Example 3a: Generalized Linear Models for Binomial Outcomes (% Correct) using SAS and STATA (complete syntax and output available for SAS and STATA electronically)

The data for this example come from the publication below, which examined annual growth in a test of grammatical understanding from Kindergarten through 4th grade in children with non-specific language impairment (NLI) or specific language impairment (SLI):

Rice, M. L., Tomblin, J. B., **Hoffman, L.**, Richman, W. A., & Marquis, J. (2004). Grammatical tense deficits in children with SLI and nonspecific language impairment: Relationships with nonverbal IQ over time. *Journal of Speech-Language-Hearing Research*, 47(4), 816-834.

The current example is a cross-sectional analysis of how grammatical understanding at third grade is predicted by group (NLI=0, SLI=1) and mother's years of education (centered so that 0=12 years). Given that percent correct is bounded by 0 and 1, we will use a logit link and the binomial family of conditional response distributions. Because the binomial is a discrete distribution, we will need to parameterize the model to predict the <u>number of correct responses out of the number of trials instead of percent correct</u>. This example will also demonstrate two ways of addressing binomial overdispersion: *additive* (through individual random intercepts) and *multiplicative* (through the beta-binomial distribution), as well as zero-inflated (actually one-inflated here; stay tuned) versions of the binomial and beta-binomial model variants. In SAS GLIMMIX I am not using denominator DF so that the results match those of STATA as closely as possible.

SAS Data Manipulation and Description:

```
* Create predictor variables;
DATA work.Example3a; SET work.growthdata;
     IF class=2 THEN NLIvsSLI=0; * NLI;
     IF class=3 THEN NLIvsSLI=1; * SLI;
     momed12=mom_edc-12; * Mom ed (0=12);
* Subset to wave 4 (third grade) and complete cases;
     WHERE index1=4 AND NMISS(Ncorrect,NLIvsSLI,momed12)=0;
* Create number correct for binomial model;
    Ntrials=100; PercentCorrect=CompTns;
    Ncorrect=ROUND(PercentCorrect*Ntrials,1);
 Compute number incorrect for zero-inflated binomial model;
     Nincorrect=Ntrials-Ncorrect;
RUN;
* Export data to STATA format;
PROC EXPORT DATA=work.Example3a OUTFILE="&filesave.\Example3a.dta" DBMS=STATA REPLACE; RUN;
TITLE "Distribution of Percent Correct";
PROC UNIVARIATE NOPRINT DATA=work.Example3a; VAR PercentCorrect;
     HISTOGRAM PercentCorrect / MIDPOINTS= 0 TO 1 BY .05 NORMAL(MU=EST SIGMA=EST); RUN; QUIT;
PROC MEANS NDEC=3 DATA=work.Example3a; VAR PercentCorrect; RUN; TITLE;
```


Individual mean % correct across 97 persons: M=.9212, SD=.1240, Min=.3548, Max=1.00

Even though our distributional assumptions will be about the conditional outcome, not the original outcome, odds aren't good it will be normal!

But it may not be strictly binomial, either. The long tail to the left indicates possible over-dispersion (i.e., more variance leftover than the binomial distribution would predict), and there may be too many one values. We'll need to use models to test these suspicions empirically...

STATA Data Manipulation and Description:

```
* Import data
use "$filesave\Example3a.dta", clear
* Distribution of Percent Correct
hist percentcorrect, percent start(0) width(.05)

* Find and install betabin (and zbin and zibbin)
search betabin // install before continuing
```

1) Empty Means Binomial Model for % correct using DV = Events/Trials

```
 \#Correct_i \sim Binomial(p_i, Ntrials_i) \rightarrow p_i \text{ is probability of any one trial being correct} \\ Logit(p_i \text{ for correct trial}) = \beta_0 \\ \text{Conditional mean for } \#Correct_i = Ntrials_i * p_i \\ \text{Conditional variance for } \#Correct_i = (Ntrials_i * p_i)(1-p_i) \\ \text{display as result "STATA Empty Means Binomial Model"} \\ \text{glm ncorrect, link(logit) family(binomial ntrials),} \\ \text{estat ic, n(97),} \\ \text{nlcom } 1/(1+\exp(-1*(\_b[\_cons]))) // \text{ intercept in probability (ILINK)} \\ \\ \text{TITLE "SAS Empty Means Binomial Model";} \\ \text{PROC GLIMMIX DATA=work.Example3a NOCLPRINT NAMELEN=100 GRADIENT;} \\ \text{MODEL Ncorrect/Ntrials = / SOLUTION DDFM=NONE LINK=LOGIT DIST=BINOMIAL;} \\ \text{ESTIMATE "Intercept" intercept 1 / ILINK; * ILINK gives intercept in probability;} \\ \text{RUN; TITLE;} \\ \end{aligned}
```

