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Example 3b: Generalized Linear Models for Positive Skewed Outcomes using SAS and STATA

(complete syntax, data, and output available for SAS and STATA electronically)

The data for this example come from chapter 4 of Agresti (2015) available here: http://users.stat.ufl.edu/~aa/glm/data/

We will be predicting the sale price of 100 homes from four characteristics: whether they are brand new (0=no, 1=yes),
square footage in 100s (centered at 1500), number of bedrooms (2, 3, or 4+), and number of bathrooms (1, 2, or 3+).
Because this sample’s distribution of home sale prices is bounded by 0 and is positively skewed, we will compare four
types of generalized linear models estimated using maximum likelihood: identity link with a normal distribution (typical
regression), a log-transformed outcome in a typical regression, an identity link with a log-normal distribution, and a log
link with a gamma distribution. In addition, because this sample also had several outliers, we will use quantile regression
to predict the median home price instead of the mean and to examine predictor effect differences across other percentiles.
In SAS GLIMMIX I am not using denominator DF so that the results match those of STATA as closely as possible.

SAS Data Manipulation and Description:

* Location for original files for these models — change this path;
%WLET Filesave= C:\Dropbox\20_PSQF7375_Generalized\PSQF7375_Generalized_Example3b;
LIBNAME filesave "&filesave.';

* Import XLSX data file into SAS;
PROC IMPORT DATAFILE="&Filesave.\Houses.xlIsx" OUT=work.Example3b DBMS=XLSX REPLACE;
SHEET="house data'; GETNAMES=YES; RUN;

* Create predictor variables;
DATA work.Example3b; SET work.Example3b;
* Categories for number of bedrooms;
IF beds=2 THEN DO; bed3vs2=1; bed3vs4=0; END;
ELSE IF beds=3 THEN DO; bed3vs2=0; bed3vs4=0; END;
ELSE IF beds IN(4,5) THEN DO; bed3vs2=0; bed3vs4=1; END;
* Categories for number of baths;
IF baths=1 THEN DO; bath2vsl=1; bath2vs3=0; END;
ELSE IF baths=2 THEN DO; bath2vsl1l=0; bath2vs3=0; END;
ELSE IF baths IN(3,4) THEN DO; bath2vsl1=0; bath2vs3=1; END;
* Center and rescale size into per 100 square feet (0=1500); sqftl50=(size-1500)/100;
* Log-transform price for demonstration; logprice=LOG(price); RUN;

* Export data to STATA format;

PROC EXPORT DATA=work.Example3b OUTFILE="&Filesave.\Example3b.dta" DBMS=STATA REPLACE; RUN;
TITLE "Distribution of Sale Price";
PROC UNIVARIATE DATA=work.Example3b; VAR price size;
HISTOGRAM price / MIDPOINTS= O TO 600 BY 20 NORMAL(MU=EST SIGMA=EST); RUN; QUIT;
PROC SGPLOT DATA=work.Example3b; VBOX price / DATALABEL=price; RUN; TITLE;
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STATA Data Manipulation and Description:

* Import data

use ""$Ffilesave\Example3b.dta"™, clear

* Generate quadratic sqftl50 for use in some routines
gen sqftl150sq=sqftl150*sqft150

* Install lgamma
search Igamma // install from window

display as result "Distribution of Sale Price"
summarize price

hist price, percent start(0) width(20)

graph box price

display as result "Descriptive Stats for Example Variables"
summarize price size

tabulate beds

tabulate baths

tabulate new

Every model we fit in this example will have the same linear predictor so that the reference house is old,
has 3 bedrooms, 2 bedrooms, and 1500 square feet:

Vi = Po + f1(New;) + B,(Bed3vs2;) + B3(Bed3vs4;) + f,(Bath2vs1;) + fs(Bath2vs3;)
+B¢(SqFt; — 150) + B,(SqFt; — 150)2

1) Two Ways to Predict Original Price Assuming Normal Residuals: Price;~Normal(9;, 62)

display as result "STATA MIXED: Price using ldentity Link, Normal Distribution”
mixed price c.new c.bed3vs2 c.bed3vs4 c.bath2vsl c.bath2vs3 c.sqftl50 ///
c.sqgftl50#c.sqftl150, ml,
estat ic, n(100),
test (c.new=0) (c.bed3vs2=0) (c.bed3vs4=0) (c.bath2vsl=0) (c.bath2vs3=0) ///
(c.sqft150=0) (c.sqftl50#c.sqft150=0) // Multiv Wald test of model

display as result "STATA GLM: Price using ldentity Link, Normal Distribution"
glm price c.new c.bed3vs2 c.bed3vs4 c.bath2vsl c.bath2vs3 c.sqftl50 ///
c.sqgftl50#c.sqftl50, link(identity) family(gaussian),
estat ic, n(100),
test (c.new=0) (c.bed3vs2=0) (c.bed3vs4=0) (c.bath2vsl=0) (c.bath2vs3=0) ///
(c.sqft150=0) (c.sqftl50#c.sqftl50=0) // Multiv Wald test of model

TITLE "SAS MIXED: Price using ldentity Link, Normal Distribution";
PROC MIXED DATA=work.Example3b NOCLPRINT NAMELEN=100 METHOD=ML;
MODEL price = new bed3vs2 bed3vs4 bath2vsl bath2vs3 sqftl50 sqftl150*sqftl150
/ SOLUTION;
CONTRAST “Multiv Wald test of Model'™ new 1, bed3vs2 1, bed3vs4 1,
bath2vsl 1, bath2vs3 1, sqftl50 1, sqftl50*sqftl50 1 /7 CHISQ;
RUN; TITLE;

