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Example 3a: Generalized Linear Models for Binomial Outcomes (% Correct) using SAS and STATA
(complete syntax and output available for SAS and STATA electronically)

The data for this example come from the publication below, which examined annual growth in a test of grammatical
understanding from Kindergarten through 4" grade in children with non-specific language impairment (NLI) or specific
language impairment (SLI):

Rice, M. L., Tomblin, J. B., Hoffman, L., Richman, W. A., & Marquis, J. (2004). Grammatical tense deficits in children
with SLI and nonspecific language impairment: Relationships with nonverbal 1Q over time. Journal of Speech-
Language-Hearing Research, 47(4), 816-834.

The current example is a cross-sectional analysis of how grammatical understanding at third grade is predicted by group
(NLI=0, SLI=1) and mother’s years of education (centered so that 0=12 years). Given that percent correct is bounded by 0
and 1, we will use a logit link and the binomial family of conditional response distributions. Because the binomial is a
discrete distribution, we will need to parameterize the model to predict the number of correct responses out of the number
of trials instead of percent correct. This example will also demonstrate two ways of addressing binomial overdispersion:
additive (through individual random intercepts) and multiplicative (through the beta-binomial distribution), as well as
zero-inflated (actually one-inflated here; stay tuned) versions of the binomial and beta-binomial model variants. In SAS
GLIMMIX I am not using denominator DF so that the results match those of STATA as closely as possible.

SAS Data Manipulation and Description:

* Create predictor variables;
DATA work.Example3a; SET work.growthdata;
IF class=2 THEN NLIvsSLI=0; * NLI;
IF class=3 THEN NLIvsSLI=1; * SLI;
momedl1l2=mom_edc-12; * Mom ed (0=12);
* Subset to wave 4 (third grade) and complete cases;
WHERE index1=4 AND NMISS(Ncorrect,NLIvsSLI ,momed12)=0;
* Create number correct for binomial model;
Ntrials=100; PercentCorrect=CompTns;
Ncorrect=ROUND(PercentCorrect*Ntrials,1);
* Compute number incorrect for zero-inflated binomial model;
Nincorrect=Ntrials-Ncorrect;
RUN;
* Export data to STATA format;
PROC EXPORT DATA=work.Example3a OUTFILE="&Filesave.\Example3a.dta"™ DBMS=STATA REPLACE; RUN;

TITLE "Distribution of Percent Correct";
PROC UNIVARIATE NOPRINT DATA=work.Example3a; VAR PercentCorrect;

HISTOGRAM PercentCorrect / MIDPOINTS= O TO 1 BY .05 NORMAL(MU=EST SIGMA=EST); RUN; QUIT;
PROC MEANS NDEC=3 DATA=work.Example3a; VAR PercentCorrect; RUN; TITLE;

Distribution of PercentCorrect Individual mean % correct across 97 persons:
M=.9212, SD=.1240, Min=.3548, Max=1.00
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STATA Data Manipulation and Description:

* Import data

use "$Ffilesave\Example3a.dta", clear

* Distribution of Percent Correct

hist percentcorrect, percent start(0) width(.05)

* Find and install betabin (and zbin and zibbin)
search betabin // install before continuing

1) Empty Means Binomial Model for % correct using DV = Events/Trials

#Correct;~Binomial(p;, Ntrials;) = p; is probability of any one trial being correct
Logit(p; for correct trial) = B,

Conditional mean for #Correct; = Ntrials; * p;

Conditional variance for #Correct; = (Ntrials; * p;)(1 — p;)

display as result "STATA Empty Means Binomial Model™

glm ncorrect, link(logit) family(binomial ntrials),

estat ic, n(97),

nlcom 1/(1+exp(-1*(_b[_cons]))) 7/ intercept in probability (ILINK)

TITLE "SAS Empty Means Binomial Model™;
PROC GLIMMIX DATA=work.Example3a NOCLPRINT NAMELEN=100 GRADIENT;

MODEL Ncorrect/Ntrials = / SOLUTION DDFM=NONE LINK=LOGIT DIST=BINOMIAL;

ESTIMATE "Intercept” intercept 1 / ILINK; * ILINK gives intercept in probability;
RUN; TITLE;

