# Example 4b: Multivariate General Linear Models for Family (Triadic) Data Part 1 in SAS MIXED and STATAMIXED; Part 2 also in Mplus and STATA SEM (complete syntax and output available for SAS and STATA electronically)

These data were collected as part of a study of family dynamics conducted at Penn State University. The sample for this example includes 141 families with data from three family members: a mother, a father, and an adult child. The example outcome is a scale mean (range from 1–4) of attitudes about gender roles in marriage, in which higher scores indicate more conservative attitudes. The example predictors are the gender of the adult child (0=girl, 1=boy) and the years of education of each family member (centered such that 0=12 years). The observed outcome distributions of the showed some positive skew (with an observed floor effect for the adult children), but a conditional multivariate normal distribution appears to be adequate. This is evidenced in the final model by a Pearson  $\chi^2/DF \approx .30$  for each outcome, as well as predicted outcomes that stayed within the outcome bounds without the use a link function to do so.

We will predict all family members' outcomes simultaneously two ways. In Part 1 we will estimate multivariate general linear models in SAS MIXED and STATA MIXED with conditional normal distributions using residual maximum likelihood (REML), and we will text fixed effects using Satterthwaite denominator degrees of freedom. Note that STATA provides incorrect AIC and BIC values using REML (it counts all parameters instead of variance parameters only), so those values are not referred to below. In Part 2, we will estimate the same models using path analysis in Mplus and STATA SEM, whose software restrictions mean we must switch to maximum likelihood and text fixed effects without denominator degrees of freedom. Finally, we will use an unstructured **R** matrix for all models (in which all variances and covariances are estimated separately without constraints).

Part 1: Multivariate General Linear Models via Univariate MIXED Software

## Original data in wide format (was one row per family, person variables in separate columns):

|   | FamilyID:<br>Family ID<br>Number | KidBoy: Kid's<br>Gender (0=girl,<br>1=boy) | KidEd12: Kid's<br>Years of<br>Education<br>(0=12) | MomEd12:<br>Mother's Years<br>of Edcation<br>(0=12) | DadEd12:<br>Father's Years<br>of Edcation<br>(0=12) | KidMarital:<br>Kid's Marital<br>Gender<br>Attitudes Mean<br>(1-4) | MomMarital:<br>Mom's Marital<br>Gender<br>Attitudes Mean<br>(1-4) | DadMarital:<br>Dad's Marital<br>Gender<br>Attitudes Mean<br>(1-4) |  |  |  |
|---|----------------------------------|--------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| 1 | 3996                             | 1                                          | 2                                                 | 2                                                   | 2                                                   | 1                                                                 | 1.8333333333                                                      | 1                                                                 |  |  |  |
| 2 | 4425                             | 1                                          | 3                                                 | 0                                                   | 0                                                   | 1                                                                 | 1.3333333333                                                      | 2.5                                                               |  |  |  |

#### New data in stacked format (one row per person per family) after transformation code below:

| _ |   |                                  |                                            | `                                                 |                                                     |                                                     |                 |                                         |                                    |                                 |                                                   |                                                       |
|---|---|----------------------------------|--------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------|-----------------------------------------|------------------------------------|---------------------------------|---------------------------------------------------|-------------------------------------------------------|
|   |   | FamilyID:<br>Family ID<br>Number | KidBoy: Kid's<br>Gender (0=girl,<br>1=boy) | KidEd12: Kid's<br>Years of<br>Education<br>(0=12) | MomEd12:<br>Mother's Years<br>of Edcation<br>(0=12) | DadEd12:<br>Father's Years<br>of Edcation<br>(0=12) | DV:<br>1K,2M,3D | kid: Is Adult<br>Child (0=no,<br>1=yes) | mom: Is<br>Mother (0=no,<br>1=yes) | dad: Is Father<br>(0=no, 1=yes) | ed12: Person's<br>Years of<br>Education<br>(0=12) | marital: Marital<br>Gender<br>Attitudes Mean<br>(1-4) |
|   | 1 | 3996                             | 1                                          | 2                                                 | 2                                                   | 2                                                   | 1.Kid           | 1                                       | 0                                  | 0                               | 2                                                 | 1                                                     |
|   | 2 | 3996                             | 1                                          | 2                                                 | 2                                                   | 2                                                   | 2.Mom           | 0                                       | 1                                  | 0                               | 2                                                 | 1.8333333333                                          |
|   | 3 | 3996                             | 1                                          | 2                                                 | 2                                                   | 2                                                   | 3.Dad           | 0                                       | 0                                  | 1                               | 2                                                 | 1                                                     |
|   | 4 | 4425                             | 1                                          | 3                                                 | 0                                                   | 0                                                   | 1.Kid           | 1                                       | 0                                  | 0                               | 3                                                 | 1                                                     |
|   | 5 | 4425                             | 1                                          | 3                                                 | 0                                                   | 0                                                   | 2.Mom           | 0                                       | 1                                  | 0                               | 0                                                 | 1.3333333333                                          |
|   | 6 | 4425                             | 1                                          | 3                                                 | 0                                                   | 0                                                   | 3.Dad           | 0                                       | 0                                  | 1                               | 0                                                 | 2.5                                                   |

#### STATA Syntax for Importing and Stacking Wide into Univariate (now one row per person per family):

```
// Define global variable for file location to be replaced in code below
    global filesave "C:\Dropbox\20_PSQF7375_Generalized\PSQF7375_Generalized_Example4b"

// Import example 4b multivariate data
    use "$filesave\Example4bWide.dta", clear

// Rename variables with numeric suffix to use with reshape (old) (new)
    rename (kidmarital mommarital dadmarital) (marital1 marital2 marital3)

// Stack data: list multivariate variables first, i(higher index) j(repeated)
    reshape long marital, i(familyid) j(DV)
```

```
// Create value labels and apply to dv
   label define dvlabel 1 "1.Kid" 2 "2.Mom" 3 "3.Dad"
   label values DV dvlabel
// Create dummy codes
   gen kid=0
  gen mom=0
  gen dad=0
  recode kid (0=1) if DV==1
  recode mom (0=1) if DV==2
   recode dad (0=1) if DV==3
// Label new variables
                         "DV: 1K,2M,3D"
   label variable DV
   label variable kid
                         "kid: Is Adult Child (0=no, 1=yes)"
   label variable mom
                         "mom: Is Mother (0=no, 1=yes)"
                          "dad: Is Father (0=no, 1=yes)"
   label variable dad
   label variable marital "marital: Marital Gender Attitudes Mean (1-4)"
SAS Syntax for Importing and Stacking Wide into Univariate (now one row per person per family):
* Define global variable for file location to be replaced in code below;
%LET filesave= C:\Dropbox\20 PSQF7375 Generalized\PSQF7375 Generalized Example4b;
* Location for SAS files for these models (uses macro variable filesave);
LIBNAME filesave "&filesave.";
* Import example 4b multivariate data into work library and stack it;
DATA work.Example4b; SET filesave.Example4bWide; * Adding own ed for demo purposes;
    DV="1.Kid"; kid=1; mom=0; dad=0; ed12=KidEd12; marital=KidMarital; OUTPUT;
    DV="2.Mom"; kid=0; mom=1; dad=0; ed12=MomEd12; marital=MomMarital; OUTPUT;
    DV="3.Dad"; kid=0; mom=0; dad=1; ed12=DadEd12; marital=DadMarital; OUTPUT;
    LABEL DV=
                   "DV: 1K,2M,3D"
                  "kid: Is Adult Child (0=no, 1=yes)"
          kid=
                  "mom: Is Mother (0=no, 1=yes)"
          mom=
                  "dad: Is Father (0=no, 1=yes)"
          dad=
                 "ed12: Person's Years of Ed (0=12)"
          marital= "marital: Marital Gender Attitudes Mean (1-4)";
     DROP KidMarital MomMarital DadMarital; * Remove original outcomes; RUN;
Model 0: Empty Means, Unstructured Variance Model for Marital Conservative Gender Attitudes
Two Ways for DV-Specific Intercept Version: \widehat{Marital_{fi}} = \beta_{00}(Dad_{fi}) + \beta_{01}(Kid_{fi}) + \beta_{02}(Mom_{fi})
display as result "STATA Empty Means, Unstructured Variance Model for Marital Attitudes"
display as result "STATA DV-Specific Intercept Version using Dummy Codes"
mixed marital c.kid c.mom c.dad, ///
        noconstant /// Remove fixed intercept
         || familyid: , noconstant variance reml residuals(unstructured,t(DV)) ///
         dfmethod(satterthwaite) dftable(pvalue)
 estat wcorrelation, covariance, // R matrix
 lincom c.kid*-1 + c.mom*1, small // Kid vs. Mom: Intercept Diff
 lincom c.kid*-1 + c.dad*1, small // Kid vs. Dad: Intercept Diff
 lincom c.mom*-1 + c.dad*1, small // Mom vs. Dad: Intercept Diff
display as result "STATA DV-Specific Intercept Version using Categorical DV"
mixed marital ibn.DV, ///
         noconstant /// Remove fixed intercept and keep all DV levels
         || familyid: , noconstant variance reml residuals(unstructured,t(DV)) ///
         dfmethod(satterthwaite) dftable(pvalue)
 estat wcorrelation, covariance, // R matrix
 estat wcorrelation,
                                   // RCORR matrix
 test (1.DV=2.DV) (1.DV=3.DV), small // DF=2 Diff in Intercept
 lincom 1.DV*-1 + 2.DV*1, small // Kid vs. Mom: Intercept Diff
 lincom 1.DV*-1 + 3.DV*1, small // Kid vs. Dad: Intercept Diff
 lincom 2.DV*-1 + 3.DV*1, small // Mom vs. Dad: Intercept Diff
```

```
TITLE2 "SAS DV-Specific Intercept Version using Dummy Codes";
PROC MIXED DATA=work.Example4b NOCLPRINT COVTEST NAMELEN=100 METHOD=REML;
    CLASS FamilyID DV;
    MODEL marital = kid mom dad / NOINT SOLUTION DDFM=Satterthwaite;
    REPEATED DV / R RCORR TYPE=UN SUBJECT=FamilyID;
    CONTRAST "DF=2 Diff in Intercept?" kid -1 mom 1, kid -1 dad 1;
    ESTIMATE "Kid vs. Mom: Intercept Diff" kid -1 mom 1;
    ESTIMATE "Kid vs. Dad: Intercept Diff" kid -1 dad 1;
    ESTIMATE "Mom vs. Dad: Intercept Diff" mom -1 dad 1;
RUN; TITLE2;
TITLE2 "SAS DV-Specific Intercept Version using Categorical DV";
PROC MIXED DATA=work.Example4b NOCLPRINT COVTEST NAMELEN=100 METHOD=REML;
    CLASS FamilyID DV;
    MODEL marital = DV / NOINT SOLUTION DDFM=Satterthwaite;
    REPEATED DV / R RCORR TYPE=UN SUBJECT=FamilyID;
    CONTRAST "DF=2 Diff in Intercept?" DV -1 0 1, DV -1 1 0;
    ESTIMATE "Kid vs. Mom: Intercept Diff" DV -1 1 0;
    ESTIMATE "Kid vs. Dad: Intercept Diff" DV -1 0 1;
    ESTIMATE "Mom vs. Dad: Intercept Diff" DV 0 -1 1;
RUN; TITLE2;
Two Ways for General Intercept Version: \widehat{Marital_{fi}} = \beta_{00} + \beta_{01}(Kid_{fi}) + \beta_{02}(Mom_{fi})
display as result "STATA General Intercept Version using Dummy Codes"
mixed marital c.kid c.mom, ///
        || familyid: , noconstant variance reml residuals(unstructured,t(DV)) ///
        dfmethod(satterthwaite) dftable(pvalue)
 estat wcorrelation, covariance, // R matrix
                                  // RCORR matrix
 estat wcorrelation,
 test (c.kid=0) (c.mom=0), small // DF=2 Diff in Intercept
 lincom _cons*1 + c.kid*1, small // Kid Intercept
 lincom cons*1 + c.mom*1, small // Mom Intercept
 lincom c.kid*-1 + c.mom*1, small // Kid vs. Mom: Intercept Diff
display as result "STATA General Intercept Version using Categorical DV"
mixed marital ib(last).DV, ///
        || familyid: , noconstant variance reml residuals(unstructured,t(DV)) ///
        dfmethod(satterthwaite) dftable(pvalue)
 estat wcorrelation, covariance, // R matrix
 lincom cons*1 + 2.DV*1, small // Mom Intercept
 lincom 1.DV*-1 + 2.DV*1, small // Kid vs. Mom: Intercept Diff
TITLE2 "SAS General Intercept Version using Dummy Codes";
PROC MIXED DATA=work.Example4b NOCLPRINT COVTEST NAMELEN=100 METHOD=REML;
    CLASS FamilyID DV;
    MODEL marital = kid mom / SOLUTION DDFM=Satterthwaite;
    REPEATED DV / R RCORR TYPE=UN SUBJECT=FamilyID;
    CONTRAST "DF=2 Diff in Intercept?" kid 1, mom 1;
    ESTIMATE "Kid Intercept" intercept 1 kid 1 mom 0; ESTIMATE "Mom Intercept" intercept 1 kid 0 mom 1;
    ESTIMATE "Kid vs. Mom: Intercept Diff" kid -1 mom 1;
RUN; TITLE2;
TITLE2 "SAS General Intercept Version using Categorical DV";
PROC MIXED DATA=work.Example4b NOCLPRINT COVTEST NAMELEN=100 METHOD=REML;
    CLASS FamilyID DV;
    MODEL marital = DV / SOLUTION DDFM=Satterthwaite;
    REPEATED DV / R RCORR TYPE=UN SUBJECT=FamilyID;
    CONTRAST "DF=2 Diff in Intercept?" DV -1 0 1, DV -1 1 0;
    ESTIMATE "Kid Intercept" intercept 1 DV 1 0 0;
    ESTIMATE "Mom Intercept"
                                       intercept 1 DV 0 1 0;
    ESTIMATE "Kid vs. Mom: Intercept Diff" DV -1 1 0;
RUN; TITLE2; TITLE1;
```

