + 𝛽3𝑥𝑥𝑖𝑥𝑥𝑖 
 Submodel 2:  𝐿𝐿𝐿𝐿𝐿[𝑝(𝑦𝑖 > 1)] = 𝜷𝟎𝟐 + 𝛽1𝑥𝑥𝑖 + 𝛽2𝑥𝑥𝑖 + 𝛽3𝑥𝑥𝑖𝑥𝑥𝑖 
 Submodel 3:  𝐿𝐿𝐿𝐿𝐿[𝑝(𝑦𝑖 > 2)] = 𝜷𝟎𝟑 + 𝛽1𝑥𝑥𝑖 + 𝛽2𝑥𝑥𝑖 + 𝛽3𝑥𝑥𝑖𝑥𝑥𝑖 

 

• Proportional odds essentially means no interaction between submodel and 
predictor effects, which greatly reduces the number of estimated parameters 
 Can be tested and changed to “partial” proportional odds in SAS LOGISTIC for single-

level models, but there appears to be no way to test it directly in most software for 
multilevel (mixed-effects) models (but can write custom model in SAS NLMIXED) 

 If the proportional odds assumption fails, you can use a nominal model instead 
(dummy-coding to create separate outcomes can approximate a nominal model) 
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Logit-Based Models for C Categories 
• Uses multinomial distribution: e.g., PDF for 𝐶 = 4 categories of 
𝑐 = 0,1,2,3; an observed 𝑦𝑖 = 𝑐; and indicators 𝐼 if 𝑐 = 𝑦𝑖 

            𝑓 𝑦𝑖 = 𝑐 = 𝑝𝑖𝑖
𝐼[𝑦𝑖=0]𝑝𝑖𝑖

𝐼[𝑦𝑖=1]𝑝𝑖𝑖
𝐼[𝑦𝑖=2]𝑝𝑖𝑖

𝐼[𝑦𝑖=3] 

 Maximum likelihood is then used to find the most likely parameters in the 
model to predict the probability of each response through the (usually logit) 
link function; probabilities sum to 1: ∑ 𝑝𝑖𝑐𝐶

𝑐=1 = 1 

• Other models for categorical data that use the multinomial: 
 Adjacent category logit (partial credit): Models the probability of  

each next highest category via 𝐶 − 1 submodels (e.g., if 𝐶 = 4):  
 0 vs. 1   1 vs. 2  2 vs. 3 

 Baseline category logit (nominal): Models the probability of reference vs. 
other category via 𝐶 − 1 submodels  (e.g., if 𝐶 = 4 and 0 = ref):  

 0 vs. 1   0 vs. 2  0 vs. 3 
 Nominal also assumes “independence of irrelevant alternatives (IIA)”—that the same 

coefficients would be found if the possible choices were not the same (empirically testable) 
 

 
 

Only 𝑝𝑖𝑖 for response 
𝑦𝑖 = 𝑐  gets used 
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All parameters are estimated 
separately per nominal submodel 
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Effect Size for Categorical Outcomes 
• Because models for categorical outcomes are built using submodels 

for binary outcomes, odds ratios (OR) can still be used as an effect 
sizes for individual slopes in submodels for categorical outcomes 

 

• Pseudo-𝑅2 for categorical outcomes will be trickier to compute… 
 To use M&Z pseudo-𝑅2, you’d need to represent the sources of variance 

for each binary submodel, which translates readily into nominal models, 
but not so much into cumulative or adjacent-category models 

 When it doubt (and you must provide some type of 𝑅2 value), find a way 
to correlate actual outcomes with a similarly-ranged model-predicted 
outcome that still maintains error; here, do this for each person: 
 Binary: draw a random 0/1 value from a Bernoulli distribution with a mean 

given by their predicted probability of a 1  
 Categorical: calculate predicted probability of each of 𝐶 categories, then 

draw from a random multinomial distribution with those probabilities  
 Type of correlation will be dictated by outcome type (e.g., tetrachoric for 

binary or nominal submodels, polychoric or Spearman for ordinal response) 
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Wrapping Up: Significant Differences 
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General(ized) 
Models for 
Conditionally 
Normal Outcomes 

Generalized Models 
for Categorical 
Outcomes 
 

What is predicted? 𝑦𝑖 directly (via 
“identity link 
function”) 

Link-transformed 
probability of “1” or “0” 
(via logit, probit, etc.) 

What estimator and conditional 
distribution (i.e., for 𝑦𝑖 after 
predictors) are typically used? 

REML (is equal to 
OLS) and normal 

ML and multinomial 
(with Bernoulli as 
special case with 𝐶 = 2) 

How are global and specific 
effect sizes assessed? 

Global: True 𝑅2 

Specific: 𝑑, 𝑟, or 
standardized slopes 

Global: Pseudo-𝑅2 

Specific: usually odds 
ratios (or less common, 
convert 𝑡 into 𝑑 or 𝑟) 

Can fixed effect estimates be 
compared directly between 
models? 

Yes No, because they 
change scale with total 
variance… see Winship 
& Mare (1983, 1984) 
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