STATA Output:
Generalized linear models No. of obs = 97
Optimization I ML Residual df = 96
Scale parameter = 1
Deviance = 1620.05009 (1/df) Deviance = 16.87552
Pearson = 2041.435988 (1/df) Pearson = 21.26496
Variance function: V(u) = u*(1-u/ntrials) [Binomial]
Link function : g(uw) = In(u/(ntrials-u)) [Logit]
AlC = 19.00196
Log likelihood = -920.5951086 BIC = 1180.878
| OIM
ncorrect | Coef. Std. Err. z P>]z| [95% Conf. Interval]
_____________ e
_cons | 2.459276 -0376936 65.24 0.000 2.385397 2.533154
Akaike"s information criterion and Bayesian information criterion
Model | Obs 11(null) [TI(model) df AlC BIC
_____________ R
- 97 . -920.5951 1 1843.19 1845.765
nlcom 1/(1+exp(-1*(_b[_cons]))) // intercept in probability (ILINK)
ncorrect | Coef. Std. Err. z P>]z] [95% Conf. Interval]

_____________ o
_nl_1] -9212371 -002735 336.83 0.000 -9158766 -9265977
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SAS Output:
Fit Statistics
-2 Log Likelihood 1841.19 | To inverse link from logits to predicted % correct:
AIC (smaller is better) 1843.19 exp(2.4593)
AICC (smaller is better) 1843.23 =1 1+ exp(2.4593)
BIC (smaller is better) 1845.76 | The sample average probability of getting each item correct is .9212
CAIC (smaller is better) 1846.76 P gep geting ' '
HQI ller i 1844.2 . . . . .
QIC (sma Ler 1s better) 8 8 But Chi-Square/DF > 1, indicating that this model has over-dispersion (too
Pearson Chi-Square 2041.44 h . likelv i th h ti ted dict t
Pearson Chi-Square / DF 21.06 | much variance, likely in part because we haven’t incorporated predictors yet).

Parameter Estimates

Standard
Effect Estimate Error DF t Value Pr > |t| Gradient
Intercept 2.4593 0.03769 Infty 65.24 <.0001 -1.03E-6
Estimates
Standard Standard Error
Label Estimate Error DF t Value Pr > |t| Mean Mean
Intercept 2.4593 0.03769 Infty 65.24 <.0001 0.9212 0.002735

So even though we are modeling number of correct trials as the DV, the model is phrased to
predict percent correct directly (as the conditional mean p, the probability that any trial = 1).

2) Two-Predictor Binomial Model

#Correct;~Binomial(p;, Ntrials;) = p; is probability of any one trial being correct
Logit(p; for correct trial) = B, + B (NLIvsSLI;) + B,(MotherEd; — 12)
Conditional mean: #Correct; = Ntrials; * p;

Conditional variance of #Correct; = (Ntrials; * p;)(1 — p;)

display as result "STATA Two-Predictor Binomial Model™

glm ncorrect c.nlivssli c.momed12, link(logit) family(binomial ntrials),
estat ic, n(97),

test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model

TITLE "SAS Two-Predictor Binomial Model™;
PROC GLIMMIX DATA=work.Example3a NOCLPRINT NAMELEN=100 GRADIENT;
MODEL Ncorrect/Ntrials = NLIvsSL1I momed12
/ SOLUTION DDFM=NONE LINK=LOGIT DIST=BINOMIAL ODDSRATIO(LABEL);
CONTRAST *"Multiv Wald test of Model™ NLIvsSLI 1, momedl2 1 / CHISQ;
RUN; TITLE;

STATA Output:
Generalized linear models No. of obs = 97
Optimization I ML Residual df = 94
Scale parameter = 1
Deviance = 1310.593044 (1/df) Deviance = 13.94248
Pearson = 1448.891028 (1/df) Pearson = 15.41373
Variance function: V(u) = u*(1-u/ntrials) [Binomial]
Link function : g(uw) = In(u/(ntrials-u)) [Logit]
AlC = 15.85292
Log likelihood = -765.8665858 BIC = 880.5702
| OIM
ncorrect | Coef Std. Err z P>|z] [95% Conf. Interval]
_____________ e
nlivssli | -1.221578 .0858707 -14.23 0.000 -1.389881  -1.053275
momed12 | .1193325 .0214268 5.57 0.000 .0773368 .1613283
_cons | 3.071929 .0746183 41.17  0.000 2.92568 3.218178
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Akaike"s information criterion and Bayesian information criterion