## SAS Output—Variance parameters, fit statistics, and contrasts are the same from all four Model 0 variants:

| Iteratio | n Evaluat      | Iteration H  | History<br>Res Log Like | Crite   |              |                                  | using SAS, get   |
|----------|----------------|--------------|-------------------------|---------|--------------|----------------------------------|------------------|
|          | 0              |              | 29.02493914             |         | your -       | -2LL value fro<br>o digits after | om this table to |
|          | 1              | 2 7          | 706.95470511            | 0.0000  | 0000 ger tw  | o digits after                   | the decimal.     |
| Estim    | nated R Matri  | x for FAMIL\ | /ID 3996                | Estimat | ed R Correla | ıtion Matrix                     | for FAMILYID 399 |
| Row      | Col1           | Col2         | Col3                    | Row     | Col1         | Col2                             | Col3             |
| 1        | 0.3312         | 0.04133      | 0.08240                 | 1       | 1.0000       | 0.1264                           | 0.2533           |
| 2        | 0.04133        | 0.3230       | 0.09371                 | 2       | 0.1264       | 1.0000                           | 0.2917           |
| 3        | 0.08240        | 0.09371      | 0.3196                  | 3       | 0.2533       | 0.2917                           | 1.0000           |
|          | Cova           | ariance Para | ameter Estimat          | tes     |              |                                  |                  |
|          |                |              | Standard                | Z       |              |                                  |                  |
| Cov Parm | Subject        | Estimate     | Error                   | Value   | Pr Z         |                                  |                  |
| UN(1,1)  | FamilyID       | 0.3312       | 0.03973                 | 8.34    | <.0001       | Variance a                       | cross Kids       |
| UN(2,1)  | FamilyID       | 0.04133      | 0.02796                 | 1.48    | 0.1394       | Kid-Mom Co                       | variance         |
| UN(2,2)  | FamilyID       | 0.3230       | 0.03875                 | 8.34    | <.0001       | Variance a                       | cross Moms       |
| UN(3,1)  | FamilyID       | 0.08240      | 0.02847                 | 2.89    | 0.0038       | Kid-Dad Co                       | variance         |
| UN(3,2)  | FamilyID       | 0.09371      | 0.02839                 | 3.30    | 0.0010       | Mom-Dad Co                       | variance         |
| UN(3,3)  | FamilyID       | 0.3196       | 0.03834                 | 8.34    | <.0001       | Variance a                       | cross Dads       |
|          | Fit Sta        | tistics      |                         |         |              |                                  |                  |
| -2 Res L | og Likelihoo   | d            | 706.95                  |         |              |                                  |                  |
|          | ıller is Bette |              | 719.0                   |         |              |                                  |                  |
| •        | aller is Bet   | ,            | 719.2                   |         |              |                                  |                  |
| ,        | ller is Bett   | ,            | 736.6                   |         |              |                                  |                  |
|          |                |              | Contrasts               |         |              |                                  |                  |
| Label    |                | Num DF       |                         | F Value | Pr > F       |                                  |                  |
| DF=2 Dif | f in Interce   | pt? 2        | 2 139                   | 16.19   | <.0001       |                                  |                  |

## ${\bf Model\text{-}Estimated\ Fixed\ Effects\ from\ \underline{DV\text{-}Specific\ Intercept\ Version}\ using\ Dummy\ Codes:}$

|        | Solution for Fixed Effects |          |     |         | $tal_{fi} = \beta_{00}$ | $(Dad_{fi}) + \beta_{01}(Kid_{fi}) + \beta_{02}(Mom_{fi})$ |
|--------|----------------------------|----------|-----|---------|-------------------------|------------------------------------------------------------|
|        |                            | Standard |     |         | •                       |                                                            |
| Effect | Estimate                   | Error    | DF  | t Value | Pr >  t                 |                                                            |
| kid    | 1.6295                     | 0.04864  | 139 | 33.50   | <.0001                  | Kid intercept B01                                          |
| mom    | 1.8998                     | 0.04803  | 139 | 39.55   | <.0001                  | Mom intercept BO2                                          |
| dad    | 1.9560                     | 0.04778  | 139 | 40.94   | <.0001                  | Dad intercept B00                                          |

## Model-Estimated Fixed Effects from **DV-Specific Intercept Version** using Categorical **DV**:

|        |          | Solution | for Fixed | Effects | $Marital_{fi} =$ | $\beta_{00}(Dad_{fi})$ | $)+\beta_{01}(Kid_{fi})$ | $+\beta_{02}(Mom_{fi})$ |
|--------|----------|----------|-----------|---------|------------------|------------------------|--------------------------|-------------------------|
|        | DV:      |          | Standard  |         | ,                |                        |                          | ,                       |
| Effect | 1K,2M,3D | Estimate | Error     | DF      | t Value          | Pr >  t                |                          |                         |
| DV     | 1.Kid    | 1.6295   | 0.04864   | 139     | 33.50            | <.0001                 | Kid intercept            | B01                     |
| DV     | 2.Mom    | 1.8998   | 0.04803   | 139     | 39.55            | <.0001                 | Mom intercept            | B02                     |
| DV     | 3.Dad    | 1.9560   | 0.04778   | 139     | 40.94            | <.0001                 | Dad intercept            | B00                     |

## Requested Linear Combination Estimates from **DV-Specific Intercept Version** either way:

| •                           | Estimates |          |     |         |         |           |  |  |  |
|-----------------------------|-----------|----------|-----|---------|---------|-----------|--|--|--|
|                             |           | Standard |     |         |         |           |  |  |  |
| Label                       | Estimate  | Error    | DF  | t Value | Pr >  t |           |  |  |  |
| Kid vs. Mom: Intercept Diff | 0.2702    | 0.06389  | 139 | 4.23    | <.0001  | B02 - B01 |  |  |  |
| Kid vs. Dad: Intercept Diff | 0.3264    | 0.05892  | 139 | 5.54    | <.0001  | B00 - B01 |  |  |  |
| Mom vs. Dad: Intercept Diff | 0.05619   | 0.05702  | 139 | 0.99    | 0.3261  | B00 - B02 |  |  |  |

#### Model-Estimated Fixed Effects from General Intercept Version using Dummy Codes:

```
Solution for Fixed Effects \widehat{Marital_{fl}} = \beta_{00} + \beta_{01} (Kid_{fi}) + \beta_{02} (Mom_{fi})
                             Standard
                                                                 Pr > |t|
Effect
               Estimate
                                Error
                                                    t Value
                                                                  <.0001 Dad intercept
Intercept
                 1.9560
                              0.04778
                                            139
                                                      40.94
                -0.3264
                              0.05892
                                           139
                                                      -5.54
                                                                   <.0001 Kid intercept diff B01
kid
                                                      -0.99
mom
               -0.05619
                              0.05702
                                            139
                                                                   0.3261 Mom intercept diff B02
```

#### Model-Estimated Fixed Effects from General Intercept Version using Categorical DV:

|           |          | Solution f | or Fixed Effe | ects <i>Ma</i> | $rital_{fi} = \beta_0$ | $_{00} + \beta_{01}(Ki)$ | $(d_{fi}) + \beta_{02}(Mom_{fi})$ |   |
|-----------|----------|------------|---------------|----------------|------------------------|--------------------------|-----------------------------------|---|
|           | DV:      |            | Standard      |                | ,                      | •                        | ,                                 |   |
| Effect    | 1K,2M,3D | Estimate   | Error         | DF             | t Value                | Pr >  t                  |                                   |   |
| Intercept |          | 1.9560     | 0.04778       | 139            | 40.94                  | <.0001                   | Dad intercept BOO                 | 0 |
| DV        | 1.Kid    | -0.3264    | 0.05892       | 139            | -5.54                  | <.0001                   | Kid intercept diff BO             | 1 |
| DV        | 2.Mom    | -0.05619   | 0.05702       | 139            | -0.99                  | 0.3261                   | Mom intercept diff BO2            | 2 |
| DV        | 3.Dad    | 0          |               |                |                        |                          |                                   |   |

## Requested Linear Combination Estimates from General Intercept Version either way:

**Estimates** Standard Error Label Estimate DF t Value Pr > |t|Kid Intercept 1.6295 0.04864 139 33.50 <.0001 B00 + B01 Mom Intercept 1.8998 0.04803 139 39.55 <.0001 B00 + B02 Kid vs. Mom: Intercept Diff <.0001 B02 - B01 0.2702 0.06389 139 4.23

To avoid confusion, we will proceed using the first of the four approaches: DV-specific intercepts implemented via dummy codes. This approach also aligns most directly with path model variants of these models (Part 2).

## Model 1: DV-Specific Intercept Version adding Kid's Gender as Predictor for Each Attitude

```
\widehat{Marital_{fi}} = \beta_{00}(Dad_{fi}) + \beta_{01}(Kid_{fi}) + \beta_{02}(Mom_{fi})
            +\beta_{10} \big( Dad_{fi} \big) (KidBoy_f) + \beta_{11} \big( Kid_{fi} \big) (KidBoy_f) + \beta_{12} (Mom_{fi}) (KidBoy_f)
display as result "STATA DV-Specific Intercept Version -- Add Kid Gender"
mixed marital c.kid c.mom c.dad c.kid#c.kidboy c.mom#c.kidboy c.dad#c.kidboy,
          noconstant /// Remove fixed intercept
          || familyid: , noconstant variance reml residuals(unstructured,t(DV)) ///
          dfmethod(satterthwaite) dftable(pvalue)
  estat wcorrelation, covariance, // R matrix
                                       // RCORR matrix
  estat wcorrelation,
  test (c.kid#c.kidboy=c.mom#c.kidboy)(c.kid#c.kidboy=c.dad#c.kidboy), small // DF=2 Diff in Kidboy Effect
  lincom c.kid#c.kidboy*-1 + c.mom#c.kidboy*1, small // Kid vs. Mom: Kidboy Effect Diff
  lincom c.kid#c.kidboy*-1 + c.dad#c.kidboy*1, small // Kid vs. Dad: Kidboy Effect Diff
  lincom c.mom#c.kidboy*-1 + c.dad#c.kidboy*1, small // Mom vs. Dad: Kidboy Effect Diff
  lincom 0.5*(c.mom#c.kidboy*1 + c.dad#c.kidboy*1), small // Parent: Kidboy Effect
  lincom 0.5*(c.kid#c.kidboy*-2 + c.mom#c.kidboy*1 + c.dad#c.kidboy*1), small // M vs. D: Kidboy Effect Diff
TITLE "SAS DV-Specific Intercept Version -- Add Kid Gender";
PROC MIXED DATA=work.Example4b NOCLPRINT COVTEST NAMELEN=100 METHOD=REML;
     CLASS FamilyID DV;
     MODEL marital = kid mom dad kid*KidBoy mom*KidBoy dad*KidBoy
                         / NOINT SOLUTION DDFM=Satterthwaite;
     REPEATED DV / R RCORR TYPE=UN SUBJECT=FamilyID;
     CONTRAST "DF=2 Diff in KidBoy Effect?" kid*KidBoy -1 Mom*KidBoy 1, kid*KidBoy -1 Dad*KidBoy 1;
      ESTIMATE "Kid vs. Mom: KidBoy Effect Diff" kid*KidBoy -1 Mom*KidBoy 1;
      ESTIMATE "Kid vs. Dad: KidBoy Effect Diff" kid*KidBoy -1 Dad*KidBoy 1;
      ESTIMATE "Mom vs. Dad: KidBoy Effect Diff" Mom*KidBoy -1 Dad*KidBoy 1;
      ESTIMATE "Parent KidBoy Effect" Mom*KidBoy 1 Dad*KidBoy 1 / DIVISOR=2;
      ESTIMATE "Kid vs. Parents: KidBoy Effect Diff" Kid*KidBoy -2 Mom*KidBoy 1 Dad*KidBoy 1 / DIVISOR=2;
RUN; TITLE;
```