TITLE "SAS GLIMMIX: Price using ldentity Link, Normal Distribution';
PROC GLIMMIX DATA=work.Example3b NOCLPRINT NAMELEN=100 GRADIENT METHOD=MSPL;
MODEL price = new bed3vs2 bed3vs4 bath2vsl bath2vs3 sqftl50 sqftl150*sqftl150
/ SOLUTION DDFM=NONE LINK=IDENTITY DIST=NORMAL;
CONTRAST "Multiv Wald test of Model'™ new 1, bed3vs2 1, bed3vs4 1,
bath2vsl 1, bath2vs3 1, sqftl50 1, sqftl50*sqftl50 1 /7 CHISQ;
RUN; TITLE;
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STATA Output from GLM:

Generalized linear models No. of obs = 100
Optimization o ML Residual df = 92
Scale parameter = 2907 .643
Deviance = 267503.1219 (1/df) Deviance = 2907 .643
Pearson = 267503.1219 (1/df) Pearson = 2907.643 > Um, this is really bad
Variance function: V(u) = 1 [Gaussian]
Link function :g(uw) =u [Identity]
AlC = 10.88959
Log likelihood = -536.4796698 BIC = 267079.4
| OIM
price | Coef. Std. Err. z P>]z] [95% Conf. Interval]
____________________ A
new | 59.52165 19.13903 3.11 0.002 22.00984 97.03347
bed3vs2 | 14.21484 16.4218 0.87 0.387 -17.9713 46.40098
bed3vs4 | 5.813161 16.4301 0.35 0.723 -26.38925 38.01557
bath2vsl | -6.372286 16.92815 -0.38 0.707 -39.55085 26.80628
bath2vs3 | -14.49036 21.53875 -0.67 0.501 -56.70554 27.72481
sqftl50 | 10.02966 1.867685 5.37 0.000 6.369065 13.69026
c.sqftl150#c.sqftl50 | -149102 -0906363 1.65 0.100 -.0285419 .3267458
_cons | 128.1352  7.544411 16.98 0.000 113.3485 142.922
Akaike"s information criterion and Bayesian information criterion
Model | Obs 11(null) [1I1(model) df AlIC BIC
_____________ e
| 100 . -536.4797 8 1088.959 1109.801
. test (c.new=0) (c.-bed3vs2=0) (c.bed3vs4=0) (c.bath2vsl=0) (c.bath2vs3=0) ///
> (c.sqftl50=0) (c.sqftl50#c.sqft150=0) // Multiv Wald test of model
chi2( 7) = 257.13
Prob > chi2 = 0.0000

SAS Output from GLIMMIX:

Fit Statistics
-2 Log Likelihood 1072.96
AIC (smaller is better 1090.96

)
AICC (smaller is better) 1092.96
BIC (smaller is better) 1114.41
CAIC (smaller is better) 1123.41
HQIC (smaller is better) 1100.45
Pearson Chi-Square 267503.1
Pearson Chi-Square / DF 2675.03 > Um, this is really bad (should be 1)

Parameter Estimates

Standard

Effect Estimate Error DF t Value Pr > |t] Gradient

Intercept 128.14 7.2363 Infty 17.71 <.0001 -263E-17

new 59.5217 18.3575 Infty 3.24 0.0012 -113E-18

bed3vs2 14.2148 15.7512 Infty 0.90 0.3668 -17E-17

bed3vs4 5.8132 15.7592 Infty 0.37 0.7122 -125E-18

bath2vs1 -6.3723 16.2369 Infty -0.39 0.6947 -184E-18

bath2vs3 -14.4904 20.6592 Infty -0.70 0.4831 1.58E-16

sqft150 10.0297 1.7914 Infty 5.60 <.0001 2.87E-15
sqft150*sqft150 0.1491 0.08694 Infty 1.72 0.0863 6.38E-15

Scale 2675.03 378.31 . . . 4.77E-18 > Residual variance

Contrasts

Label Num DF Den DF Chi-Square F Value Pr > ChiSq Pr > F
Multiv Wald test of Model 7 Infty 279.49 39.93 <.0001 <.0001

Before interpreting these results, let’s see if we can get better distribution fit... here are two equivalent models:
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2) Predict Log-Transformed Price Assuming Normal Residuals: LogPrice;~Normal(9;,52)

display as result "STATA: Log-Transformed Price using ldentity Link, Normal Distribution”
glm logprice c.new c.bed3vs2 c.bed3vs4 c.bath2vsl c.bath2vs3 c.sqftl50 ///
c.sqftl50#c.sqftl50, link(identity) family(gaussian),
estat ic, n(100),
test (c.new=0) (c.bed3vs2=0) (c.bed3vs4=0) (c.bath2vsl=0) (c.bath2vs3=0) ///
(c.sqft150=0) (c.sqftl50#c.sqftl150=0) // Multiv Wald test of model