Model | Obs I11(null) 11(model) df AlIC BIC
_____________ e
| 97 . -765.8666 3 1537.733  1545.457
. test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model
chi2( 2) = 273.58
Prob > chi2 = 0.0000
SAS Output:

Fit Statistics
-2 Log Likelihood 1531.73

AIC (smaller is better) 1537.73
AICC (smaller is better) 1537.99
BIC (smaller is better) 1545.46
CAIC (smaller is better) 1548.46
HQIC (smaller is better) 1540.86
Pearson Chi-Square 1448.89
Pearson Chi-Square / DF 15.41 = better, but nowhere good enough!

Parameter Estimates

Standard
Effect Estimate Error DF t Value Pr > |t| Gradient
Intercept 3.0719 0.07462 Infty 41.17 <.0001 -5.77E-6
NLIVSSLI -1.2216 0.08587 Infty -14.23 <.0001 -3.06E-9
momedi12 0.1193 0.02143 Infty 5.57 <.0001 -6.69E-6

0dds Ratio Estimates
95% Confidence

Comparison Estimate DF Limits
unit change of NLIvsSSLI from mean 0.295 Infty 0.249 0.349
unit change of momedi12 from mean 1.127 Infty 1.080 1.175
Contrasts
Label Num DF  Den DF Chi-Square F Value Pr > ChiSq Pr > F
Multiv Wald test of Model 2 Infty 273.58 136.79 <.0001 <.0001

Before interpreting these results, let’s see if we can get better distribution fit. Here are some alternative
models that incorporate either overdispersion, zero-inflation (actually one-inflation here), or both...

3) Two-Predictor Binomial Model with Additive Over-Dispersion

#Correct;~Binomial(p;, Ntrials;) = p; is probability of any one trial being correct
Logit(p; for correct) = By + By (NLIvsSLI;) + f,(MotherEd; — 12) + e;
Conditional mean of #Correct; = Ntrials; * p;

Conditional variance of #Correct; = (Ntrials; * p;)(1 — p;)

The residual variance 62 is on the
model-scale (in logits), and it
effectively soaks up all discrepancy
display as result "STATA Previous Two-Predictor Binomial Model™ to each individual’s predicted logit.
display as result "Switch to MEGLM to do LRT against next model™
megIm ncorrect c.nlivssli c.momedl12, link(logit) family(binomial ntrials),
estimates store FitBin // save fit stats for binomial baseline

display as result "STATA Two-Predictor Binomial Model with Additive Overdispersion

meglm ncorrect c.nlivssli c.momed12, || id: , /// || id. adds "residual variance"
link(logit) family(binomial ntrials) intmethod(laplace),

estat ic, n(97),

test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model

estimates store FitAOD // save fit stats for model to compare

Irtest FitAOD FitBin // LRT for additive overdispersion
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display as result "STATA Two-Predictor Binomial Model with Additive Overdispersion"

display as result "Get 0Odds Ratios"

meglm ncorrect c.nlivssli c.momed12, || id: , /// || id. adds "residual variance"
link(logit) family(binomial ntrials) intmethod(laplace) eform,

TITLE "SAS Two-Predictor Binomial Model with Additive Overdispersion®;
PROC GLIMMIX DATA=work.Example3a NOCLPRINT NAMELEN=100 METHOD=LAPLACE GRADIENT;
CLASS ID; * Person ID is added to CLASS because of RANDOM statement below;
MODEL Ncorrect/Ntrials = NLIvsSL1I momed12
/ SOLUTION DDFM=NONE LINK=LOGIT DIST=BINOMIAL ODDSRATIO(LABEL);
CONTRAST "Mulltiv Wald test of Model™ NLIvsSLI 1, momedl2 1;
RANDOM INTERCEPT / SUBJECT=ID; * Add per-person "residual™ as random intercept;
COVTEST "'Need Extra Variance?" 0; * Test additive overdispersion;
RUN; TITLE;