## **SAS Output for Model 1:**

| Row          | Col1        | FAMILYID 399<br>Col2<br>.03725 0. | 6<br>Col3<br>07733 | Estimated<br>Row<br>1 | R Corre:<br>Col1<br>1.0000 | lation Matri<br>Col2<br>0.1168 | x for FAMILY<br>Col3<br>0.2440 | ID 3996          |
|--------------|-------------|-----------------------------------|--------------------|-----------------------|----------------------------|--------------------------------|--------------------------------|------------------|
| 2 0.0        | 03725       | 0.3244 0.                         | 09315              | 2                     | 0.1168                     | 1.0000                         | 0.2890                         |                  |
| 3 0.0        | 07733 0     | .09315 0                          | .3203              | 3                     | 0.2440                     | 0.2890                         | 1.0000                         |                  |
|              |             |                                   |                    |                       |                            |                                |                                |                  |
| F            | it Statist  | ics                               |                    |                       |                            |                                |                                |                  |
| -2 Res Log l | ikelihood   | 707                               | .01                |                       |                            |                                |                                |                  |
| AIC (Smaller | r is Better | 719                               | .0                 |                       |                            |                                |                                |                  |
| AICC (Smalle | er is Bette | r) 719                            | .2                 |                       |                            |                                |                                |                  |
| BIC (Smaller | r is Better | 736                               | .7                 |                       |                            |                                |                                |                  |
|              |             |                                   |                    |                       |                            |                                |                                |                  |
|              |             | Contrast                          | s                  |                       |                            |                                |                                |                  |
| Label        |             | Num                               | DF Den DF          | F Value               | Pr >                       | F                              |                                |                  |
| DF=2 Diff in | n KidBoy Ef | fect?                             | 2 138              | 1.90                  | 0.152                      | 9                              |                                |                  |
|              |             |                                   |                    |                       |                            |                                |                                |                  |
|              | Sol         | ution for Fix                     | ed Effects         |                       |                            |                                |                                |                  |
|              |             | Standard                          |                    |                       |                            |                                |                                |                  |
| Effect       | Estimate    |                                   |                    |                       | r >  t                     |                                |                                |                  |
| kid          | 1.4950      |                                   | 138                | 22.81                 | <.0001                     |                                | •                              |                  |
| mom          | 1.8703      |                                   | 138                | 28.06                 | <.0001                     |                                | •                              |                  |
| dad          | 1.9178      |                                   | 138                | 28.95                 | <.0001                     |                                | •                              |                  |
| kid*KidBoy   | 0.2811      |                                   | 138                | 2.97                  | 0.0035                     |                                | for Kid B11                    |                  |
| mom*KidBoy   | 0.06152     |                                   | 138                | 0.64                  | 0.5242                     |                                | for Mom B12                    |                  |
| dad*KidBoy   | 0.07970     | 0.09575                           | 138                | 0.83                  | 0.4066                     | girl vs boy                    | for Dad B10                    |                  |
|              |             |                                   |                    |                       |                            |                                |                                |                  |
|              |             |                                   | Estima             |                       |                            |                                |                                |                  |
|              |             |                                   |                    | Standard              |                            | _                              |                                |                  |
| Label        |             |                                   | Estimate           |                       |                            |                                | Pr >  t                        |                  |
|              |             | idBoy Effect                      | -0.2196            |                       |                            |                                | 0.0860                         |                  |
|              |             | idBoy Effect                      | -0.2014            |                       |                            |                                | 0.0877                         |                  |
|              |             | idBoy Effect                      | 0.01818            |                       |                            |                                | 0.8741                         |                  |
| Parent KidBo | •           |                                   | 0.07061            |                       |                            |                                | 0.3614                         | ,                |
| Kid vs. Pare | ents: KidBo | y Effect Diff                     | -0.2105            | 0.1079                | 138                        | -1.95                          | 0.0531                         | .5*(B10+B12)-B11 |
|              |             |                                   |                    |                       |                            |                                |                                |                  |

It looks like we need to control for the effect of kid gender only for the kid. In the next model we'll test the effects of each person's education on their own attitude, followed by the incremental effect of dad's education on kid and mom attitudes after controlling for their own education.

## Model 2: DV-Specific Intercept Version adding Own Education as Predictor of Own Attitude

```
\widehat{Marital_{fi}} = \beta_{00}(Dad_{fi}) + \beta_{01}(Kid_{fi}) + \beta_{02}(Mom_{fi}) + \beta_{11}(Kid_{fi})(KidBoy_f)
                   +\beta_{20}(Dad_{fi})(DadEd_f-12)+\beta_{31}(Kid_{fi})(KidEd_f-12)+\beta_{42}(Mom_{fi})(MomEd_f-12)
display as result "STATA DV-Specific Intercept Version -- KidBoy on Kid Only, Add Own Education"
mixed marital c.kid c.mom c.dad c.kid#c.kidboy ///
               c.kid#c.kided12 c.mom#c.momed12 c.dad#c.daded12, ///
         noconstant /// Remove fixed intercept
          || familyid: , noconstant variance reml residuals(unstructured,t(DV)) ///
          dfmethod(satterthwaite) dftable(pvalue)
  estat wcorrelation, covariance, // R matrix
  estat wcorrelation,
                                      // RCORR matrix
TITLE "SAS DV-Specific Intercept Version -- KidBoy on Kid Only, Add Own Education";
PROC MIXED DATA=work.Example4b NOCLPRINT COVTEST NAMELEN=100 METHOD=REML;
     CLASS FamilyID DV;
     MODEL marital = kid mom dad kid*KidBoy kid*KidEd12 mom*MomEd12 dad*DadEd12
                        / NOINT SOLUTION DDFM=Satterthwaite;
     REPEATED DV / R RCORR TYPE=UN SUBJECT=FamilyID;
RUN; TITLE;
```

## **SAS Output for Model 2:**

```
Estimated R Matrix for FAMILYID 3996
                                                 Estimated R Correlation Matrix for FAMILYID
 Row
            Col1
                        Col2
                                     Co13
          0.3156
                     0.03837
                                  0.07669
                                                 Row
                                                            Col1
                                                                         Co12
                                                                                     Co13
   1
   2
         0.03837
                      0.3205
                                  0.08441
                                                    1
                                                           1.0000
                                                                        0.1207
                                                                                    0.2501
   3
         0.07669
                     0.08441
                                   0.2979
                                                    2
                                                           0.1207
                                                                        1.0000
                                                                                    0.2732
                                                           0.2501
                                                                        0.2732
                                                                                    1.0000
           Fit Statistics
-2 Res Log Likelihood
                                708.64
AIC (Smaller is Better)
                                 720.6
AICC (Smaller is Better)
                                 720.8
BIC (Smaller is Better)
                                 738.3
                         Solution for Fixed Effects
                           Standard
                                          DF
                                                           Pr > |t|
Effect
               Estimate
                               Error
                                                t Value
                 1.5117
                            0.09814
                                         141
                                                  15.40
                                                            <.0001 Kid intercept B01
kid
mom
                 1.9359
                            0.05976
                                         142
                                                  32.39
                                                             <.0001 Mom intercept B02
                                                             <.0001 Dad intercept B00
dad
                 2.0700
                            0.05663
                                         145
                                                  36.55
kid*KidBoy
                 0.2641
                            0.09204
                                         137
                                                   2.87
                                                             0.0048 girl vs boy for Kid B11
kid*KidEd12
               -0.00280
                            0.02344
                                         138
                                                  -0.12
                                                             0.9052 Kid Ed for kid B31
mom*MomEd12
               -0.01725
                            0.01711
                                         142
                                                  -1.01
                                                             0.3150 Mom Ed for mom B42
dad*DadEd12
               -0.05447
                            0.01570
                                         143
                                                  -3.47
                                                             0.0007 Dad Ed for dad B20
```

## Model 3: DV-Specific Intercept Version adding Dad Education as Predictor of Kid and Mom Attitudes

```
\widehat{Marital_{fi}} = \beta_{00}(Dad_{fi}) + \beta_{01}(Kid_{fi}) + \beta_{02}(Mom_{fi}) + \beta_{11}(Kid_{fi})(KidBoy_f)
          +\beta_{20}(Dad_{fi})(DadEd_f-12)+\beta_{31}(Kid_{fi})(KidEd_f-12)+\beta_{42}(Mom_{fi})(MomEd_f-12)
          +\beta_{21}(Kid_{fi})(DadEd_f - 12) + \beta_{22}(Mom_{fi})(DadEd_f - 12)
display as result "STATA DV-Specific Intercept Version -- Add Dad Educ (Control for Own Educ)"
mixed marital c.kid c.mom c.dad c.kid#c.kidboy c.kid#c.kided12 c.mom#c.momed12 ///
               c.dad#c.daded12 c.kid#c.daded12 c.mom#c.daded12,
         noconstant /// Remove fixed intercept
         || familyid: , noconstant variance reml residuals(unstructured,t(DV)) ///
         dfmethod(satterthwaite) dftable(pvalue)
  estat wcorrelation, covariance, // R matrix
  estat wcorrelation.
                                     // RCORR matrix
  lincom c.kid#c.daded12*-1 + c.mom#c.daded12*1, small // Kid vs. Mom: Dad Educ Effect Diff
  lincom c.kid#c.daded12*-1 + c.dad#c.daded12*1, small // Kid vs. Dad: Dad Educ Effect Diff
  lincom c.mom#c.daded12*-1 + c.dad#c.daded12*1, small // Mom vs. Dad: Dad Educ Effect Diff
TITLE "SAS DV-Specific Intercept Version -- Add Dad Educ (Controlling for Own Educ)";
PROC MIXED DATA=work.Example4b NOCLPRINT COVTEST NAMELEN=100 METHOD=REML;
     CLASS FamilyID DV;
     MODEL marital = kid mom dad kid*KidBoy Kid*KidEd12 Mom*MomEd12 Dad*DadEd12
                      Kid*DadEd12 Mom*DadEd12 / NOINT SOLUTION DDFM=Satterthwaite;
     REPEATED DV / R RCORR TYPE=UN SUBJECT=FamilyID;
     ESTIMATE "Kid vs. Mom: Dad Educ Effect Diff" kid*DadEd12 -1 mom*DadEd12 1;
     ESTIMATE "Kid vs. Dad: Dad Educ Effect Diff" kid*DadEd12 -1 dad*DadEd12 1;
     ESTIMATE "Mom vs. Dad: Dad Educ Effect Diff" mom*DadEd12 -1 dad*DadEd12 1;
RUN; TITLE;
```