No. of obs

97

STATA Output:

Generalized linear models

Optimization				Resid	ual df =	96
-				Scale	parameter =	1
Deviance	= 1620.	05009		(1/df) Deviance =	16.87552
Pearson) Pearson =	21.26496
Variance funct					-	
Link function	: g(u) =	In(u/(ntria	als-u))	[Logi		
T 121-121	3 000 50	F1006			=	
Log likelihood	1 = -920.59	51086		BIC	=	1180.878
	 	OIM				
ncorrect	Coef.		Z	P> z	[95% Conf.	Interval]
	, +					
_cons	2.459276	.0376936	65.24	0.000	2.385397	2.533154
Akaike's info	rmation crite	rion and Ba	ayesian inf	tormation	criterion	
Model	Obs	11(null)	ll(model)	df	AIC:	BIC
	, +					
	97		-920.5951	1	1843.19	1845.765
. nlcom 1/(1+6	exp(-1*(_b[_c	ons]))) //	intercept	in probal	bility (ILINK)
ncorrect	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
	+					
_nl_1	9212371	.002735	336.83	0.000	.9158766	.9265977

SAS Output:

```
Fit Statistics
-2 Log Likelihood
                             1841.19
AIC (smaller is better)
                             1843.19
AICC (smaller is better)
                             1843.23
BIC (smaller is better)
                             1845.76
CAIC (smaller is better)
                             1846.76
HQIC (smaller is better)
                             1844.23
Pearson Chi-Square
                             2041.44
Pearson Chi-Square / DF
                               21.26
```

To inverse link from logits to predicted % correct:

 $Prob(y = 1) = \frac{exp(2.4593)}{1 + exp(2.4593)} = .9212$

The sample average probability of getting each item correct is .9212.

But Chi-Square/DF > 1, indicating that this model has over-dispersion (too much variance, likely in part because we haven't incorporated predictors yet).

Parameter Estimates

		Standard						
Effect	Estimate	Error	DF	t Value	Pr > t	Gradient		
Intercept	2.4593	0.03769	Infty	65.24	<.0001	-1.03E-6		
			Esti	mates				
		Standard					Standard Err	or
Label	Estimate	Error	DF	t Value	Pr > t	Mean	Mean	
Intercept	2.4593	0.03769	Infty	65.24	<.0001	0.9212	0.002735	

So even though we are modeling number of correct trials as the DV, the model is phrased to predict percent correct directly (as the conditional mean p, the probability that any trial = 1).

2) Two-Predictor Binomial Model

```
\#Correct_i \sim Binomial(p_i, Ntrials_i) \rightarrow p_i is probability of any one trial being correct Logit(p_i \text{ for correct trial}) = \beta_0 + \beta_1(NLIvsSLI_i) + \beta_2(MotherEd_i - 12) Conditional mean: \#Correct_i = Ntrials_i * p_i Conditional variance of \#Correct_i = (Ntrials_i * p_i)(1 - p_i) display as result "STATA Two-Predictor Binomial Model"
```

STATA Output:

Generalized linear	models	No. of obs	=	97
Optimization :	ML	Residual df	=	94
		Scale parameter	=	1
Deviance =	1310.593044	(1/df) Deviance	=	13.94248
Pearson =	1448.891028	(1/df) Pearson	=	15.41373
Variance function:	V(u) = u*(1-u/ntrials)	[Binomial]		
Link function :	g(u) = ln(u/(ntrials-u))	[Logit]		
		AIC	=	15.85292
Log likelihood =	-765.8665858	BIC	=	880.5702
	OIM			
ncorrect	Coef. Std. Err. z	P> z [95% Co	nf.	<pre>Interval]</pre>

ncorrect	 Coef. +	OIM Std. Err.		P> z		Interval]
	-1.221578 .1193325		-14.23 5.57 41.17		-1.389881 .0773368 2.92568	-1.053275 .1613283 3.218178