STATA Output:
Mixed-effects GLM Number of obs = 97
Family: binomial
Link: logit
Binomial variable: ntrials
Group variable: id Number of groups = 97
Obs per group:
min = 1
Integration method: laplace avg = 1.0
max = 1
Wald chi2(2) = 14.04
Log likelihood = -274.88176 Prob > chi2 = 0.0009
ncorrect | Coef Std. Err z P>]z] [95% Conf. Interval]
_____________ e e
nlivssli | -1.793682 .5089051 -3.52  0.000 -2.791118  -.7962467
momed12 | -0327918 -1341283 0.24 0.807 -.2300949 .2956784
_cons | 4.742648 -4350784 10.90 0.000 3.88991 5.595386
_____________ e e
id |
var(_cons)| 4.381075 1.028769 2.765034 6.941619 > extra variance on logit scale
LR test vs. logistic model: chibar2(01) = 981.97 Prob >= chibar2 = 0.0000 - LRT of additive overdispersion
Akaike®"s information criterion and Bayesian information criterion
Model | Obs I1I1(null) 11(model) df AlIC BIC
_____________ A e ———————————————————————————————————————————
| 97 . -274.8818 4 557.7635 568.0624
. test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model
chi2( 2) = 14.04
Prob > chi2 = 0.0009
SAS Output:
Fit Statistics
-2 Log Likelihood 549.76
AIC (smaller is better) 557.76
AICC (smaller is better) 558.20
BIC (smaller is better) 568.10
CAIC (smaller is better) 572.10
HQIC (smaller is better) 561.95
Fit Statistics for Conditional Distribution
-2 log L(Ncorrect | r. effects) 248.93
Pearson Chi-Square 14.47
Pearson Chi-Square / DF 0.15 > Much lower because extra variance is included in the model

Covariance Parameter Estimates
Standard
Cov Parm Subject Estimate Error Gradient
Intercept ID 4.3810 1.0287 -0.00019 > Extra "residual" variance on logit model-scale
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Solutions for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t| Gradient
Intercept 4.7427 0.4351 Infty 10.90 <.0001 0.000149
NLIvsSLI -1.7937 0.5089 Infty -3.52 0.0004 -0.00016
momedi12 0.03278 0.1341 Infty 0.24 0.8069 -0.00099

0dds Ratio Estimates
95% Confidence

Comparison Estimate DF Limits
unit change of NLIvsSLI from mean 0.166 Infty 0.061 0.451
unit change of momedi12 from mean 1.033 Infty 0.794 1.344
Contrasts
Label Num DF Den DF Chi-Square F Value Pr > ChiSq Pr > F
Multiv Wald test of Model 2 Infty 14.04 7.02 0.0009 0.0009 > big difference!

Tests of Covariance Parameters
Based on the Likelihood
Label DF -2 Log Like ChiSq Pr > ChiSq Note
Need Extra Variance? 1 1531.73 981.97 <.0001 MI - LRT with mixture of DF=0,1

4) Two-Predictor Model with Multiplicative Over-Dispersion via Beta-Binomial Distribution

#Correct;~BetaBinomial(p;, Ntrials;, ¢) —> p; is still probability of any one trial being correct

pi ~Beta(a;, b)) > a; =pi/$, by =1 —p)/P

Logit(p; for correct trial) = B, + B (NLIvsSLI;) + B,(MotherEd; — 12)

Conditional mean: #Correct; = Ntrials; * p;

Conditional variance of #Correct; = (Ntrials; * p;)(1 — p))[1 + (Ntrials; — 1) /(¢ + 1)]
Disclaimer: | struggled to translate this model across different parameterizations I found, and this formula
for the conditional variance produced results that were close to those of SAS, but not exactly the same...

display as result "STATA Two-Predictor Beta-Binomial Model with Multiplicative Overdispersion
display as result "Switch to betabin that has beta-binomial distribution”

betabin ncorrect c.nlivssli c.momedl12, link(logit) n(ntrials),

estat ic, n(98),

test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model

// LRT for multiplicative overdispersion is done for you automatically

display as result "STATA Two-Predictor Beta-Binomial Model with Multiplicative Overdispersion”
display as result "Get 0Odds Ratios"

betabin ncorrect c.nlivssli c.momedl12, link(logit) n(ntrials) eform,

TITLE1l ""'SAS Two-Predictor Beta-Binomial Model with Multiplicative Overdispersion';
TITLE2 "Switch to PROC FINITE MIXTURE MODEL that has beta-binomial distribution';
PROC FMM DATA=work.Example3a NAMELEN=100;

MODEL Ncorrect/Ntrials = NLIvsSLI momed12 / LINK=LOGIT DIST=BETABINOMIAL;
RUN; TITLE1l; TITLE2;

Note: PROC FMM has far fewer options for post-estimation (no CONTRAST, ESTIMATE, LSMEANS).