## **SAS Output for Model 3:**

| Estimated R Matrix for FAMILYID 3996 |         |         |         |     | Estimated R Correlation Matrix for FAMILYID 3996 |        |        |  |  |  |
|--------------------------------------|---------|---------|---------|-----|--------------------------------------------------|--------|--------|--|--|--|
| Row                                  | Col1    | Col2    | Col3    | Row | Col1                                             | Col2   | Col3   |  |  |  |
| 1                                    | 0.3179  | 0.03856 | 0.07720 | 1   | 1.0000                                           | 0.1204 | 0.2508 |  |  |  |
| 2                                    | 0.03856 | 0.3229  | 0.08514 | 2   | 0.1204                                           | 1.0000 | 0.2744 |  |  |  |
| 3                                    | 0.07720 | 0.08514 | 0.2982  | 3   | 0.2508                                           | 0.2744 | 1.0000 |  |  |  |

| Fit Statistics           |        |
|--------------------------|--------|
| -2 Res Log Likelihood    | 720.78 |
| AIC (Smaller is Better)  | 732.8  |
| AICC (Smaller is Better) | 733.0  |
| BIC (Smaller is Better)  | 750.4  |

|          | _   |       |         |
|----------|-----|-------|---------|
| Solution | fon | Eivod | Efforto |
|          |     |       |         |

|          | Standard                                                                             |                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                          |
|----------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimate | Error                                                                                | DF                                                                                                                                            | t Value                                                                                                                                                                          | Pr >  t                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                          |
| 1.5123   | 0.1003                                                                               | 140                                                                                                                                           | 15.08                                                                                                                                                                            | <.0001                                                                                                                                                                                                                                  | Kid intercept B01                                                                                                                                                                                                                                                                                        |
| 1.9373   | 0.06305                                                                              | 138                                                                                                                                           | 30.73                                                                                                                                                                            | <.0001                                                                                                                                                                                                                                  | Mom intercept B02                                                                                                                                                                                                                                                                                        |
| 2.0707   | 0.05769                                                                              | 138                                                                                                                                           | 35.89                                                                                                                                                                            | <.0001                                                                                                                                                                                                                                  | Dad intercept B00                                                                                                                                                                                                                                                                                        |
| 0.2639   | 0.09258                                                                              | 136                                                                                                                                           | 2.85                                                                                                                                                                             | 0.0050                                                                                                                                                                                                                                  | girl vs boy for Kid B11                                                                                                                                                                                                                                                                                  |
| -0.00264 | 0.02458                                                                              | 136                                                                                                                                           | -0.11                                                                                                                                                                            | 0.9147                                                                                                                                                                                                                                  | Kid Ed for kid B31                                                                                                                                                                                                                                                                                       |
| -0.01624 | 0.02068                                                                              | 137                                                                                                                                           | -0.79                                                                                                                                                                            | 0.4338                                                                                                                                                                                                                                  | Mom Ed for mom B42                                                                                                                                                                                                                                                                                       |
| -0.05484 | 0.01654                                                                              | 138                                                                                                                                           | -3.32                                                                                                                                                                            | 0.0012                                                                                                                                                                                                                                  | Dad Ed for dad B20                                                                                                                                                                                                                                                                                       |
| -0.00048 | 0.01791                                                                              | 138                                                                                                                                           | -0.03                                                                                                                                                                            | 0.9787                                                                                                                                                                                                                                  | Dad Ed for kid B21                                                                                                                                                                                                                                                                                       |
| -0.00169 | 0.02069                                                                              | 141                                                                                                                                           | -0.08                                                                                                                                                                            | 0.9349                                                                                                                                                                                                                                  | Dad Ed for mom B22                                                                                                                                                                                                                                                                                       |
|          | 1.5123<br>1.9373<br>2.0707<br>0.2639<br>-0.00264<br>-0.01624<br>-0.05484<br>-0.00048 | Estimate Error 1.5123 0.1003 1.9373 0.06305 2.0707 0.05769 0.2639 0.09258 -0.00264 0.02458 -0.01624 0.02068 -0.05484 0.01654 -0.00048 0.01791 | Estimate Error DF 1.5123 0.1003 140 1.9373 0.06305 138 2.0707 0.05769 138 0.2639 0.09258 136 -0.00264 0.02458 136 -0.01624 0.02068 137 -0.05484 0.01654 138 -0.00048 0.01791 138 | Estimate Error DF t Value 1.5123 0.1003 140 15.08 1.9373 0.06305 138 30.73 2.0707 0.05769 138 35.89 0.2639 0.09258 136 2.85 -0.00264 0.02458 136 -0.11 -0.01624 0.02068 137 -0.79 -0.05484 0.01654 138 -3.32 -0.00048 0.01791 138 -0.03 | Estimate Error DF t Value Pr >  t  1.5123 0.1003 140 15.08 <.0001 1.9373 0.06305 138 30.73 <.0001 2.0707 0.05769 138 35.89 <.0001 0.2639 0.09258 136 2.85 0.0050 -0.00264 0.02458 136 -0.11 0.9147 -0.01624 0.02068 137 -0.79 0.4338 -0.05484 0.01654 138 -3.32 0.0012 -0.00048 0.01791 138 -0.03 0.9787 |

#### Estimates

|                                   |          | o canaan a |     |         |         |           |
|-----------------------------------|----------|------------|-----|---------|---------|-----------|
| Label                             | Estimate | Error      | DF  | t Value | Pr >  t |           |
| Kid vs. Mom: Dad Educ Effect Diff | -0.00121 | 0.02601    | 162 | -0.05   | 0.9629  | B22 - B21 |
| Kid vs. Dad: Dad Educ Effect Diff | -0.05436 | 0.02127    | 143 | -2.56   | 0.0117  | B20 - B21 |
| Mom vs. Dad: Dad Educ Effect Diff | -0.05314 | 0.02335    | 154 | -2.28   | 0.0242  | B20 - B22 |

Moral of the story? Multivariate models can be estimated in univariate software to capture the relationships between person-specific predictors and person-specific outcomes (such as in "actor-partner" models for dyadic data as well).

Standard

## Example results section for Part 1 Models 0–3:

The extent to which gender and education predicted marital attitudes was examined in 141 families, in which responses were collected from adult children, their mothers, and their fathers, and in which higher outcomes indicated more conservative marital attitudes (i.e., gender-traditional attitudes measured as the mean across items on a scale of 1 to 4). Given that the outcomes were correlated within families, multivariate general linear models (i.e., with conditionally multivariate normal residuals) were used to predict all three outcomes for each family simultaneously. All models were estimated using residual maximum likelihood and Satterthwaite denominator degrees of freedom. All models allowed separate means and residual variances across the three outcomes for the three types of family members, as well as covariances among the residuals from the same family. ESTIMATE statements were used to estimate simple slopes and simple slope differences as linear combinations of the model fixed effects. Prior to adding predictors, an empty means model (i.e., an unconditional model with no predictors) revealed significant differences in marital attitudes across type of family member, F(2,139) = 1.19, p < .001. Although mean attitudes were similar across mothers and fathers (1.90 and 1.96, respectively, p = .27), the mean attitudes of children (1.63) were significantly less conservative on average than those of their parents (p < .001 for both comparisons).

To begin, we examined the extent to which the gender of the adult child (coded 0=woman, 1=man) who was surveyed was related to the martial attitudes of each type of family member. Although the attitudes of adult male children were significantly more conservative than those of adult female children (diff = 0.28, p = .004), there were no significant effects of the gender of the adult child for the marital attitudes of their mothers or fathers. Thus, we retained a predictor for the gender of the adult child only for the adult child's outcome.

We then examined the extent to which the education (centered at 12 years) of each type of family member predicted their own attitudes, which was significant only for the father: for every additional year of father's education, his own attitudes were expected to be less conservative by 0.05 (p < .001). Next, we examined whether father's education incrementally predicted the marital attitudes of the mother or adult child after controlling for their own education, but neither effect was significant (and the effect of father's education on his own attitudes was significantly larger).

But how do we know if Model 3 is sufficient?? Stay tuned for Part 2 using path analysis (and Model 4 using MIXED)!

## Part 2: Multivariate General Linear Models via Path Analysis Software

In Part 2, we begin by estimating Model 3 using path analysis in Mplus and STATA SEM, whose software restrictions mean we must switch to maximum likelihood and test fixed effects without denominator degrees of freedom.

## STATA Syntax to import wide-format data for path models:

```
// Import example 4b multivariate data
   use "$filesave\Example4bWide.dta", clear
// Example of how to export .csv file for use in Mplus
// Replace all missing values with -999 for Mplus
  mvencode all, mv(-999)
// export delimited below: using lists the path and name of the new .csv file
// replace means it will be replaced if a file already exists with that name
// delimiter indicates a comma-delimited file
// nolabel will save actual data (numbers) instead of any value labels included
// novarnames tells it not to write the names to the top of the .csv file
   export delimited using "$filesave\Example4bWide1.csv", ///
                    delimiter(",") replace nolabel novarnames
// Re-import example 4b multivariate data (without missing value codes)
   use "$filesave\Example4bWide.dta", clear
SAS Syntax to prepare wide-format data file in .csv format for Mplus:
* Export original wide format to Mplus;
DATA work.ForMplus; SET filesave.Example4bWide;
     * Fixing any missing values;
    ARRAY vars(8) FamilyID KidBoy KidEd12 MomEd12 DadEd12 KidMarital MomMarital DadMarital;
          DO i=1 TO 8; IF vars(i)=. THEN vars(i)=-999; END; RUN;
PROC EXPORT DATA=work.ForMplus OUTFILE= "&filesave.\Example4bWide.csv"
    DBMS=CSV REPLACE; PUTNAMES=NO; RUN;
```

## Model 3: DV-Specific Intercept Version adding Dad Education as Predictor of Kid and Mom Attitudes

```
\begin{split} \widehat{Marital_{fi}} &= \beta_{00} \big( Dad_{fi} \big) + \beta_{01} \big( Kid_{fi} \big) + \beta_{02} \big( Mom_{fi} \big) + \beta_{11} \big( Kid_{fi} \big) \big( KidBoy_f \big) \\ &+ \beta_{20} \big( Dad_{fi} \big) \big( DadEd_f - 12 \big) + \beta_{31} \big( Kid_{fi} \big) \big( KidEd_f - 12 \big) + \beta_{42} \big( Mom_{fi} \big) \big( MomEd_f - 12 \big) \\ &+ \beta_{21} \big( Kid_{fi} \big) \big( DadEd_f - 12 \big) + \beta_{22} \big( Mom_{fi} \big) \big( DadEd_f - 12 \big) \end{split}
```

#### STATA Syntax and Output for Previous Model 3 as a Path Model (estimated with ML; no denominator DF):

```
* /// means continue the command + comment
* // means comment only
display as result "STATA Model 3: Own Education + Dad Education a Predictor of Each Attitude"
                                                       111
                                                       /// All intercepts estimated (by default)
    (kidmarit mommarit dadmarit <- _cons)</pre>
    (kidmarit <- kidboy kided12)
                                                       /// Regressions: y outcomes ON x predictors
    (mommarit <- momed12)</pre>
    (kidmarit mommarit dadmarit <- daded12),</pre>
                                                       ///
                                                       /// All residual variances estimated (by default)
    var(e.kidmarit e.mommarit e.dadmarit)
    covariance(e.kidmarit*e.mommarit
                                                       /// All pairwise residual covariances (not default)
                  e.mommarit*e.dadmarit
                                                       111
                                                       ///
                  e.kidmarit*e.dadmarit)
    method(mlmv)
                                                        // Full-information ML
    lincom _b[mommarital:daded12] - _b[kidmarital:daded12] // Kid v. Mom: Dad Educ Effect Diff lincom _b[mommarital:daded12] - _b[kidmarital:daded12] // Kid v. Mom: Dad Educ Effect Diff lincom _b[mommarital:daded12] - _b[kidmarital:daded12] // Kid v. Mom: Dad Educ Effect Diff
                                                   // Print parameter labels, too (to use in lincom)
    sem, coeflegend
    sem, standardized
                                                   // Print fully standardized solution, too
    estat gof, stats(all)
                                                   // Print fit statistics
    estat eggof
                                                   // Print R2 per variable
```

```
// Print how far off each predicted covariance is
     estat residuals
     estat mindices, minchi2(3.84) showpclass(all) // Print voodoo to improve model fit at p<.05
                                                      Number of obs
Structural equation model
Estimation method = mlmv
Log likelihood = -1374.4822 -> Does NOT match Mplus, but rest of the fit tests do match
UNSTANDARDIZED SOLUTION
                                                     \capTM
                                        Coef. Std. Err.
                                                                 z P>|z| [95% Conf. Interval]
                                         These unstandardized <- paths are the fixed slopes in MIXED.
  kidmarital <-

      kidboy |
      .2638938
      .0914365
      2.89
      0.004
      .0846816
      .4431059

      kided12 |
      -.002641
      .0242338
      -0.11
      0.913
      -.0501385
      .0448565

      daded12 |
      -.0004795
      .0176566
      -0.03
      0.978
      -.0350857
      .0341268

      _cons |
      1.512271
      .0989087
      15.29
      0.000
      1.318414
      1.706129

                                                                                                               В11
                                                                                                               B31
                                                                                                               B21
                           ______
  mommarital <-

    momed12 | -.0162593
    .0211854
    -0.77
    0.443
    -.0577819
    .0252634

    daded12 | -.0016793
    .0206962
    -0.08
    0.935
    -.0422431
    .0388845

    _cons | 1.937305
    .062596
    30.95
    0.000
    1.814619
    2.059991

                            .____+___
  dadmarital <-
                        B20
                                                                                                               B00
                            Below are the residual variances and covariances from the \mathbf{R} matrix in MIXED.
              var(e.kidmarital)| .3091381 .0369567
                                                                                    .2445646 .3907613
                                                                                                               UN(1,1)
              var(e.mommarital)| .3161529 .0379111
                                                                                    .2499347 .3999152 UN(2,2)
              var(e.dadmarital)| .2938981 .0351275
                                                                                    .2325192 .3714795
                                                                                                             UN(3,3)

      cov(e.kidmarital,e.mommarital)|
      .0380059
      .0266924
      1.42
      0.154
      -.0143102
      .090322
      UN(2,1)

      cov(e.kidmarital,e.dadmarital)|
      .0761007
      .0263037
      2.89
      0.004
      .0245463
      .1276551
      UN(3,1)

      cov(e.mommarital,e.dadmarital)|
      .0839167
      .0273732
      3.07
      0.002
      .0302662
      .1375671
      UN(3,2)

LR test of model vs. saturated: chi2(6) = 10.93, Prob > chi2 = 0.0906
     lincom b[mommarital:daded12] - b[kidmarital:daded12] // Kid v. Mom: Dad Educ Effect Diff
 ( 1) - [kidmarital]daded12 + [mommarital]daded12 = 0
                    Coef. Std. Err. z P>|z|
                                                               [95% Conf. Interval]
        (1) | -.0011998 .0258607 -0.05 0.963 -.0518858 .0494862 B22 - B21
     lincom b[mommarital:daded12] - b[kidmarital:daded12] // Kid v. Mom: Dad Educ Effect Diff
 (1) - [kidmarital]daded12 + [mommarital]daded12 = 0
______
                     Coef. Std. Err.
                                              z P>|z| [95% Conf. Interval]
______
        (1) | -.0011998 .0258607 -0.05 0.963 -.0518858 .0494862 B20 - B21
     lincom b[mommarital:daded12] - b[kidmarital:daded12] // Kid v. Mom: Dad Educ Effect Diff
 (1) - [kidmarital]daded12 + [mommarital]daded12 = 0
             | Coef. Std. Err. z P>|z| [95% Conf. Interval]
         (1) | -.0011998 .0258607 -0.05 0.963 -.0518858 .0494862 B20 - B22
    sem, coeflegend
                                                // Print parameter labels, too (to use in lincom)
                                | Coef. Legend
Structural
                                                                              This table from sem, coeflegend
  kidmarital <-
                        provides the parameter names for
                                                                              the LINCOM statements above.
  mommarital <-
```