TITLE "SAS: Log-Transformed Price using ldentity Link, Normal Distribution™;
PROC GLIMMIX DATA=work.Example3b NOCLPRINT NAMELEN=100 GRADIENT METHOD=MSPL;
MODEL logprice = new bed3vs2 bed3vs4 bath2vsl bath2vs3 sqftl50 sqftl50*sqftl150
/ SOLUTION DDFM=NONE LINK=IDENTITY DIST=NORMAL;
CONTRAST “Multiv Wald test of Model'™ new 1, bed3vs2 1, bed3vs4 1,
bath2vsl 1, bath2vs3 1, sqftl50 1, sqftl50*sqftl50 1 /7 CHISQ; RUN; TITLE;

3) Predict Price Assuming Log-Normal Residuals: Price;~Lognormal(9;,62) (not readily in Stata)

TITLE "SAS: Price using ldentity Link, Log-Normal Distribution";
PROC GLIMMIX DATA=work.Example3b NOCLPRINT NAMELEN=100 GRADIENT METHOD=MSPL;
MODEL price = new bed3vs2 bed3vs4 bath2vsl bath2vs3 sqftl50 sqftl150*sqftl150
/ SOLUTION DDFM=NONE LINK=IDENTITY DIST=LOGNORMAL;
CONTRAST "Multiv Wald test of Model™ new 1, bed3vs2 1, bed3vs4 1,
bath2vsl 1, bath2vs3 1, sqftl50 1, sqftl50*sqftl50 1 / CHISQ; RUN; TITLE;

STATA Output:
Generalized linear models No. of obs = 100
Optimization o ML Residual df = 92
Scale parameter = .1180992
Deviance = 10.86512691 (1/df) Deviance = -1180992
Pearson = 10.86512691 (1/df) Pearson = .1180992 -> Much better!
Variance function: V(u) =1 [Gaussian]
Link function 2 g(uw) =u [Identity]
AlC = . 7782652
Log likelihood = -30.91325871 BIC = -412.8105
| OIM
logprice | Coef. Std. Err. z P>]z] [95% Conf. Interval]
____________________ A
new | .2391816 .1219756 1.96 0.050 0001139 _4782494
bed3vs2 | .1539675 -1046583 1.47 0.141 -.051159 -3590941
bed3vs4 | .0129776 -1047112 0.12 0.901 -.1922526 .2182079
bath2vsl | -.1455129 -1078853 -1.35 0.177 -.3569643 .0659385
bath2vs3 | -.0561447 .1372693 -0.41 0.683 -.3251876 .2128982
sqftl50 | .0795194 .011903 6.68 0.000 .0561899 -1028488
c.sqftl50#c.sqftl50 | -.0012611 .0005776 -2.18 0.029 -.0023933 -.000129
_cons | 4.814402 .0480815 100.13 0.000 4.720164 4.90864

Note that scale factor is provided up above instead of here...

Model | Obs I11(null) [1I1(model) df AIC BIC
_____________ A

| 100 . -30.91326 8 77.82652 98.66788

. test (c.new=0) (c-bed3vs2=0) (c-.bed3vs4=0) (c.bath2vsl=0) (c.bath2vs3=0) ///

> (c.sqftl150=0) (c.sqftl50#c.sqftl150=0) // Multiv Wald test of model
chi2( 7) = 172.69
Prob > chi2 = 0.0000

SAS’s Output is exactly the same either way:

Fit Statistics
-2 Log Likelihood 61.83

AIC (smaller is better) 79.83
AICC (smaller is better) 81.83
BIC (smaller is better) 108.27
CAIC (smaller is better) 112.27
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HQIC (smaller is better) 89.32
Pearson Chi-Square 10.87
Pearson Chi-Square / DF 0.11 2> Much better!

Parameter Estimates

Standard

Effect Estimate Error DF t Value Pr > |t| Gradient

Intercept 4.8144 0.04612 Infty 104.39 <.0001 -16E-13

new 0.2392 0.1170 Infty 2.04 0.0409 4.79E-14

bed3vs2 0.1540 0.1004 Infty 1.53 0.1251 5.51E-14

bed3vs4 0.01298 0.1004 Infty 0.13 0.8972 6.11E-15

bath2vs1 -0.1455 0.1035 Infty -1.41 0.1597 -103E-15

bath2vs3 -0.05614 0.1317 Infty -0.43 0.6698 -256E-16

sqft150 0.07952 0.01142 Infty 6.97 <.0001 2.79E-12
sqft150*sqft150 -0.00126 0.000554 Infty -2.28 0.0228 -257E-13

Scale 0.1087 0.01537 . . . 7.56E-11 - Residual variance

Contrasts

Label Num DF Den DF Chi-Square F Value Pr > ChiSq Pr > F
Multiv Wald test of Model 7 Infty 187.71 26.82 <.0001 <.0001

4) Predict Price with Log Link Assuming Gamma Residuals: Price;~Gamma(u, ¢), where y; = Log(u)
and ¢ is a “scale” multiplier of the variance, such that variance = u?¢ (or at least I think that’s right).