STATA Output:

Beta-binomial regression Number of obs = 97
Link = logit LR chi2(2) = 13.61
Dispersion = beta-binomial Prob > chi2 = 0.0035
Log likelihood = -267.05167 Pseudo R2 = 0.0248
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ncorrect | Coef. Std. Err. z P>|z] [95% Conf. Interval]
_____________ A e e
nlivssli | -.9737565 .2728606 -3.57 0.000 -1.508553  -.4389595
momed12 | -0464046 .0685461 0.68 0.498 -.0879434 -1807525
_cons | 2.957862 -2500499 11.83 0.000 2.467773 3.44795
_____________ A e ———————————————————————— e
/lInsigma | -1.421521 2207495 -6.44 0.000 -1.854182  -.9888596
_____________ e e
sigma | .2413467 0532772 .156581 3720007 = 1/phi multiplier given by SAS

Likelihood-ratio test of sigma=0: chibar2(01) = 997.63 Prob>=chibar2 = 0.000 - LRT for overdispersion

Akaike"s information criterion and Bayesian information criterion

Model | N 11 (null) 11(model) df AlC BIC
_____________ e
| 98 -273.8551 -267.0517 4 542.1033 552.4432
. test (c.nlivssli=0)(c.-momed12=0) // Multiv Wald test of model
chi2( 2) = 13.75
Prob > chi2 = 0.0010
SAS Output:
Fit Statistics
-2 Log Likelihood 534.1
AIC (Smaller is Better) 542.1
AICC (Smaller is Better) 542.5
BIC (Smaller is Better) 552.4
Pearson Statistic 71.6649 > when divided by DF=96, = 0.75, pretty good!

Parameter Estimates for Beta-Binomial Model

Standard e
Effect Estimate Error z Value Pr > |z| B“NEICQUIdn tﬂgurEOUthOMIU)geta.
Intercept 5.9579 0.2500 11.83 <.0001 multlvarla}te Wald test for the two predictors
NLIVSSLI -0.9738 0.2729 .3.57 0.0004 together (i.e., the model) using PROC FMM ®
momed12 0.04640 0.06855 0.68 0.4984
Scale Parameter 4.1434 0.9147 - phi multiplier for variance (1=binomial?)

5) Two-Predictor Binomial Model with Zero-Inflation (predicting number incorrect now)

Our negatively skewed data have one-inflation, not zero-inflation, but all the software routines | found was designed only
for zero-inflation. So | solved this problem by predicting number incorrect instead of number correct. The model below
says that number incorrect comes from a binomial distribution that has extra zero values. The “inflation” model that
predicts the logit of being an “extra zero” is empty for now, because | just want to see how many there are likely to be.

Logit(pl-p for incorrect trial) = Bop + B1p(NLIVSSLI;) + o, (MotherEd; — 12)

Logit(p;, fory; = 0) = By, I’m not even going to try to get
Conditional mean: #Incorrect; = (Ntrialsl- * pip) * Dig the distributional notation or
conditional variance right...

display as result "STATA Two-Predictor Zero-Inflated Binomial Model™

display as result "Switch to zbin and predict Nincorrect"

zib nincorrect c.nlivssli c.momed12, link(logit) n(ntrials) ///
ilink(logit) inflate(_cons), // ilink is link for inflate model

estat ic, n(98),

test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model

TITLE1 "SAS Two-Predictor Zero-Inflated Binomial Model';

TITLE2 "Use FMM and predict Nincorrct instead";

PROC FMM DATA=work.Example3a NAMELEN=100;
MODEL Nincorrect/Ntrials = NLIvsSLI momedl12 / LINK=LOGIT DIST=BINOMIAL;
MODEL + / DIST=CONSTANT; * Inflation model predicting zero;

RUN; TITLEl; TITLE2;