Akaike's information criterion and Bayesian information criterion

Model	1	,	ll(model)			BIC
	•		-765.8666			1545.457
	vssli=0)(c.mo i2(2) = 27 > chi2 =	3.58	// Multiv Wal	d test of	model	

SAS Output:

```
Fit Statistics
-2 Log Likelihood
                             1531.73
AIC (smaller is better)
                             1537.73
AICC (smaller is better)
                             1537.99
BIC (smaller is better)
                             1545.46
CAIC (smaller is better)
                             1548.46
HQIC (smaller is better)
                             1540.86
Pearson Chi-Square
                             1448.89
Pearson Chi-Square / DF
                               15.41 → better, but nowhere good enough!
                             Parameter Estimates
                         Standard
Effect
             Estimate
                            Error
                                        DF
                                               t Value
                                                          Pr > |t|
                                                                      Gradient
              3.0719
                          0.07462
                                     Infty
                                                41.17
                                                           <.0001
                                                                      -5.77E-6
Intercept
              -1.2216
                          0.08587
                                                -14.23
                                                            <.0001
                                                                      -3.06E-9
NLIvsSLI
                                     Infty
momed12
               0.1193
                          0.02143
                                     Infty
                                                  5.57
                                                            <.0001
                                                                      -6.69E-6
                             Odds Ratio Estimates
                                                              95% Confidence
Comparison
                                      Estimate
                                                     DF
                                                                  Limits
unit change of NLIvsSLI from mean
                                        0.295
                                                  Infty
                                                              0.249
                                                                          0.349
unit change of momed12 from mean
                                         1.127
                                                  Infty
                                                              1.080
                                                                          1.175
Label
                            Num DF
                                      Den DF
                                                Chi-Square
                                                              F Value
                                                                           Pr > ChiSq
                                                                                          Pr > F
Multiv Wald test of Model
                                      Infty
                                                    273.58
                                                               136.79
                                                                                <.0001
                                                                                          < .0001
```

Before interpreting these results, let's see if we can get better distribution fit. Here are some alternative models that incorporate either overdispersion, zero-inflation (actually one-inflation here), or both...

3) Two-Predictor Binomial Model with Additive Over-Dispersion

```
\#Correct_i \sim Binomial(p_i, Ntrials_i) \rightarrow p_i is probability of any one trial being correct Logit(p_i \text{ for correct}) = \beta_0 + \beta_1(NLIvsSLI_i) + \beta_2(MotherEd_i - 12) + e_i
```

Conditional mean of $\#Correct_i = Ntrials_i * p_i$

Conditional variance of $\#Correct_i = (Ntrials_i * p_i)(1 - p_i)$

The residual variance σ_e^2 is on the model-scale (in logits), and it effectively soaks up all discrepancy to each individual's predicted logit.