Stata’s GLM does not give the same LL as in SAS for gamma, but here is an “Lgamma” routine that does:

display as result "STATA: Price using Log Link, Gamma Distribution®

display as result "Using LGAMMA that does not allow factor variables"

lIgamma price new bed3vs2 bed3vs4 bath2vsl bath2vs3 sqftl50 sqftl50sq,

estat ic, n(100),

test (new=0) (bed3vs2=0) (bed3vs4=0) (bath2vsl1=0) (bath2vs3=0) ///
(sgft1l50=0) (sqftl50sq) // Multiv Wald test of model

display as result "STATA LGAMMA: Price using Log Link, Gamma Distribution®
display as result "Get Incident-Rate Ratios as exp(slope)”
lgamma price new bed3vs2 bed3vs4 bath2vsl bath2vs3 sqftl50 sqftl50sq, eform

TITLE "SAS: Price using Log Link, Gamma Distribution';
PROC GLIMMIX DATA=work.Example3b NOCLPRINT NAMELEN=100 GRADIENT METHOD=MSPL PLOTS=ALL;
MODEL price = new bed3vs2 bed3vs4 bath2vsl bath2vs3 sqftl50 sqftl150*sqftl150
/ SOLUTION DDFM=NONE LINK=LOG DIST=GAMMA;
CONTRAST "Multiv Wald test of Model'™ new 1, bed3vs2 1, bed3vs4 1,
bath2vsl 1, bath2vs3 1, sqftl50 1, sqftl50*sqftl50 1 / CHISQ; RUN; TITLE;

STATA Output:

Log-gamma model Number of obs = 100
LR chi2(7) = 117.57

Log likelihood = -517.21898 Prob > chi2 = 0.0000
price | Coef Std. Err z P>]z] [95% Conf. Interval]
_____________ A e e
new | .204721 -1136043 1.80 0.072 -.0179394 .4273814

bed3vs2 | .1728484 -1002319 1.72 0.085 -.0236026 -3692993
bed3vs4 | .0218806 .0952913 0.23 0.818 -.1648869 .2086482
bath2vsl | -.1323233 -0999321 -1.32 0.185 -.3281866 .06354
bath2vs3 | -.0526695 .1244118 -0.42 0.672 -.2965123 .1911732
sqftl50 | .0752007 -0111396 6.75 0.000 .0533675 -0970339
sqftl50sq | -.0009965 .0005487 -1.82 0.069 -.0020719 .0000789
_cons | 4.854958 .0441468 109.97 0.000 4.768432 4.941484
_____________ e e e e e
/In_phi | -2.298655 1391173 -16.52 0.000 -2.57132 -2.02599
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Akaike"s information criterion and Bayesian information criterion

Model | Obs 11(null) 11(model) df AlC BIC

_____________ A
| 100 -576.002 -517.219 9 1052.438 1075.884
. test (new=0) (bed3vs2=0) (bed3vs4=0) (bath2vsl1=0) (bath2vs3=0) ///
> (sqft150=0) (sqftl50sq) // Multiv Wald test of model
chi2( 7) = 187.18
Prob > chi2 = 0.0000

SAS Output:

Fit Statistics
-2 Log Likelihood 1034.44

AIC (smaller is better) 1052.44
AICC (smaller is better) 1054.44
BIC (smaller is better) 1075.88
CAIC (smaller is better) 1084.88
HQIC (smaller is better) 1061.93
Pearson Chi-Square 9.77
Pearson Chi-Square / DF 0.10 > Still good!

Parameter Estimates

Standard

Effect Estimate Error DF t Value Pr > |t] Gradient

Intercept 4.8550 0.04415 Infty 109.97 <.0001 -2.67E-7

new 0.2047 0.1136 Infty 1.80 0.0715 -0.00001

bed3vs2 0.1729 0.1002 Infty 1.72 0.0846 0.000029

bed3vs4 0.02188 0.09529 Infty 0.23 0.8184 -9.69E-6

bath2vs1 -0.1323 0.09993 Infty -1.32 0.1855 0.000017

bath2vs3 -0.05267 0.1244 Infty -0.42 0.6720 -4.99E-6

sqft150 0.07520 0.01114 Infty 6.75 <.0001 0.001965
sqft150*sqft150 -0.00100 0.000549 Infty -1.82 0.0693 -0.02582

Scale 0.1004 0.01397 . . . -2.65E-6 > phi variance multiplier

Contrasts
Num Den

Label DF DF Chi-Square F Value Pr > ChiSq Pr > F
Multiv Wald test of Model 7 Infty 187.18 26.74 <.0001 <.0001

4) Predict Price Median (50" Percentile) instead of Mean using Quantile Regression

Back in intro stat you learned that variables with skewness, outliers, or other kinds of non-normal distributions could be
better described using median and interquartile range (i.e., the 50" percentile and the distance from the 25" to 75"
percentile) than using the mean and standard deviation. So why not predict these percentiles instead of the mean using
a regression model? This is the basis of quantile regression: the slope estimates are those that minimize a weighted
absolute value of the residuals (rather than an unweighted sum of squared residuals as in traditional regression). While the
residuals are still assumed to be normal, this is of little consequence because most quantile procedures use some kind of
resampling (i.e., bootstrapping in SAS and STATA) to get the standard errors without relying on distributional properties.

display as result "STATA: Price 50th Percentile using Quantile Regression"
set seed 8675309 // Set Jenny as seed to get same results each time
sqreg price c.new c.bed3vs2 c.bed3vs4 c.bath2vsl c.bath2vs3 c.sqftl50 ///
c.sqgftl50#c.sqftl50, quantile(.50),
test (c.new=0) (c-.bed3vs2=0) (c.bed3vs4=0) (c.bath2vsl=0) (c.bath2vs3=0) ///
(c.sqft150=0) (c.sqftl50#c.sqftl50=0) // Multiv Wald test of model

TITLE "SAS: Price 50th Percentile (Median) using Quantile Regression';