PSQF 7375 Generalized Example 3a page 8

STATA Output:
Zero-inflated binomial regression Number of obs = 97
Regression link: logit Nonzero obs = 57
Inflation link : logit Zero obs = 40
LR chi2(2) = 126.58
Log likelihood = -494.1091 Prob > chi2 = 0.0000
nincorrect | Coef Std. Err z P>|z] [95% Conf. Interval]
_____________ e
nincorrect |
nlivssli | .6787023 .0934716 7.26 0.000 -4955014 -8619033 Betalp
momed12 | -.1148639 -024894 -4.61 0.000 -.1636552 -.0660727 Beta2p
_cons | -2.209937 .0825224 -26.78 0.000 -2.371678 -2.048196 BetaOp
_____________ e e
inflate | - logit of being extra 0
cons | -.3547476 .2063317 -1.72 0.086 -.7591502 .049655 BetaOz

Model | Obs II(null) II(model)
_____________ o

| 97 -557.3991 -494.1091 4 996.2183 1006.517

Note: N=97 used in calculating BIC.

. test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model

chi2( 2) = 116.04
Prob > chi2 = 0.0000

SAS Output:

Fit Statistics
-2 Log Likelihood 988.2
AIC (Smaller is Better) 996.2
AICC (Smaller is Better) 996.7
BIC (Smaller is Better) 1006.5
Pearson Statistic 225.0 > Divided by DF=96, = 2.34375 (not as good)
Effective Parameters 4 > number of parameters here
Effective Components 2 > This is a mixture model

Parameter Estimates for Binomial Model

Standard
Component Effect Estimate Error z Value Pr > |z|
1 Intercept -2.2099 0.08252 -26.78 <.0001 betaOp
1 NLIvsSLI 0.6787 0.09347 7.26 <.0001 betalp
1 momed12 -0.1149 0.02489 -4.61 <.0001 beta2p

Parameter Estimates for Mixing Probabilities
————————————————— Linked Scale-----------------

Mixing Standard
Component Probability Logit(Prob) Error z Value Pr > |z]|
1 0.5878 0.3547 0.2063 1.72 0.0856
2 0.4122 -0.3547 - Prob and logit of being an extra 0

6) Two-Predictor Beta-Binomial Model with Zero-Inflation (predicting number incorrect now)

The model below says that number incorrect comes from a beta-binomial distribution that has extra zero values
(instead of a binomial distribution that has extra zero values), allowing multiplicative overdispersion.

Logit(pl-p for incorrect) = Bop + B1p(NLIVSSLI;) + o, (MotherEd; — 12)

Logit(py, for y; = 0) = Bo,
Conditional mean: #Incorrect; = (Ntrialsl- * 'pip) * Diy

I’m not even going to try to get
the distributional notation or
conditional variance right...
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display as result "STATA Two-Predictor Zero-Inflated Beta-Binomial Model™

display as result "Switch to zibbin and predict Nincorrect"

zibbin nincorrect c.nlivssli c.momed12, link(logit) n(ntrials) ///
ilink(logit) inflate(_cons),

estat ic, n(98),

test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model

TITLE1 "SAS Two-Predictor Zero-Inflated Beta-Binomial Model"';

TITLE2 "Use FMM and predict Nincorrct instead";

PROC FMM DATA=work.Example3a NAMELEN=100;
MODEL Nincorrect/Ntrials = NLIvsSLI momedl12 / LINK=LOGIT DIST=BETABINOMIAL;
MODEL + / DIST=CONSTANT; * Inflation model predicting zero;

RUN; TITLE1; TITLE2;

STATA Output:
Zero-inflated beta-binomial regression Number of obs = 97
Regression link: logit Nonzero obs = 57
Inflation link : logit Zero obs = 40
LR chi2(2) = 11.61
Log likelihood = -263.789 Prob > chi2 = 0.0030
nincorrect | Coef Std. Err z P>|z] [95% Conf. Interval]
_____________ e e
nincorrect |
nlivssli | 1.128224 -3464563 3.26 0.001 -4491825 1.807266 Betalp
momed12 | -.0178967 .0894132 -0.20 0.841 -.1931434 .1573499 Beta2p
_cons | -2.750534 .3270209 -8.41  0.000 -3.391483 -2.109585 BetaOp
_____________ e e
inflate | - logit of being an extra 0
cons | -1.095397 -4369649 -2.51 0.012 -1.951832 -.2389614 Betalz
_____________ e e
/Insigma | -1.870879 2495082 -2.359906  -1.381852
_____________ e e
sigma | -1539883 0384213 .0944291 .2511131 > 1/scale multiplier in SAS