momed12 | -.0162593 \_b[mommarital:momed12] daded12 | -.0016793 \_b[mommarital:daded12]

```
_cons | 1.937305 _b[mommarital:_cons]
                          daded12 | -.0548368 _b[dadmarital:daded12] _cons | 2.070718 _b[dadmarital:_cons]
               var(e.kidmarital)| .3091381 _b[var(e.kidmarital):_cons]
var(e.mommarital)| .3161529 _b[var(e.mommarital):_cons]
var(e.dadmarital)| .2938981 _b[var(e.dadmarital):_cons]
______
LR test of model vs. saturated: chi2(6) = 10.93, Prob > chi2 = 0.0906
                                                     // Print fully standardized solution, too
    sem, standardized
     ______
 Standardized Solution:
                                                          OTM
                                    Coef. Std. Err. z P>|z| [95% Conf. Interval]
 All variables M=0, SD=1
                                     These standardized <- paths are standardized regression coefficients.
Structural
  kidmarital <-

      kidboy |
      .2306503
      .0770785
      2.99
      0.003
      .0795792
      .3817214

      kided12 |
      -.0090898
      .0834042
      -0.11
      0.913
      -.1725591
      .1543794

      daded12 |
      -.0023406
      .0861915
      -0.03
      0.978
      -.1712728
      .1665916

      _cons |
      2.645964
      .2466043
      10.73
      0.000
      2.162628
      3.129299

  mommarital <-

    momed12 | -.0782303
    .1019932
    -0.77
    0.443
    -.2781333
    .1216728

    daded12 | -.0083038
    .1023122
    -0.08
    0.935
    -.208832
    .1922244

    _cons | 3.433518
    .2280257
    15.06
    0.000
    2.986595
    3.88044

daded12 | -.2716069 .0768234 -3.54 0.000 -.422178 -.1210357

_cons | 3.676054 .2200636 16.70 0.000 3.244738 4.107371
  dadmarital <-
               var(e.kidmarital)| .9463698 .0355442

var(e.mommarital)| .9930701 .0139521

var(e.dadmarital)| .9262297 .0417315
                                                                                            .8792068 1.018663
                                                                                             .9660976 1.020796
.8479448 1.011742
                                      These standardized covariances are residual correlations (in RCORR).
cov(e.kidmarital,e.mommarital)| .12157 .0835428 1.46 0.146 -.0421709 .2853109

      cov(e.kidmarital,e.dadmarital)|
      .2524724
      .0792209
      3.19
      0.001
      .0972022

      cov(e.mommarital,e.dadmarital)|
      .2752969
      .0801933
      3.43
      0.001
      .1181209

                                                          // Print fit statistics
     estat gof, stats(all)
Fit statistic | Value Description (from STATA!)
                                                                                                Notes from Lesa:
______
              chi2_ms(6) | 10.929 model vs. saturated p > chi2 | 0.091
Likelihood ratio
           chi2 ms(6) |
                                                                                                 This is -2ALL for our HO-H1
                                                                                                 Test of exact fit: NS is good!
           chi2_bs(15) | 52.998 baseline vs. saturated p > chi2 | 0.000
                                                                                                 This is -2\Delta LL for HO-H1 if
            p > chi2 |
                                                                                                 HO had no paths at all
Population error
                  RMSEA |
                                  0.077
                                           Root mean squared error of approximation Should be < .08 or so
                             0.000
 90% CI, lower bound |
         upper bound | 0.148
pclose | 0.229 Probability RMSEA <= 0.05
                                                                                                 Test of exact fit: NS is good!
_____
Information criteria |
                    AIC | 2778.964 Akaike's information criterion
BIC | 2823.089 Bayesian information criterion
                                                                                                 Does not match Mplus
                                                                                                 Does not match Mplus
Baseline comparison |
                    CFI | 0.870 Comparative fit index
TLI | 0.676 Tucker-Lewis index
                                                                                                 Should be > .9 or so
                                                                                                 Should be > .9 or so
Size of residuals |
                 SRMR |
CD |
                                  0.039
                                            Standardized root mean squared residual Should be < .05 or so
                                0.132 Coefficient of determination
                                                                                                 Like an overall R2 across DVs
```

#### Equation-level goodness of fit

|                                                 |                                  | Variance                         |                                  | <br>I                                      |                                 |                                  |
|-------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------------|---------------------------------|----------------------------------|
| depvars                                         | fitted                           | predicted                        | residual                         | R-squared                                  | mc                              | mc2                              |
| observed   kidmarital   mommarital   dadmarital | .3266568<br>.3183591<br>.3173058 | .0175187<br>.0022062<br>.0234077 | .3091381<br>.3161529<br>.2938981 | <br>  .0536302<br>  .0069299<br>  .0737703 | .231582<br>.0832462<br>.2716069 | .0536302<br>.0069299<br>.0737703 |
| overall                                         | + <b></b>                        |                                  |                                  | +<br>  .1323532                            |                                 |                                  |

mc = correlation between depvar and its prediction

mc2 = mc^2 is the Bentler-Raykov squared multiple correlation coefficient

estat residuals

// Print how far off each predicted covariance is

#### Residuals of observed variables

Mean residuals

| <br>    | kidmari~l | mommari~l | dadmari~l | kidboy | kided12 | momed12 | daded12 |
|---------|-----------|-----------|-----------|--------|---------|---------|---------|
| <br>raw | 0.000     | 0.000     | 0.000     | 0.000  | 0.000   | 0.000   | 0.000   |

Above: the means are recovered perfectly because each outcome has its own intercept (and predictor means are not part of the model). Below: the bolded covariances indicate the biggest sources of misfit—it looks like momed 12 needs to predict each outcome!

Covariance residuals | kidmari~l mommari~l dadmari~l kidboy kided12 momed12 daded12 kidmarital | 0.002 mommarital | 0.003 

estat mindices, minchi2(3.84) showpclass(all) // Print voodoo to improve model fit at p<.05 Modification indices

Standard MI df P>MI EPC EPC \_\_\_\_\_ Structural

dadmarital <- |

mommarital | 9.061 1 0.00 3.68633 3.692443 This is already in the model as a covmomedl2 | 9.061 1 0.00 -.0599371 -.2888608 This is MomEd  $\rightarrow$  DadMarit

EPC = expected parameter change

## Mplus Syntax and Output for Previous Model 3 as a Path Model (estimated with ML; no denominator DF):

TITLE: Mplus Model 3: Own Education + Dad Education a Predictor of Each Attitude;

FILE = Example4bWide.csv; ! Can just list file name if in same folder; DATA: FORMAT = free; ! FREE (default) or FIXED format;

TYPE = individual; ! Individual (default) or matrix data as input;

#### **VARIABLE:**

- ! List of ALL variables in original wide data file, in order;
- ! Mplus names must use 8 characters or fewer (so rename as needed);

NAMES ARE FamilyID KidBoy KidEd12 MomEd12 DadEd12 KidMarit MomMarit DadMarit;

! List of ALL variables used in model;

USEVARIABLES ARE KidBoy KidEd12 MomEd12 DadEd12 KidMarit MomMarit DadMarit;

! Missing data codes (here, -999);

MISSING ARE ALL (-999);

TYPE IS GENERAL; ! Used for path models; ANALYSIS:

ESTIMATOR IS ML; ! Full-information maximum likelihood;

```
OUTPUT:
            CINTERVAL;
                                 ! Print confidence intervals;
            STDYX;
                                  ! Print fully standardized solution, too;
            RESIDUAL;
                                 ! Print how far off each predicted covariance is;
            MODINDICES (3.84); ! Print voodoo to improve our model fit at p<.05;
MODEL: ! * --> Estimated parameter (all listed below for clarity);
! All residual variances estimated separately (by default);
  KidMarit* MomMarit* DadMarit*;
! All possible pairwise residual covariances (not estimated by default);
  KidMarit MomMarit DadMarit WITH KidMarit* MomMarit* DadMarit*;
! All intercepts estimated separately (by default);
  [KidMarit* MomMarit* DadMarit*];
! Regressions: y outcomes ON x predictors (label to do math on later);
  KidMarit ON KidBoy* KidEd12*;
  MomMarit ON MomEd12*;
  KidMarit MomMarit DadMarit ON DadEd12* (DadEd2K DadEd2M DadEd2D);
! Getting differences in effect of DadEd for each person;
  MODEL CONSTRAINT:
  NEW (KvMDadEd KvDDadEd MvDDadEd); ! List names of linear combinations here;
  KvMDadEd = DadEd2M - DadEd2K;    ! Kid v. Mom: Dad Educ Effect Diff;
  KvDDadEd = DadEd2D - DadEd2K;
                                    ! Kid v. Dad: Dad Educ Effect Diff;
  MvDDadEd = DadEd2D - DadEd2M;     ! Mom v. Dad: Dad Educ Effect Diff;
THE MODEL ESTIMATION TERMINATED NORMALLY
MODEL FIT INFORMATION
Number of Free Parameters
                                           15 Notes from Lesa:
Loglikelihood
         H0 Value
                                       -337.106
                                                For our model: Larger is better
         H1 Value
                                                For model with all possible paths estimated
                                       -331.641
Information Criteria
         Akaike (AIC)
                                        704.211
                                                 For our model: Smaller is better
         Bayesian (BIC)
                                        748.336
         Sample-Size Adjusted BIC
                                       700.878
           (n^* = (n + 2) / 24)
Chi-Square Test of Model Fit
                                       10.929
                                                This is -2\Delta LL for our H0-H1
         Value
         Degrees of Freedom
                                            6 This is counting the covariances between X's and Y's too
                                        0.0906
         P-Value
                                                Test of exact fit: Nonsignificant is good!
RMSEA (Root Mean Square Error Of Approximation)
                                          0.077
                                                 Should be < .08 or so
         Estimate
                                   0.000 0.148
         90 Percent C.I.
         Probability RMSEA <= .05
                                          0.229
                                                Test of close fit: Nonsignificant is good!
CFT/TLT
                                                 Should be > .9 or so
                                          0.870
                                                 Should be > .9 or so
         TIT
                                          0.676
Chi-Square Test of Model Fit for the Baseline Model
         Value
                                         52.998
                                                 This is -2\Delta LL for HO-H1 if HO had no paths at all
         Degrees of Freedom
                                            1.5
         P-Value
                                         0.0000
SRMR (Standardized Root Mean Square Residual)
                                          0.046
                                                 Should be < .05 or so
```