PROC QUANTREG DATA=work.Example3b NAMELEN=100 CI=RESAMPLING(NREP=500);
MODEL price = new bed3vs2 bed3vs4 bath2vsl bath2vs3 sqftl50 sqftl50*sqftl50 / QUANTILE=.50;
Model: TEST new bed3vs2 bed3vs4 bath2vsl bath2vs3 sqftl50 sqftl150*sqftl50 / WALD; RUN; TITLE;
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STATA Output:
Simultaneous quantile regression Number of obs = 100
bootstrap(500) SEs .50 Pseudo R2 = 0.4523
| Bootstrap

price | Coef. Std. Err. t P>]t] [95% Conf. Interval]
____________________ e e e e e
q50 new | 32.16499 29.68706 1.08 0.281 -26.79608 91.12606
bed3vs2 | 1.077787  19.89456 0.05 0.957 -38.43453 40.59011
bed3vs4 | -28.11573 21.71178 -1.29 0.199 -71.2372 15.00574
bath2vsl | -13.73013 14.54949 -0.94 0.348 -42.62668 15.16642
bath2vs3 | -1.299234 32.61532 -0.04 0.968 -66.07607 63.4776
sqftl50 | 8.664785  2.330797 3.72 0.000 4.035622 13.29395
c.sqftl50#c.sqftl50 | .3827353 .2509158 1.53 0.131 -.1156051 .8810758
_cons | 133  7.293593 18.24 0.000 118.5143 147.4857

. test (c.new=0) (c.bed3vs2=0) (c.bed3vs4=0) (c.bath2vsl=0) (c.bath2vs3=0) ///

> (c.sqft150=0) (c.sqftl50#c.sqft150=0) // Multiv Wald test of model
FC 7, 92) = 10.50 > Note is very different than provided by SAS, but not sure why
Prob > F = 0.0000
SAS Output:
Parameter Estimates Predicting 50 Percentile (Median)
Standard 95% Confidence

Parameter DF Estimate Error Limits t Value Pr > |t|
Intercept 1 133.0000 6.4939 120.1026 145.8974 20.48 <.0001
new 1 32.1650 21.8180 -11.1674 75.4974 1.47 0.1438
bed3vs2 1 1.0778 19.4887 -37.6285 39.7841 0.06 0.9560
bed3vs4 1 -28.1157 18.1543 -64.1716 7.9402 -1.55 0.1249
bath2vs1 1 -13.7301 12.9477 -39.4453 11.9851 -1.06 0.2917
bath2vs3 1 -1.2992 29.3305 -59.5522 56.9538 -0.04 0.9648
sqft150 1 8.6648 2.5004 3.6987 13.6309 3.47 0.0008
sqft150*sqft150 1 0.3827 0.1760 0.0332 0.7323 2.17 0.0322

Test Model Results For unknown reasons, the multivariate Wald test results differ

Test chi- _ between SAS and STATA (beyond correcting for F vs. x2)
Test Statistic DF Square Pr > ChiSq
Wald 93.2328 7 93.23 <.0001 > Translates to F = 93.23/7 = 13.32

4) Predict Price 25™ and 75" Percentile using Quantile Regression:

Besides “handling” outliers, another use of quantile regression is to answer research questions about differences at other
points of a distribution. Here, we predict the 25" percentile to ask, “among (relatively) cheap houses, what predicts sale
price?” Likewise, we predict the 75" percentile to ask, “among (relatively) expensive houses, what predicts sale price?”
We can also ask for differences in the predictor effects across these quantiles (e.g., is being a new house more important if
the house is expensive than if the house is cheap?), which is analogous to an interaction of the predictor with the quantiles.

display as result "STATA: Price 25 and 75th Percentile using Quantile Regression”

set seed 8675309 // Set Jenny as seed to get same results each time

sqreg price c.new c.bed3vs2 c.bed3vs4 c.bath2vsl c.bath2vs3 c.sqftl50 ///

c.sqftl50#c.sqgftl50, quantile(.25 .75) reps(500),

// Multiv Wald test of model at 25th percentile

test ([g25]c-new=0) ([g25]c.bed3vs2=0) ([g25]c-bed3vs4=0) ([g25]c-bath2vs1=0) ///
([g25]c.bath2vs3=0) ([g25]c-sqft150=0) ([g25]c-sqft150#c.sqft150=0)

// Multiv Wald test of model at 75th percentile

test ([q75]c-new=0) ([q75]c-bed3vs2=0) ([g75]c-bed3vs4=0) ([q75]c-bath2vs1=0) ///
([a75]c.bath2vs3=0) ([q75]c-sqft150=0) ([q75]c.sqftl150#c.sqft150=0)