Model | Obs 11(null) 11(model) df AIC BIC | Stata would not let me do an LRT

“““““““ Hommmmmm o T m oo e o m ==~ | to compare the zero-inflated
- 97 -269.5932  -263.789 5 537.578  550.4516 .
models (even though it should

Note: N=97 used in calculating BIC. have been possible according to
their documentation)... @

. test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model

chi2( 2) = 12.43
Prob > chi2 = 0.0020
SAS Output:
Fit Statistics
-2 Log Likelihood 527.6 > -2LL diff = 460.0 relative to zero-inflated binomial, so is better
AIC (Smaller is Better) 537.6
AICC (Smaller is Better) 538.2
BIC (Smaller is Better) 550.5
Pearson Statistic 84.2707 -> Divided by DF=96, = 0.878 (better)
Effective Parameters 5 > number of parameters here
Effective Components 2 > still a mixture model

Parameter Estimates for Beta-Binomial Model

Standard
Component Effect Estimate Error z Value Pr > |z|
1 Intercept -2.7505 0.3270 -8.41 <.0001 betaOp
1 NLIvVSSLI 1.1282 0.3465 3.26 0.0011 betailp
1 momed12 -0.01789 0.08941 -0.20 0.8414 beta2p
1 Scale Parameter 6.4940 1.6203 - phi multiplier is bigger now
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Parameter Estimates for Mixing Probabilities
————————————————— Linked Scale-----------------

Mixing Standard
Component Probability Logit(Prob) Error z Value Pr > |z]|
1 0.7494 1.0954 0.4370 2.51 0.0122
2 0.2506 -1.0954 - Prob and Logit of being an extra 0

7) Four-Predictor Beta-Binomial Model with Zero-Inflation (now predictors in inflation model)

The model below adds our two predictors to the zero-inflation model (customizing probability of being an extra zero).

Logit(p; for incorrect) = By, + B1, (NLIVSSLI;) + fBo,(MotherEd; — 12)

Logit(p;, for y; > 0) = By, +B1,(NLIvsSLI;) + B,,(MotherEd; — 12)
Conditional mean: #Incorrect; = (Ntrials; * p;) * p;,

I’m not even going to try to get
the distributional notation or
conditional variance right...

"STATA Two-Predictor Zero-Inflated Beta-Binomial Model"
"Switch to zibbin and predict Nincorrect"
c.nlivssli c.momed12, link(logit) n(ntrials) ///

ilink(logit) inflate c.nlivssli c.momedl12),

display as result
display as result
zibbin nincorrect

estat ic, n(98),
test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model

STATA Output only (SAS PROC FMM wouldn’t allow zero-model predictors):

Zero-inflated beta-binomial regression Number of obs = 97
Regression link: logit Nonzero obs = 57
Inflation link : logit Zero obs = 40
LR chi2(2) = 7.38
Log likelihood = -261.8274 Prob > chi2 = 0.0249
nincorrect | Coef Std. Err z P>]z] [95% Conf. Interval]
_____________ A e
nincorrect |
nlivssli | -3036772 -3546852 0.86 0.392 -.391493 .9988474 Betalp
momed12 | -.2189386 -0812336 -2.70 0.007 -.3781535 -.0597237 Beta2p
_cons | -2.173967 -3963158 -5.49 0.000 -2.950731 -1.397202 BetaOp
_____________ A e
inflate | - predict logit of extra O
nlivssli | -3.970179 5.512301 -0.72 0.471 -14.77409 6.833733 Beta2z
momed12 | -.9569979  1.428802 -0.67 0.503 -3.757398 1.843402 Betalz
_cons | .0198758 .6209887 0.03 0.974 -1.19724 1.236991 Betalz
_____________ e
/Insigma | -1.652934 -3139631 -2.26829 -1.037578
_____________ .
sigma | .1914873 .0601199 -103489 .354312 > 1/scale in SAS
Akaike"s information criterion and Bayesian information criterion
Model | Obs 11(null) 11(model) df AlC BIC
_____________ A e
| 97 -265.5186 -261.8274 537.6548 555.6777
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So which one should be pick? Let’s do some informal model comparisons using distribution fit and relative fit
(*may not be exactly comparable due to differences in estimation technique, but they should be close)