|                |                   |             |               |                       |                | SQF 7375 Generalized Example 4b page 1          |
|----------------|-------------------|-------------|---------------|-----------------------|----------------|-------------------------------------------------|
| MODEL RESULTS  | (UNSTANDARDIEZD   | SOLUTION;   | -             |                       | list path      | ns first)                                       |
|                | Estimate          | S.E.        | Est./S.E.     | Two-Tailed<br>P-Value | IN MIXED       |                                                 |
|                | ESCIMACE          | 3.5.        | ESC./S.E.     | ı varue               | IN MIXED       |                                                 |
| KIDMARIT ON    |                   |             |               |                       |                | These unstandardized ON paths are               |
| KIDBOY         | 0.264             | 0.091       | 2.886         | 0.004                 | B11            | the fixed slopes from MIXED.                    |
| KIDED12        | -0.003            | 0.024       | -0.109        | 0.913                 | B31            | _                                               |
| DADED12        | 0.000             | 0.018       | -0.027        | 0.978                 | B21            |                                                 |
| MOMMARIT ON    |                   |             |               |                       |                |                                                 |
| MOMED12        | -0.016            | 0.021       | -0.767        | 0.443                 | B42            |                                                 |
| DADED12        | -0.002            | 0.021       | -0.081        | 0.935                 | B22            |                                                 |
| DADMARIT ON    |                   |             |               |                       |                |                                                 |
| DADED12        | -0.055            | 0.016       | -3.339        | 0.001                 | B20            |                                                 |
| KIDMARIT WITH  |                   |             |               |                       |                |                                                 |
| MOMMARIT       | 0.038             | 0.027       | 1.424         | 0.154                 | UN(2,1)        | These unstandardized WITH covariances           |
| DADMARIT       | 0.076             | 0.026       | 2.893         | 0.004                 | UN(3,1)        | are residual covariances (in R).                |
| MOMMARIT WITH  | I                 |             |               |                       |                |                                                 |
| DADMARIT       | 0.084             | 0.027       | 3.066         | 0.002                 | UN(3,2)        |                                                 |
| Intercepts     |                   |             |               |                       |                |                                                 |
| KIDMARIT       | 1.512             | 0.099       | 15.290        | 0.000                 | B01            |                                                 |
| MOMMARIT       | 1.937             | 0.063       | 30.949        | 0.000                 | B02            | Note that because we are using ML,              |
| DADMARIT       | 2.071             | 0.057       | 36.154        | 0.000                 | B00            | the residual variances are smaller than         |
| Residual Vari  | lances            |             |               |                       |                | in MIXED (that used REML instead                |
| KIDMARIT       | 0.309             | 0.037       | 8.365         | 0.000                 | UN(1,1)        | `                                               |
| MOMMARIT       | 0.316             | 0.038       | 8.339         | 0.000                 | UN(2,2)        | to avoid this downward bias).                   |
| DADMARIT       | 0.294             | 0.035       | 8.367         | 0.000                 | UN(3,3)        |                                                 |
| New/Additional | Parameters (FR    | OM MODEL CO | ONSTRAINT, li | ke ESTIMAT            | E or LINCO     | DM)                                             |
| KVMDADED       | -0.001            | 0.026       | -0.046        | 0.963                 | B22 - B21      |                                                 |
| KVDDADED       | -0.054            | 0.021       | -2.586        | 0.010                 | B20 - B21      |                                                 |
| MVDDADED       | -0.053            | 0.023       | -2.279        | 0.023                 | B20 - B22      |                                                 |
|                |                   |             |               |                       |                |                                                 |
| CHANDADDIALD M | MODEL RESULTS - A | ATT WADTAR  | LEC HAVE MEAN | -0 gn-1               |                |                                                 |
| STDYX Standard |                   | ALL VARIAD  | LES HAVE MEAN | -U, SD-I              |                |                                                 |
| SIDIA SCANDARC | 11Zation          |             | ,             | Two-Tailed            |                |                                                 |
|                | Estimate          | S.E.        | Est./S.E.     | P-Value               |                |                                                 |
| KIDMARIT ON    | ESCIMACE          | J.E.        | ESC./S.E.     | r-value               |                | . 1 1 100 1                                     |
| KIDBOY         | 0.231             | 0.078       | 2.950         | 0.003                 |                | standardized ON paths are                       |
| KIDED12        | -0.009            | 0.083       | -0.109        | 0.913                 | standa         | rdized regression coefficients.                 |
| DADED12        | -0.003            | 0.086       | -0.027        | 0.913                 |                |                                                 |
| MOMMARIT ON    | 0.002             | 0.000       | 0.027         | 0.570                 |                |                                                 |
| MOMED12        | -0.078            | 0.102       | -0.766        | 0.444                 |                |                                                 |
| DADED12        | -0.008            | 0.102       | -0.081        | 0.935                 |                |                                                 |
| DADMARIT ON    | 0.000             | 0.102       | 0.001         | 0.555                 |                |                                                 |
| DADED12        | -0.272            | 0.078       | -3.470        | 0.001                 |                |                                                 |
| KIDMARIT WITH  |                   | 0.070       | 3.170         | 0.001                 |                |                                                 |
| MOMMARIT       | 0.122             | 0.084       | 1.455         | 0.146                 |                |                                                 |
| DADMARIT       | 0.252             | 0.079       | 3.187         | 0.001                 | TD1            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1         |
| MOMMARIT WITH  |                   |             | **-*          |                       |                | standardized WITH covariances                   |
| DADMARIT       | 0.275             | 0.080       | 3.433         | 0.001                 | are res        | idual correlations (in RCORR).                  |
| Intercepts     |                   |             |               |                       |                |                                                 |
| KIDMARIT       | 2.646             | 0.247       | 10.723        | 0.000                 |                |                                                 |
| MOMMARIT       | 3.434             | 0.228       | 15.057        | 0.000                 |                |                                                 |
| DADMARIT       | 3.676             | 0.221       | 16.659        | 0.000                 |                |                                                 |
| Residual Vari  |                   |             |               |                       |                |                                                 |
| KIDMARIT       | 0.946             | 0.036       | 26.246        | 0.000                 |                |                                                 |
| MOMMARIT       | 0.993             | 0.014       | 71.055        | 0.000                 |                |                                                 |
| DADMARIT       | 0.926             | 0.043       | 21.782        | 0.000                 |                |                                                 |
| R-SQUARE       |                   |             |               |                       |                |                                                 |
| Observed       |                   |             |               | Two-Tailed            |                |                                                 |
| Variable       | Estimate          | S.E.        | Est./S.E.     | P-Value               |                |                                                 |
| KIDMARIT       | 0.054             | 0.036       | 1.487         | 0.137                 |                |                                                 |
| MOMMARIT       | 0.007             | 0.014       | 0.496         | 0.620                 |                |                                                 |
| DADMARIT       | 0.074             | 0.043       | 1.735         | 0.083                 |                |                                                 |
|                | 3.0,1             | 2.70.10     | , 00          |                       |                |                                                 |
| ESTIMATED MODE | EL AND RESIDUALS  | (OBSERVED   | - ESTIMATED)  |                       |                |                                                 |
|                |                   |             |               |                       |                | vered perfectly because<br>s own intercept (and |
|                |                   |             |               |                       |                | not part of the model).                         |
| Residuals for  | Means             |             |               | predictor             | i ilicalis ale | not part of the model).                         |
| KIDMARIT       | MOMMARIT          | DADMARIT    | KIDBOY        | KIDE                  | D12 M          | OMED12 DADED12                                  |
| 0.000          | 0.000             | 0.000       | 0.000         |                       |                | 0.000 0.000                                     |
| 0.000          | 0.000             | 0.000       | 0.000         | 0.1                   | 000            | 0.000                                           |

| Residuals | for Covarian | ces      |          |        |         |         |         |
|-----------|--------------|----------|----------|--------|---------|---------|---------|
|           | KIDMARIT     | MOMMARIT | DADMARIT | KIDBOY | KIDED12 | MOMED12 | DADED12 |
|           |              |          |          |        |         |         |         |
| KIDMARIT  | 0.002        |          |          |        |         |         |         |
| MOMMARIT  | 0.003        | 0.002    |          |        |         |         |         |
| DADMARIT  | 0.004        | 0.005    | 0.000    |        |         |         |         |
| KIDBOY    | 0.004        | 0.015    | 0.014    | 0.000  |         |         |         |
| KIDED12   | -0.001       | 0.016    | -0.008   | 0.000  | 0.000   |         |         |
| MOMED12   | 0.068        | -0.072   | -0.280   | 0.000  | 0.000   | 0.000   |         |
| DADED12   | 0.000        | 0.000    | 0.000    | 0.000  | 0.000   | 0.000   | 0.000   |

## After shutting off the MODEL CONSTRAINT code and running it again, we get these "helpful" suggestions for how to improve model fit:

```
The bolded covariances indicate the
Minimum M.I. value for printing the modification index
                                                                         biggest sources of misfit—it looks like
                                    E.P.C. Std E.P.C. StdYX E.P.C.
                            M.T.
                                                                         momed12 needs to predict each outcome!
ON Statements
                          9.062
                                    3.687
                                                3.687
                                                             3.693 This is already in the model as a cov
DADMARTT ON MOMMARTT
DADMARIT ON MOMED12
                           9.061
                                    -0.060
                                               -0.060
                                                            -0.289 This is MomEd → DadMarit
WITH Statements
                                    -0.294
                                               -0.294
                                                            -0.200 This is MomEd ←→ DadMarit
MOMED12 WITH DADMARIT
                           9.336
DADED12 WITH DADMARIT
                           8.134
                                     0.491
                                                0.491
                                                             0.324 This is already in the model as a path
```

```
Model 4: DV-Specific Intercept Version adding Mom Education as Predictor of Each
\widehat{Marital_{fi}} = \beta_{00}(Dad_{fi}) + \beta_{01}(Kid_{fi}) + \beta_{02}(Mom_{fi}) + \beta_{10}(Dad_{fi})(KidBoy_f)
          +\beta_{20}(Dad_{fi})(DadEd_f-12)+\beta_{31}(Kid_{fi})(KidEd_f-12)+\beta_{42}(Mom_{fi})(MomEd_f-12)
          +\beta_{21}(Kid_{fi})(DadEd_f-12)+\beta_{22}(Mom_{fi})(DadEd_f-12)
          +\beta_{41}(Kid_{fi})(MomEd_f - 12) + \beta_{40}(Dad_{fi})(MomEd_f - 12)
display as result "STATA DV-Specific Intercept Version -- Add Mom Educ (Control for Own Educ)"
mixed marital c.kid c.mom c.dad c.kid#c.kidboy c.kid#c.kided12 c.mom#c.momed12 ///
              c.dad#c.daded12 c.kid#c.daded12 c.mom#c.daded12 ///
              c.kid#c.momed12 c.dad#c.momed12, ///
         noconstant /// Remove fixed intercept
         || familyid: , noconstant variance reml residuals(unstructured,t(DV)) ///
         dfmethod(satterthwaite) dftable(pvalue)
  estat wcorrelation, covariance, // R matrix
                                    // RCORR matrix
  estat wcorrelation,
  predict pred, xb // Add column pred of predicted outcomes to data
  lincom c.kid#c.daded12*-1 + c.mom#c.daded12*1, small // Kid vs. Mom: Dad Educ Effect Diff
  lincom c.kid#c.daded12*-1 + c.dad#c.daded12*1, small // Kid vs. Dad: Dad Educ Effect Diff
  lincom c.mom#c.daded12*-1 + c.dad#c.daded12*1, small // Mom vs. Dad: Dad Educ Effect Diff
  lincom c.kid#c.momed12*-1 + c.mom#c.momed12*1, small // Kid vs. Mom: Mom Educ Effect Diff
  lincom c.kid#c.momed12*-1 + c.dad#c.momed12*1, small // Kid vs. Dad: Mom Educ Effect Diff
  lincom c.mom#c.momed12*-1 + c.dad#c.momed12*1, small // Mom vs. Dad: Mom Educ Effect Diff
 // Get correlation of actual and predicted outcomes to form R2
    pwcorr marital pred if DV==1, sig
   pwcorr marital pred if DV==2, sig
   pwcorr marital pred if DV==2, sig
TITLE "SAS DV-Specific Intercept Version -- Add Mom Educ (Controlling for Own+Dad Educ)";
PROC MIXED DATA=work.Example4b NOCLPRINT COVTEST NAMELEN=100 METHOD=REML;
     CLASS FamilyID DV;
     MODEL marital = kid mom dad kid*KidBoy kid*KidEd12 mom*MomEd12 dad*DadEd12
                      kid*DadEd12 mom*DadEd12 kid*MomEd12 dad*MomEd12
                       / NOINT SOLUTION DDFM=Satterthwaite OUTPM=work.PredFinal;
     REPEATED DV / R RCORR TYPE=UN SUBJECT=FamilyID;
     ESTIMATE "Kid vs. Mom: Dad Educ Effect Diff"
                                                     kid*DadEd12 -1 mom*DadEd12 1;
                                                     kid*DadEd12 -1 dad*DadEd12 1;
     ESTIMATE "Kid vs. Dad: Dad Educ Effect Diff"
     ESTIMATE "Mom vs. Dad: Dad Educ Effect Diff"
                                                     mom*DadEd12 -1 dad*DadEd12 1;
     ESTIMATE "Kid vs. Mom: Mom Educ Effect Diff"
                                                     kid*MomEd12 -1 mom*MomEd12 1;
     ESTIMATE "Kid vs. Dad: Mom Educ Effect Diff"
                                                     kid*MomEd12 -1 dad*MomEd12 1;
     ESTIMATE "Mom vs. Dad: Mom Educ Effect Diff" mom*MomEd12 -1 dad*MomEd12 1;
RUN; TITLE;
```