display as result "STATA Previous Two-Predictor Binomial Model" to each indisplay as result "Switch to MEGLM to do LRT against next model" meglm ncorrect c.nlivssli c.momed12, link(logit) family(binomial ntrials), estimates store FitBin // save fit stats for binomial baseline

```
display as result "STATA Two-Predictor Binomial Model with Additive Overdispersion"
display as result "Get Odds Ratios"
meglm ncorrect c.nlivssli c.momed12, || id: , /// || id. adds "residual variance"
     link(logit) family(binomial ntrials) intmethod(laplace) eform,
TITLE "SAS Two-Predictor Binomial Model with Additive Overdispersion";
PROC GLIMMIX DATA=work.Example3a NOCLPRINT NAMELEN=100 METHOD=LAPLACE GRADIENT;
    CLASS ID; * Person ID is added to CLASS because of RANDOM statement below;
    MODEL Ncorrect/Ntrials = NLIvsSLI momed12
          / SOLUTION DDFM=NONE LINK=LOGIT DIST=BINOMIAL ODDSRATIO(LABEL);
    CONTRAST "Multiv Wald test of Model" NLIvsSLI 1, momed12 1;
    RANDOM INTERCEPT / SUBJECT=ID; * Add per-person "residual" as random intercept;
    COVTEST "Need Extra Variance?" 0; * Test additive overdispersion;
RUN; TITLE;
STATA Output:
Mixed-effects GLM
                                      Number of obs =
Family:
                 binomial
Link:
                   logit
Binomial variable:
                  ntrials
                  id
Group variable:
                                      Number of groups =
                                      Obs per group:
                                                min =
Integration method:
                 laplace
                                                           1.0
                                                 avq =
                                      Wald chi2(2) =
                                                          14.04
Log likelihood = -274.88176
                                      Prob > chi2
  ncorrect | Coef. Std. Err. z P>|z| [95% Conf. Interval]
  nlivssli | -1.793682 .5089051 -3.52 0.000 -2.791118 -.7962467
   momed12 | .0327918 .1341283 0.24 0.807
_cons | 4.742648 .4350784 10.90 0.000
                               0.24 0.807 -.2300949 .2956784
10.90 0.000 3.88991 5.595386
  var(_cons) | 4.381075 1.028769
                                             2.765034 6.941619 → extra variance on logit scale
Akaike's information criterion and Bayesian information criterion
______
     Model | Obs 11(null) 11(model) df AIC
_____
        . 97 . -274.8818 4 557.7635 568.0624
_____
. test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model
        chi2(2) = 14.04
       Prob > chi2 = 0.0009
SAS Output:
        Fit Statistics
-2 Log Likelihood
                        549.76
AIC (smaller is better)
                       557.76
AICC (smaller is better)
                      558.20
BIC (smaller is better)
                       568.10
CAIC (smaller is better)
                       572.10
HQIC (smaller is better)
                       561.95
Fit Statistics for Conditional Distribution
-2 log L(Ncorrect | r. effects) 248.93
Pearson Chi-Square
                             14.47
Pearson Chi-Square / DF
                              0.15 \rightarrow Much lower because extra variance is included in the model
          Covariance Parameter Estimates
                            Standard
Cov Parm
          Subject Estimate
                              Error
Intercept
          ID
                   4.3810
                              1.0287
                                      -0.00019 → Extra "residual" variance on logit model-scale
```

		Solutions Standard	for Fixed	Effects			
Effect	Estimate	Error	DF	t Value	Pr > t	Gradient	
Intercept	4.7427	0.4351	Infty	10.90	< .0001	0.000149	
NLIvsSLI	-1.7937	0.5089	Infty	-3.52	0.0004	-0.00016	
momed12	0.03278	0.1341	Infty	0.24	0.8069	-0.00099	
		Odds F	Ratio Estima	ates			
					95% Con	fidence	
Comparison			Estimate	DF	Lim	its	
unit change	of NLIvsSLI	from mean	0.166	Infty	0.061	0.451	
unit change	of momed12	from mean	1.033	Infty	0.794	1.344	
			Cont	rasts			
Label		Num DF	Den DF	Chi-Square	F Value	Pr > ChiSq	Pr > F
Multiv Wald	test of Mod	el 2	Infty	14.04	7.02	0.0009	0.0009 → big difference!
		Tests of Co	ovariance Pa	arameters			
		Based or	n the Likel	ihood			
Label		DF ·	-2 Log Like	ChiSq	Pr > Chi	.Sq Note	
Need Extra V	/ariance?	1	1531.73	981.97	<.00	01 MI → LRT	with mixture of DF=0,1

4) Two-Predictor Model with Multiplicative Over-Dispersion via Beta-Binomial Distribution

 $\#Correct_i \sim BetaBinomial(p_i, Ntrials_i, \phi) \rightarrow p_i$ is still probability of any one trial being correct $p_i \sim Beta(a_i, b_i) \rightarrow a_i = p_i/\phi, \ b_i = (1 - p_i)/\phi$

 $Logit(p_i \text{ for correct trial}) = \beta_0 + \beta_1(NLIvsSLI_i) + \beta_2(MotherEd_i - 12)$

Conditional mean: $\#Correct_i = Ntrials_i * p_i$

Conditional variance of #Correct_i = $(Ntrials_i * p_i)(1 - p_i)[1 + (Ntrials_i - 1)/(\phi + 1)]$