Pearson
Two-Predictor Chi-Square
Model / DF AIC* BIC*
2. Regular Binomial 15.41  1537.7 15455
3. +Additive Overdispersion 0.15 557.8 568.1
4. Beta-Binomial 0.75 542.1 552.4
5. Zero-Inflated Binomial 2.34 996.2 1006.5
6. Zero-Inflated Beta-Binomial 0.88 537.6 550.5
7. ZIBB + Predictors ? 537.7 555.7

Sample Write-up using both programs (final model = zero-inflated beta-binomial without inflation predictors):

The extent that grammatical understanding (measured either as percent correct or percent incorrect; see below) at third
grade could be predicted by language impairment group (non-specific=0, specific=1) and mother’s years of education
(centered such that 0=12 years) was examined in a series of generalized linear models. In the sample of N = 97 children,
the mean percent correct was 0.92, with a large percentage of observations at or near the ceiling (1.00). Accordingly, we
predicted the number of correct trials out of the number of possible trials using a logit link function to keep the predicted
percent correct outcomes below 1. The type of model specifies that the number of correct responses follows a binomial-
based distribution with 100 total trials and a model-predicted probability of a correct response on any trial. While the
model predicts the logit (log-odds) of a correct answer for any trial, that prediction can be translated into percent correct
via an inverse link function (which provides model-predicted proportions and their standard errors). All models were
estimated using maximum likelihood within SAS GLIMMIX and FMM to assess distribution fit, as well as in stata gim,
betabin, zib, and zibbin; predictor fixed effects were tested univariately using z-distributions without denominator degrees
of freedom. Effect sizes are provided below as odds ratios: the exponentiated logit coefficient in which values from 0 to 1
indicate negative associations, 1 indicates no association, and values above 1 indicate positive associations.

Before interpreting our results, we tested the fit of models with alternative binomial-based conditional outcome
distributions (each with main effects of group and mother’s education) by examining the Pearson y2/DF statistic (in
which 1=good fit), as well as likelihood ratio tests (i.e., treating —2 times the difference in log-likelihood between nested
models as a y? statistic with degrees of freedom equal to the number of additional parameters). As expected given the
negatively skewed observed distribution, a model specifying a standard binomial distribution for number correct did not
fit well (Pearson y?/DF = 15.41). Two methods of allowing overdispersion were then examined. First, we allowed
additive overdispersion via an observation-level random intercept, which significantly improved model fit, —2ALL(1) =
987.97, p < .0001, but created a tendency towards underdispersion (Pearson y2/DF = 0.15). Second, we allowed
multiplicative overdispersion by using a beta-binomial distribution, which significantly improved model fit, —2ALL(1) =
997.63, p <.0001, and appeared to fit well (Pearson y?/DF = 0.75). We then examined the potential for one-inflation by
predicting number incorrect instead so that zero-inflation models could be fitted. A model predicting number incorrect
with a zero-inflated binomial distribution was examined but did not fit as well (Pearson y?/DF = 2.34), although using a
zero-inflated beta-binomial distribution instead did result in good fit (Pearson y?/DF = 0.88), as well as the lowest AIC
and BIC of all the models. We also examined group and mother’s education as predictors of zero-inflation but neither was
significant (with higher AIC and BIC values), and thus the empty (unconditional) zero-inflation model was retained.

The model results indicated that 25.06% of the sample were predicted to be an extra O (i.e., to be part of the zero-inflated
part of the distribution for number incorrect). Otherwise, the predicted intercept for a child with non-specific language
impairment whose mother had 12 years of education was a logit = —2.75, which translates into percent incorrect = 0.06.
Children with specific language impairment were predicted to have significantly more incorrect responses (logit = 1.12,
OR = 3.09), although no significant difference was found for mother’s years of education (logit =—0.02, OR = 0.98). The
scale parameter for multiplicative overdispersion was 6.494, which was significant, —2ALL(1) = 460.60, p < .0001.