## $SAS\ Output\ for\ Model\ 4\ (estimated\ with\ REML\ and\ using\ Satterthwaite\ denominator\ degrees\ of\ freedom):$ $Parameters\ would\ go\ in\ Table\ 1\ for\ results$

| Estimated     | d R Matrix for  | FAMILYID 3 | 996                    | Estimate | ed R Correla | tion Matrix  | for FAMILY  | ID 3996   |
|---------------|-----------------|------------|------------------------|----------|--------------|--------------|-------------|-----------|
| Row           | Col1 Co         | 12         | Col3                   | Row      | Col1         | Col2         | Col3        |           |
| 1 0.          | .3193 0.040     | 0.0        | 8212                   | 1        | 1.0000       | 0.1253       | 0.2726      |           |
| 2 0.0         | 0.32            | 220 0.0    | 8159                   | 2        | 0.1253       | 1.0000       | 0.2697      |           |
| 3 0.0         | 0.081           | 59 0.      | 2842                   | 3        | 0.2726       | 0.2697       | 1.0000      |           |
|               |                 |            |                        |          |              |              |             |           |
|               | it Statistics   |            |                        |          |              |              |             |           |
| -2 Res Log L  |                 | 722.       |                        |          |              |              |             |           |
| AIC (Smaller  | ,               | 734.       |                        |          |              |              |             |           |
| ,             | er is Better)   | 735.       |                        |          |              |              |             |           |
| BIC (Smaller  | 'is Better)     | 752.       | б                      |          |              |              |             |           |
|               | Soluti          | on for Fix | ed Effects             | <b>;</b> |              |              |             |           |
|               |                 | Standard   |                        |          |              |              |             |           |
| Effect        | Estimate        | Error      | DF                     | t Value  | Pr >  t      |              |             |           |
| kid           | 1.5221          | 0.1003     | 140                    | 15.17    | <.0001       | Kid interce  | ept B01     |           |
| mom           | 1.9508          | 0.06321    | 137                    | 30.86    | <.0001       | Mom interce  | ept B02     |           |
| dad           | 2.1232          | 0.05938    | 137                    | 35.76    | <.0001       | Dad interce  | ept B00     |           |
| kid*KidBoy    | 0.2578          | 0.09226    | 135                    | 2.79     | 0.0060       | girl vs boy  | y for Kid B | 11        |
| kid*KidEd12   | -0.01067        | 0.02508    | 135                    | -0.43    | 0.6711       | Kid Ed for   | kid B31     |           |
| mom*MomEd12   | -0.03077        | 0.02151    | 137                    | -1.43    | 0.1547       | Mom Ed for   |             |           |
| dad*DadEd12   | -0.02354        | 0.01966    | 137                    | -1.20    | 0.2333       | Dad Ed for   | dad B20     |           |
| kid*DadEd12   | -0.00725        | 0.02109    | 136                    | -0.34    | 0.7315       | Dad Ed for   | kid B21     |           |
| mom*DadEd12   | 0.006376        | 0.02093    | 137                    | 0.30     | 0.7611       | Dad Ed for   |             |           |
| kid*MomEd12   | 0.01513         | 0.02191    | 136                    | 0.69     | 0.4910       | Mom Ed for   |             |           |
| dad*MomEd12   | -0.05640        | 0.02020    | 137                    | -2.79    | 0.0060       | Mom Ed for   | dad B40     |           |
|               |                 |            | Estimat                | es       |              |              |             |           |
|               |                 |            |                        | Standa   | rd           |              |             |           |
| Label         |                 |            | Estimate               | Err      | or DF        | t Value      | Pr >  t     |           |
| Kid vs. Mom:  | : Dad Educ Effe | ct Diff    | 0.01363                | 0.027    | 31 138       | 0.49         | 0.6249      | B22 - B21 |
| Kid vs. Dad:  | : Dad Educ Effe | ct Diff    | -0.01629               | 0.024    | 65 137       | -0.66        | 0.5099      | B20 - B21 |
| Mom vs. Dad:  | : Dad Educ Effe | ct Diff    | -0.02991               | 0.024    | 55 137       | -1.22        | 0.2250      | B20 - B22 |
| Kid vs. Mom:  | : Mom Educ Effe | ct Diff    | -0.04590               | 0.028    | 76 140       | -1.60        | 0.1127      | B42 - B41 |
| Kid vs. Dad:  | : Mom Educ Effe | ct Diff    | -0.07153               | 0.025    | 54 139       | -2.80        | 0.0058      | B40 - B41 |
| Mom vs. Dad:  | : Mom Educ Effe | ect Diff   | -0.02562               | 0.025    | 23 137       | -1.02        | 0.3115      | B40 - B42 |
| * Get R2 na   | er outcome co   | ndition (  | predictio              | n by old | and vrs65)   |              |             |           |
| _             | DATA=work.Pre   |            | _                      | _        | _            | ,            |             |           |
|               | DATA=work.Pre   |            |                        |          |              | i; RUN;      |             |           |
| DV=4 1/2 -1 \ | D2 - 0007       | DV-0 Ma::  | \ D2 - 2               | 175      | DV=0 D=4 \   | D2 - 4000    |             |           |
| DV=1.Kid →    |                 | DV=2.MOM   | $\rightarrow R^2 = .0$ |          | DV=2.Dad →   |              | +-1         |           |
| Brod          | marital         | Brod       |                        | marital  | Prod         | mari<br>0.35 |             |           |

| DV=1.Kid $\rightarrow$ R <sup>2</sup> = .0627 |         | $DV=2.Mom \rightarrow R^2 = .0175$ |         | $DV=2.Dad \rightarrow R^2 = .1236$ |         |  |
|-----------------------------------------------|---------|------------------------------------|---------|------------------------------------|---------|--|
|                                               | marital |                                    | marital |                                    | marital |  |
| Pred                                          | 0.25049 | Pred                               | 0.13215 | Pred                               | 0.35159 |  |
| Predicted Mean                                | 0.0028  | Predicted Mean                     | 0.1196  | Predicted Mean                     | <.0001  |  |

## STATA Syntax for Model 4 as a Path Model (estimated with ML; no denominator DF):

```
display as result "STATA Model 4: Own + Dad & Mom Education a Predictor of Each Attitude"
   (kidmarit mommarit dadmarit <- cons)</pre>
                                               /// All intercepts estimated (by default)
   (kidmarit <- kidboy kided12)
                                               /// Regressions: y outcomes ON x predictors
   (kidmarit mommarit dadmarit <- daded12)</pre>
                                               111
   (kidmarit mommarit dadmarit <- momed12),
                                               /// New effects go here
                                               /// All residual variances estimated (by default)
    var(e.kidmarit e.mommarit e.dadmarit)
    covariance(e.kidmarit*e.mommarit
                                               /// All pairwise residual covariances (not default)
                e.mommarit*e.dadmarit
                                               111
                e.kidmarit*e.dadmarit)
                                               111
                                                // Full-information ML
    method(mlmv)
    lincom _b[mommarital:daded12] - _b[kidmarital:daded12] // Kid v. Mom: Dad Educ Effect Diff
    lincom b[mommarital:daded12] - b[kidmarital:daded12] // Kid v. Mom: Dad Educ Effect Diff
    lincom _b[mommarital:daded12] - _b[kidmarital:daded12] // Kid v. Mom: Dad Educ Effect Diff
    lincom _b[mommarital:momed12] - _b[kidmarital:momed12] // Kid v. Mom: Mom Educ Effect Diff lincom _b[mommarital:momed12] - _b[kidmarital:momed12] // Kid v. Mom: Mom Educ Effect Diff lincom _b[mommarital:momed12] - _b[kidmarital:momed12] // Kid v. Mom: Mom Educ Effect Diff
                                            // Print parameter labels, too (to use in lincom)
    sem, coeflegend
                                            // Print fully standardized solution, too
    sem, standardized
                                            // Print fit statistics
    estat gof, stats(all)
    estat eggof
                                            // Print R2 per variable
                                            // Print how far off each predicted covariance is
    estat residuals
    estat mindices, minchi2(3.84) showpclass(all) // Print voodoo to improve model fit at p<.05
Mplus Syntax and Output for Model 4 as a Path Model (estimated with ML; no denominator DF):
TITLE: Mplus Model 4: Own Education + Dad & Mom Education a Predictor of Each Attitude;
        DATA, VARIABLE, ANALYSIS, and OUTPUT are all the same as Model 3.
MODEL: ! * --> Estimated parameter (all listed below for clarity);
! All residual variances estimated separately (by default);
  KidMarit* MomMarit* DadMarit*;
! All possible pairwise residual covariances (not estimated by default);
  KidMarit MomMarit DadMarit WITH KidMarit* MomMarit* DadMarit*;
! All intercepts estimated separately (by default);
  [KidMarit* MomMarit* DadMarit*];
! Regressions: y outcomes ON x predictors (label to do math on later);
  KidMarit ON KidBoy* KidEd12*;
  KidMarit MomMarit DadMarit ON DadEd12* (DadEd2K DadEd2M DadEd2D);
  KidMarit MomMarit DadMarit ON MomEd12* (MomEd2K MomEd2M MomEd2D); ! New effects here;
! Getting differences in effect of DadEd for each person;
  MODEL CONSTRAINT: ! List names of linear combinations here;
  NEW (KvMDadEd KvDDadEd MvDDadEd KvMMomEd KvDMomEd MvDMomEd);
  KvMDadEd = DadEd2M - DadEd2K;    ! Kid v. Mom: Dad Educ Effect Diff;
  KvDDadEd = DadEd2D - DadEd2K;
                                    ! Kid v. Dad: Dad Educ Effect Diff;
                                    ! Mom v. Dad: Dad Educ Effect Diff;
  MvDDadEd = DadEd2D - DadEd2M;
                                     ! Kid v. Mom: Mom Educ Effect Diff;
  KvMMomEd = MomEd2M - MomEd2K;
  KvDMomEd = MomEd2D - MomEd2K;
                                     ! Kid v. Dad: Mom Educ Effect Diff;
  MvDMomEd = MomEd2D - MomEd2M;
                                      ! Mom v. Dad: Mom Educ Effect Diff;
THE MODEL ESTIMATION TERMINATED NORMALLY
MODEL FIT INFORMATION
Number of Free Parameters
                                             17
                                                 Notes from Lesa:
Loglikelihood
         HO Value
                                       -332.158
                                                 For our model: Larger is better
         H1 Value
                                       -331.641
                                                 For model with all possible paths estimated
Information Criteria
                                        698.316
                                                 For our model: Smaller is better
         Akaike (AIC)
                                        748.324
         Bayesian (BIC)
         Sample-Size Adjusted BIC
                                        694.538
           (n* = (n + 2) / 24)
```