// Multiv Wald test of difference in model between 25th and 75th percentile

test ([g25]c.new=[q75]c.new)([g25]c-bed3vs2=[q75]c.bed3vs2) ///
([g25]c-bed3vs4=[q75]c-bed3vs4) ([g25]c.bath2vsli=[q75]c-bath2vsl) ///
([g25]c.bath2vs3=[q75]c.bath2vs3) ([g25]c.sqft150=[q75]c.sqftl150) ///
([g25]c-sqft150#c.sgftl50=[q75]c-sqftl50#c.sqftl150)
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// Single-predictor difference across quantiles

test ([g25]c-new=[q75]c-new)

display as result "STATA: Price 25-75 Inter-Quantile Regression”

display as result "Model directly predicts predictor slope differences"

set seed 8675309 // Set Jenny as seed to get same results each time

igreg price c.new c.bed3vs2 c.bed3vs4 c.bath2vsl c.bath2vs3 c.sqftl50 ///

c.sqftl50#c.sqftl50, quantile(.25 .75) reps(500)

test (c.new=0) (c.bed3vs2=0) (c.bed3vs4=0) (c.bath2vsl=0) (c.bath2vs3=0) ///

(c.sqft150=0) (c.sqftl50#c.sqft150=0) // Multiv Wald test of differences

TITLE "SAS: Price 50th and 75th Percentile using Quantile Regression";
PROC QUANTREG DATA=work.Example3b NAMELEN=100 CI=RESAMPLING(NREP=500) ;
MODEL price = new bed3vs2 bed3vs4 bath2vsl bath2vs3 sqftl50 sqftl150*sqftl150
/ QUANTILE=.25 .75;
EachModel: TEST new bed3vs2 bed3vs4 bath2vsl bath2vs3 sqftl50 sqftl150*sqftl150 / WALD;
ModelDiff: TEST new bed3vs2 bed3vs4 bath2vsl bath2vs3 sqftl50 sqftl50*sqftl50 /7 QINTERACT;
newDiFf: TEST new / QINTERACT; * How to test predictor effect across quantiles; RUN; TITLE;

STATA Output from SQREG:

Simultaneous quantile regression Number of obs = 100
bootstrap(500) SEs .25 Pseudo R2 = 0.3747
.75 Pseudo R2 = 0.5713
| Bootstrap
price | Coef. Std. Err. t P>]t] [95% Conf. Interval]
____________________ A e
q25 new | 45.67319 23.32531 1.96 0.053 -.652896 91.99928
bed3vs2 | 4.7 16.71575 0.28 0.779 -28.49892 37.89892
bed3vs4 | -.2206411 21.92028 -0.01 0.992 -43.7562 43.31492
bath2vsl | -.7477554 15.37286 -0.05 0.961 -31.27959 29.78407
bath2vs3 | 2.397843  33.71776 0.07 0.943 -64.56854 69.36422
sqftl150 | 9.404941  1.757854 5.35 0.000 5.91369 12.89619
c.sqftl50#c.sqftl50 | -1068575 .2572658 0.42 0.679 -.4040946 .6178097
_cons | 101.1147  7.680341 13.17 0.000 85.86092 116.3686
____________________ A
q75 new | 24.38865  37.27962 0.65 0.515 -49.6519 98.4292
bed3vs2 | 31.59456 18.98626 1.66 0.100 -6.113803 69.30292
bed3vs4 | -31.68683  45.09697 -0.70 0.484 -121.2533 57.87966
bath2vsl | -15.06422  13.74436 -1.10 0.276 -42.3617 12.23326
bath2vs3 | -1.257882 43.82478 -0.03 0.977 -88.29768 85.78192
sqftl150 | 10.84037 3.055926 3.55 0.001 4.771038 16.90971
c.sqftl50#c.sqftl50 | .3294847 .201842 1.63 0.106 -.071391 .7303603
_cons | 145.7357  5.484035 26.57 0.000 134.8439 156.6274

. // Multiv Wald test of model at 25th percentile
. test ([g25]c-new=0) ([g25]c-bed3vs2=0) ([g25]c-bed3vs4=0) ([g25]c-bath2vs1=0) /// For unknown reasons,

> ([g25]c.bath2vs3=0) ([g25]c.sqft150=0) ([g25]c.sqft150#c.sqft150=0) the multivariate Wald
F( 7F’,r0b 222 Z 18'8800 test results continue to
) differ between SAS
. // Multiv Wald test of model at 75th percentile and STATA (beyond
. test ([q75]c-new=0) ([q75]c-bed3vs2=0) ([q75]c-bed3vs4=0) ([g75]c-bath2vsl1=0) /// cowecﬂngforF:vs Xz)
> ([g75]c-bath2vs3=0) ([q75]c-sqft150=0) ([q75]c.sqft150#c.sqft150=0) '
FC 7, 92) = 9.48
Prob > F = 0.0000

. // Multiv Wald test of difference in model between 25th and 75th percentile
. test ([g25]c-new=[qg75]c-new)([g25]c.bed3vs2=[g75]c-bed3vs2) ///

> ([a25]c-bed3vs4=[q75]c-bed3vs4) ([g25]c.bath2vsl=[q75]c-bath2vsl) ///
> ([g25]c-bath2vs3=[q75]c-bath2vs3) ([g25]c-sqft150=[q75]c.sqftl50) ///
> ([g25]c.-sqftl50#c.sqftl150=[g75]c.sqftl150#c.sqftl50)
FC 7, 92) = 0.56
Prob > F = 0.7689

. // Single-predictor difference across quantiles
. test ([g25]c-new=[g75]c.new)
FC 1, 92) = 0.37
Prob > F = 0.5470
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STATA Output from IQREG—these are the differences in predictor slopes across quantiles:

.75-.25 Interquantile regression
bootstrap(500) SEs

Number of obs
.75 Pseudo R2
.25 Pseudo R2

|

price | Coef
____________________ +

new | -21.28454

bed3vs2 | 26.89456

bed3vs4 | -31.46618

bath2vsl | -14.31647

bath2vs3 | -3.655725

sqftl50 | 1.435431

c.sqftl50#c.sqftl50 | .2226271
_cons | 4462092

Std. Err.

t P>|t]|
-0.60 0.547
1.28 0.204
-0.72 0.474
-0.86 0.392
-0.09 0.932
0.50 0.619
0.78 0.435
5.23 0.000

= 100

= 0.5713

= 0.3747

[95% Conf. Interval]
-91.22259 48.6535
-14.81711 68.60622
-118.4296 55.49721

-47.398 18.76506
-88.22121 80.90976
-4.286319 7.157181
-.3409085 .7861628

27.6832 61.55864

test (c.new=0) (c.bed3vs2=0) (c.bed3vs4=0) (c.bath2vsl1=0) (c.bath2vs3=0) ///

> (c.sqftl150=0) (c.sqftl50#c.sqftl150=0) // Multiv Wald test of differences
FC 7, 92) = 0.56
Prob > F = 0.7869
SAS Output:

Parameter Estimates Predicting 25 percentile

Standard 95% Confidence
Parameter DF Estimate Error Limits t Value Pr > |t]
Intercept 1 101.1147 7.2033 86.8084 115.4211 14.04 <.0001
new 1 45.6732 24.7080 -3.3990 94.7454 1.85 0.0677
bed3vs2 1 4.7000 15.2906 -25.6685 35.0685 0.31 0.7593
bed3vs4 1 -0.2206 18.5831 -37.1283 36.6870 -0.01 0.9906
bath2vs1 1 -0.7478 16.9679 -34.4474 32.9519 -0.04 0.9649
bath2vs3 1 2.3978 40.7497 -78.5345 83.3302 0.06 0.9532
sqft150 1 9.4049  2.3382 4.7611 14.0488 4.02 0.0001
sqft150*sqft150 1 0.1069 0.2097 -0.3097 0.5234 0.51 0.6116
Parameter Estimates Predicting 75™ percentile
Standard 95% Confidence
Parameter DF Estimate Error Limits t Value Pr > |t|
Intercept 1 145.7357 7.4091 131.0205 160.4508 19.67 <.0001
new 1 24.3886 31.2605 -37.6973 86.4746 0.78 0.4373
bed3vs2 1 31.5946 18.3438 -4.8379 68.0270 1.72 0.0884
bed3vs4 1 -31.6868 40.6147 -112.3511 48.9774 -0.78 0.4373
bath2vs1 1 -15.0642 15.5390 -45.9261 15.7977 -0.97 0.3349
bath2vs3 1 -1.2579 42.7840 -86.2306 83.7149 -0.03 0.9766
sqft150 1 10.8404 3.3255 4.2357 17.4450 3.26 0.0016
sqft150*sqft150 1 0.3295 0.2223 -0.1119 0.7709 1.48 0.1416
Test EachModel Results

Quantile Test Chi-

Level Test Statistic DF Square Pr > ChiSq

0.25 Wald 78.4206 7 78.42 <.0001

0.75 Wald 96.8727 7 96.87 <.0001

Test ModelDiff Results
Equal Coefficients
Across Quantiles
Chi-Square DF Pr > ChiSq

4.4799 7 0.7231

0.3636

1

Test newDiff Results
Equal Coefficients
Across Quantiles
Chi-Square DF Pr > ChiSq

0.5465
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4) Predict Price All Percentiles using Quantile Regression (couldn’t find this in STATA):

TITLE "SAS: Price All Percentiles using Quantile Regression';
PROC QUANTREG DATA=work.Example3b NAMELEN=100 CI=RESAMPLING(NREP=500) ;
MODEL price = new bed3vs2 bed3vs4 bath2vsl bath2vs3 sqftl50 sqftl150*sqftl150
/ QUANTILE=PROCESS PLOT=QUANTPLOT SEED=8675309; * Jenny is the random seed;
RUN; TITLE;

SAS Output Graphical Summary (lots of voluminous output omitted; is Figure 1 in results section):

Estimated Parameter by Quantile Level for price Top left: The intercept increases
With 85% Confidence Limits across percentiles (called
300 7 H ”»
- [ quantiles™) as expected.
500 | o Top right: The slope for new
=1 100 construction stays just north of 0
£ 150 5 T ~———~J | |untilthe 40" percentile or so.
E= 100 ll_
-100 Bottom left: The slope for 3 vs 2
50 bedrooms appears to not be different
-200 .
0 than 0 through most percentiles,
— although with an apparent increase
120 in the upper quantiles (with lots of
noise).
100 100
® P Bottom right: The slope for 3 vs 4
Z 50 2 bedrooms appears to not be different
= | 0 {1 | than 0 through most of the
07 L percentiles, although with an
0 ~ { 400 apparent decrease in the upper
percentiles (with lots of noise) until
0o 02 04 08 08 10 00 02 04 08 08 10 | .80 or so, in which it suddenly jumps
Quantile Level Quantile Level up to positive (with lots of noise)...?
Estimated Palrameter by Quantil_e lLeveI for price Top left: The slope for bath 2 vs 1 is
With 95% Confidznce Limits 0 with no trend across percentiles.
100 0 Top right: The slope for bath 2 vs 3
is 0 with no trend across percentiles.
E E 0 ___J—"‘—"—\—\_J--\_U—'V'_‘
g ° M———H‘—’JLV"L e l* Bottom left: The slope for the linear
2 2 effect of square footage (which is
o0 =00 the instantaneous slope at 1500 sq ft)
is significantly positive across
400 percentiles and looks to grow in
a0 strength after .60 or so.
o e Bottom right: The slope the
20 T 0s ] quadratic effect of square footage is
@ 3 not different than 0 until about .50,
= Wm 2 0o w at which point it is significantly
10 L & positive (i.e., an accelerated effect of
“ s square footage). Although it stays
0 positive, there is greater noise
10 making it not different than 0 after
0o 02 04 08 0s 1.0 0o 02 04 08 08 1.0 .70 or so.
Quantile Level Quantile Level
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Sample Write-up using SAS output:

The present analysis sought to predict the final sale price of 100 homes from four characteristics: whether they were new
construction (0=no, 1=yes), liner and quadratic effects of square footage in 100s (centered at 1500), number of bedrooms
(2,3, or 4+), and number of bathrooms (1,2, or 3+). Because the observed distribution of home sale prices was positively
skewed and contained seven potential outliers, the robustness of the model results to these characteristics was examined
using several distinct approaches. All models included the same predictor effects and were estimated using maximum
likelihood within SAS GLIMMIX unless otherwise noted. The extent of conditional distribution fit was examined using
the Pearson y2/DF statistic (in which 1=good fit); all predictor fixed effects were tested univariately using z-distributions
without denominator degrees of freedom unless otherwise noted. As expected given the positively skewed distribution of
sale prices, a model specifying a normal conditional distribution have severe overdispersion (Pearson y?/DF = 2675.03).

We then examined two alternative models that were better suited for positively skewed residuals. First, we predicted home
sale prices using a log-normal conditional distribution for the residuals, which appeared to have much better fit but also to
result in underdispersion (Pearson y?/DF = 0.11). In the lognormal solution, after controlling for the number of bedrooms
and bathrooms, new houses sold for significantly more money (0.24 log $1000 units; p <.041), and sale prices were also
uniquely predicted by a quadratic function of square footage. More specifically, the sale price increased significantly by
0.08 log $1000 units per 100 additional square feet as evaluated at 1500 square feet (p < .001), but this positive slope of
house size became significantly less positive by twice the quadratic coefficient of —-0.001 per additional 100 square feet
(i.e., the impact of being a bigger house was reduced in bigger houses; p <.023). The number of bedrooms or bathrooms
did not have significant unique effects. Second, we fit the same predictive model using a log link function and a gamma
conditional distribution, which exhibited a similar level of conditional distribution fit (Pearson y%/DF = 0.10). However,
the effect of being new construction and the quadratic effect of house size were then nonsignificant (p’s = .07).

We then turned to a different modeling approach that would be more robust to outliers—quantile regression, in which one
can predict any percentile of the distribution (labeled a “quantile”) instead of the mean as in traditional regression. In our
guantile regressions, the point estimates for the predictor slopes were found by minimizing a weighted function of the
absolute value of the model residuals (in which the weights reflect the chosen percentile). Standard errors were found
through 500 bootstrap replications (i.e., in which 500 samples with replacement were generated to capture the empirical
sampling distribution of the slope estimates for more valid standard errors). SAS QUANTREG was used to conduct the
analyses, and residual denominator degrees of freedom were used to evaluate the significance of the model predictors.

First, in predicting the 50" percentile (i.e., the median home price), no unique predictor effects were significant except
square footage, for which significant positive linear and quadratic effects were found. More specifically, the sale price
increased by 8.66 $1000 units per 100 additional square feet as evaluated at 1500 square feet (p <.001), and this positive
slope of house size became significantly more positive by twice the quadratic coefficient of 0.38 per additional 100 square
feet (i.e., the price bonus of being a bigger house was magnified in bigger houses; p <.0322). We repeated this analysis to
predict the 25" and 75™ percentiles to examine potential differences in prediction for relatively inexpensive or relatively
expensive houses, respectively. At the 25™ percentile, there was a marginally significant positive effect of new
construction (Est = 45.67, p = .067), a significant linear effect of house size at 1500 square feet (Est = 9.40 per 100 square
feet; p <.001), but no significant quadratic effect of house size (Est = 0.107, p = .612). At the 75" percentile, there was a
nonsignificant effect of new construction (Est = 24.29, p = .437), a significant linear effect of house size at 1500 square
feet (Est = 10.84 per 100 square feet; p <.002), but no significant quadratic effect of house size (Est = 0.33, p =.142).
Finally, Figure 1 provides the results in examining prediction at 144 distinct values ranging from the 0.004™ to 99.6"
percentiles, in which the solid line in each image depicts the point estimate for the slope (y-axis) as a function of the
percentile (x-axis), and the shading conveys the 95% confidence interval around the slope estimates. The unique effects of
number of bedrooms and number of bathrooms did not appear to be significant at any percentile. The effect of new
construction appeared marginally significantly positive from approximately the 20" to the 40" percentiles, and
nonsignificantly positive otherwise. The linear effect of house size at 1500 square feet was significantly positive at nearly
every percentile and appeared to grow in size as home prices increased. The quadratic effect of house size appeared to
transition from nonsignificantly negative until the 20™ percentile, to nonsignificantly positive until the 40" percentile, to
significantly positive until the 70" percentile, after which it remained nonsignificantly positive. Thus, it appears that
having a bigger house is even more helpful among midrange houses, but not for inexpensive or very expensive houses.