|             |              |                |             |              |            | •                      | by 1575 deficialized Example 15 page 10 |
|-------------|--------------|----------------|-------------|--------------|------------|------------------------|-----------------------------------------|
| Chi-Square  | e Test of Mo | del Fit        |             |              |            |                        |                                         |
|             | Value        |                |             | 1.034        | This is -  | 2∆LL for               | our H0-H1                               |
|             | Degrees of   | Freedom        |             | 4            | This is c  | ounting t              | he covariances between X's and Y's too  |
|             | P-Value      |                |             | 0.9047       | Test of e  | xact fit:              | Nonsignificant is good!                 |
| DMSEN (Do   | ot Mean Squa | re Error       | Of Approvi  |              |            |                        |                                         |
| INDIA (INO  | _            | TE BILOI       | OI APPIOAI  |              | Oballa la  | . 00                   |                                         |
|             | Estimate     |                | •           | 0.000        | Shourd be  | < .08 or               | SO                                      |
|             | 90 Percent   |                |             | 000 0.052    |            |                        |                                         |
|             | Probability  | RMSEA <=       | .05         | 0.947        | Test of c  | lose fit:              | Nonsignificant is good!                 |
| CFI/TLI     |              |                |             |              |            |                        |                                         |
|             | CFI          |                |             | 1.000        | Should be  | > .9 or                | so                                      |
|             | TLI          |                |             | 1.000        | Should be  | > .9 or                | 80                                      |
| Chi-Sauare  | e Test of Mo | dol Fi+ f      | or the Back |              | 0110414 20 |                        |                                         |
| CIII DQUUIN | Value        | aci iic i      | OI CHC Das  | 52.998       | mbio io    | OATT for               | HO-H1 if HO had no paths at all         |
|             |              | D              |             |              | 11112 12 - | 2411 101               | no-ni ii no nau no pachs at aii         |
|             | Degrees of   | rreedom        |             | 15           |            |                        |                                         |
|             | P-Value      |                |             | 0.0000       |            |                        |                                         |
| SRMR (Star  | ndardized Ro | ot Mean S      | quare Resi  |              |            |                        |                                         |
|             | Value        |                |             | 0.020        | Should be  | < .05 or               | SO                                      |
|             |              |                |             |              |            |                        |                                         |
| MODEL RESU  | ULTS         |                |             |              |            |                        |                                         |
|             |              |                |             |              | Two-Tailed |                        |                                         |
|             | E            | stimate        | SE          | Est./S.E.    | P-Value    | IN MIXED               |                                         |
| ZTDMADTE (  |              | o cina cc      | 0.0.        | шос./о.ш.    | 1 value    | IN MINDD               |                                         |
| KIDMARIT (  |              | 0 050          | 0 001       | 0 000        | 0 00=      | D11                    |                                         |
| KIDBO:      |              | 0.258          | 0.091       | 2.839        | 0.005      |                        | These unstandardized ON paths are       |
| KIDED:      | 12           | -0.011         | 0.025       | -0.433       | 0.665      |                        | These unstandardized ON paths are       |
| DADED:      | 12           | -0.007         | 0.021       | -0.350       | 0.726      | B21                    | the fixed slopes from MIXED.            |
| MOMED:      | 12           | 0.015          | 0.022       | 0.703        | 0.482      | B41                    | <u> </u>                                |
| MOMMARIT    |              |                | · · ·       |              |            |                        |                                         |
| DADED:      |              | 0.006          | 0.021       | 0.308        | 0.758      | B42                    |                                         |
|             |              |                |             | -1.447       | 0.148      | B22                    |                                         |
| MOMED:      |              | -0.031         | 0.021       | -1.44/       | 0.148      | BZZ                    |                                         |
| DADMARIT    |              |                |             |              |            |                        |                                         |
| DADED:      | 12           | -0.024         | 0.019       | -1.210       | 0.226      |                        |                                         |
| MOMED:      | 12           | -0.056         | 0.020       | -2.822       | 0.005      | B40                    |                                         |
| KIDMARIT    | WITH         |                |             |              |            |                        |                                         |
| MOMMAI      | RIT          | 0.039          | 0.027       | 1.478        | 0.139      | UN(2,1)                | These unstandardized WITH covariances   |
| DADMAI      | RIT          | 0.080          | 0.026       | 3.124        | 0.002      | UN(3,1)                |                                         |
| MOMMARIT    |              |                |             |              |            | · · · ( · <b>/</b> – / | are residual covariances (in R).        |
| DADMAI      |              | 0.080          | 0.026       | 3.081        | 0.002      | UN(3,2)                | · · ·                                   |
|             |              | 0.000          | 0.020       | 3.001        | 0.002      | 011 (3,2)              |                                         |
| Intercept   |              | 1 500          | 0 000       | 15 410       | 0 000      | D 0 1                  |                                         |
| KIDMAI      |              | 1.522          | 0.099       | 15.418       | 0.000      | B01                    |                                         |
| MOMMAI      | RIT          | 1.951          | 0.063       | 31.199       | 0.000      | B02                    | Note that because we are using ML,      |
| DADMAI      | RIT          | 2.123          | 0.059       | 36.146       | 0.000      | B00                    | the residual variances are smaller than |
| Residual    | Variances    |                |             |              |            |                        |                                         |
| KIDMA       | RIT          | 0.308          | 0.037       | 8.363        | 0.000      | UN(1,1)                | in MIXED (that used REML instead        |
| MOMMAI      | RIT          | 0.315          | 0.038       | 8.367        | 0.000      | UN(2,2)                | to avoid this downward bias).           |
| DADMAI      | RTT          | 0.278          | 0.033       | 8.367        | 0.000      |                        | to avoid this downward blas).           |
|             | ional Parame |                |             |              |            |                        | OM)                                     |
|             |              | 0.014          |             |              |            |                        |                                         |
| KVMDAI      |              |                | 0.027       | 0.497        |            | B22 - B2               |                                         |
| KVDDAI      |              | -0.016         | 0.024       | -0.671       |            | B20 - B2               |                                         |
| MVDDAI      |              | -0.030         | 0.024       | -1.232       | 0.218      |                        | _                                       |
| KVMMON      | MED          | -0.046         | 0.028       | -1.620       | 0.105      | B42 - B4               | 1                                       |
| KVDMOI      | MED          | -0.072         | 0.025       | -2.845       | 0.004      | B40 - B4               | 1                                       |
| MVDMO       | MED          | -0.026         | 0.025       | -1.027       |            | B40 - B4               |                                         |
|             |              |                |             |              |            |                        |                                         |
| STANDARDT   | ZED MODEL RE | SULTS - A      | LL VARTART  | ES HAVE MEAN | N=0. SD=1  |                        |                                         |
|             | ndardization |                |             |              | ,          |                        |                                         |
| SIDIM DUAL  |              |                |             |              | Two-Tailed |                        |                                         |
|             | -            | a++            | 0.5         | Ec+ /0 E     |            |                        |                                         |
|             |              | stimate        | S.E.        | Est./S.E.    | P-Value    |                        |                                         |
| KIDMARIT    |              |                |             |              |            |                        |                                         |
| KIDBO       | Y            | 0.225          | 0.078       | 2.895        | 0.004      | These                  | standardized ON paths are               |
| KIDED:      | 12           | -0.037         | 0.085       | -0.433       | 0.665      |                        |                                         |
| DADED:      | 12           | -0.035         | 0.101       | -0.350       | 0.726      | standa                 | rdized regression coefficients.         |
| MOMED:      |              | 0.072          | 0.102       | 0.704        | 0.481      |                        |                                         |
| MOMMARIT    |              | · <del>-</del> |             |              |            |                        |                                         |
| DADED:      |              | 0.031          | 0.102       | 0.308        | 0.758      |                        |                                         |
|             |              |                |             |              |            |                        |                                         |
| MOMED:      |              | -0.148         | 0.101       | -1.457       | 0.145      |                        |                                         |
| DADMARIT    |              | 0 11-          |             | <u>.</u>     |            |                        |                                         |
| DADED:      |              | -0.117         | 0.096       | -1.216       | 0.224      |                        |                                         |
| MOMED:      | 12           | -0.272         | 0.094       | -2.894       | 0.004      |                        |                                         |
| KIDMARIT    | WITH         |                |             |              |            |                        |                                         |
| MOMMAI      |              | 0.126          | 0.083       | 1.514        | 0.130      | These                  | standardized WITH covariances           |
| DADMAI      |              | 0.274          | 0.078       | 3.503        | 0.000      | 1                      |                                         |
| MOMMARIT    |              | /-             | 0.070       | 0.000        | 0.000      | are res                | idual correlations (in RCORR).          |
| DADMAI      |              | 0.270          | 0.078       | 3.442        | 0.001      |                        |                                         |
| Intercept   |              | 0.270          | 0.070       | 5.772        | 0.001      |                        |                                         |
| TILLETCEDI  | C O          |                | 0.245       | 10.891       | 0.000      |                        |                                         |
| KIDMA       | RTT          | 2.664          |             |              |            |                        |                                         |

0.000

0.000

 2.664
 0.245
 10.891

 3.445
 0.224
 15.373

 3.769
 0.218
 17.276

KIDMARIT

MOMMARIT DADMARIT

| Residual Var   | riances                      |                        |              |           |                   |                |                                |
|----------------|------------------------------|------------------------|--------------|-----------|-------------------|----------------|--------------------------------|
| KIDMARIT       | 0                            | .944                   | 0.037        | 25.769    | 0.000             |                |                                |
| MOMMARIT       | 0                            | .983                   | 0.022        | 44.766    | 0.000             |                |                                |
| DADMARIT       | 0                            | .876                   | 0.052        | 16.826    | 0.000             |                |                                |
| R-SQUARE       |                              |                        |              |           |                   |                |                                |
| Observed       |                              |                        |              |           | Two-Tailed        |                |                                |
| Variable       | Esti                         | mate                   | S.E.         | Est./S.E. | P-Value           |                |                                |
| KIDMARIT       | 0                            | .056                   | 0.037        | 1.529     | 0.126             |                |                                |
| MOMMARIT       | 0                            | .017                   | 0.022        | 0.796     | 0.426             |                |                                |
| DADMARIT       | 0                            | .124                   | 0.052        | 2.373     | 0.018             |                |                                |
| Re<br>KIDMARIT | esiduals for KIDMARIT  0.002 | Covariance<br>MOMMARIT | es<br>DADMAI | RIT KIDBO | DY KIDED12        | MOMED12        | DADED12                        |
| MOMMARIT       | 0.002                        | 0.000                  |              | 0.1       | 41 1 . 1 1        |                | 1 1 . 1 4 1 1 . 0              |
| DADMARIT       | 0.003                        | 0.000                  | 0.0          | nn I -    | -                 |                | and dad outcomes have leftover |
| KIDBOY         | 0.005                        | 0.015                  | 0.0          | COVar     | iance, and no sin | gle added path | is would help the model.       |
| KIDED12        | 0.013                        | 0.029                  | 0.0          |           | 0.000             |                |                                |
| MOMED12        | 0.000                        | 0.000                  | 0.0          | 00 0.0    | 0.000             | 0.000          |                                |
| DADED12        | 0.000                        | 0.000                  | 0.0          | 0.0       | 0.000             | 0.000          | 0.000                          |
|                |                              |                        |              |           |                   |                |                                |

## Example results section for Part 2 Models 3–4 (picking up from Part 1; using SAS and Mplus output):

Next, we examined whether father's education incrementally predicted the marital attitudes of the mother or adult child after controlling for their own education, but neither effect was significant (and the effect of father's education on his own attitudes was significantly larger). The effect of father's education on his own attitudes remained significant, while the effect of education own their own attitudes for the adult child and mother remained nonsignificant). Finally, we examined the incremental effects of mother's education on marital attitudes, and results from this final model are shown in Table 1. For every additional year of mother's education, father's attitudes were expected to be significantly less conservative by 0.01 (p = .006). The effect of mother's education of adult child attitudes was nonsignificant and significantly smaller than its effect of father's attitudes.

We re-estimated the final model as a path analysis in Mplus (using maximum likelihood) in order to obtain indices of absolute model fit. The model had excellent fit,  $\chi^2(4) = 1.03$ , p = .90, RMSEA = .00 [CI = .00–.05], CFI = 1.00, indicating that no further paths were needed. This final model is depicted in Figure 1 below.

Figure 1 (line types used to help visually distinguish the paths; standardized coefficients may also be added)