Disclaimer: I struggled to translate this model across different parameterizations I found, and this formula for the conditional variance produced results that were close to those of SAS, but not exactly the same...

```
display as result "STATA Two-Predictor Beta-Binomial Model with Multiplicative Overdispersion"
display as result "Switch to betabin that has beta-binomial distribution"
betabin ncorrect c.nlivssli c.momed12, link(logit) n(ntrials),
estat ic, n(98),
test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model
// LRT for multiplicative overdispersion is done for you automatically

display as result "STATA Two-Predictor Beta-Binomial Model with Multiplicative Overdispersion"
display as result "Get Odds Ratios"
betabin ncorrect c.nlivssli c.momed12, link(logit) n(ntrials) eform,

TITLE1 "SAS Two-Predictor Beta-Binomial Model with Multiplicative Overdispersion";
TITLE2 "Switch to PROC FINITE MIXTURE MODEL that has beta-binomial distribution";
PROC FMM DATA=work.Example3a NAMELEN=100;
    MODEL Ncorrect/Ntrials = NLIVSSLI momed12 / LINK=LOGIT DIST=BETABINOMIAL;
RUN; TITLE1; TITLE2;
```

Note: PROC FMM has far fewer options for post-estimation (no CONTRAST, ESTIMATE, LSMEANS).

STATA Output:

```
Beta-binomial regression Number of obs = 97

Link = logit LR chi2(2) = 13.61

Dispersion = beta-binomial Prob > chi2 = 0.0035

Log likelihood = -267.05167 Pseudo R2 = 0.0248
```

```
ncorrect | Coef. Std. Err.
                                   z P>|z| [95% Conf. Interval]
______

    nlivssli
    -.9737565
    .2728606
    -3.57
    0.000
    -1.508553
    -.4389595

    momed12
    .0464046
    .0685461
    0.68
    0.498
    -.0879434
    .1807525

    _cons
    2.957862
    .2500499
    11.83
    0.000
    2.467773
    3.44795

  /lnsigma | -1.421521 .2207495 -6.44 0.000 -1.854182 -.9888596
     sigma | .2413467 .0532772
                                                    .156581 .3720007 = 1/phi multiplier given by SAS
Likelihood-ratio test of sigma=0: chibar2(01) = 997.63 Prob>=chibar2 = 0.000 → LRT for overdispersion
Akaike's information criterion and Bayesian information criterion
    Model
                   N = 11(null) = 11(model)
_____
         . | 98 -273.8551 -267.0517 4 542.1033 552.4432
______
. test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model
         chi2(2) = 13.75
        Prob > chi2 = 0.0010
SAS Output:
```

```
Fit Statistics
-2 Log Likelihood
                               534.1
AIC (Smaller is Better)
                             542.1
AICC (Smaller is Better)
                            542.5
                         542.5
552.4
71.6649 → when divided by DF=96, = 0.75, pretty good!
BIC (Smaller is Better)
Pearson Statistic
```

Parameter Estimates for Beta-Binomial Model

		Standard		
Effect	Estimate	Error	z Value	Pr > z
Intercept	2.9579	0.2500	11.83	<.0001
NLIvsSLI	-0.9738	0.2729	-3.57	0.0004
momed12	0.04640	0.06855	0.68	0.4984
Scale Parameter	4.1434	0.9147		

Btw, I couldn't figure out how to get a multivariate Wald test for the two predictors together (i.e., the model) using PROC FMM \otimes

→ phi multiplier for variance (1=binomial?)

5) Two-Predictor Binomial Model with Zero-Inflation (predicting number incorrect now)

Our negatively skewed data have one-inflation, not zero-inflation, but all the software routines I found was designed only for zero-inflation. So I solved this problem by predicting number incorrect instead of number correct. The model below says that number incorrect comes from a binomial distribution that has extra zero values. The "inflation" model that predicts the logit of being an "extra zero" is empty for now, because I just want to see how many there are likely to be.

```
Logit(p_{ip} \text{ for incorrect trial}) = \beta_{0p} + \beta_{1p}(NLIvsSLI_i) + \beta_{2p}(MotherEd_i - 12)
Logit(p_{iz} \text{ for } y_i = 0) = \beta_{0z}
                                                                               I'm not even going to try to get
Conditional mean: \#Incorrect_i = (Ntrials_i * p_{in}) * p_{iz}
                                                                               the distributional notation or
                                                                               conditional variance right...
display as result "STATA Two-Predictor Zero-Inflated Binomial Model"
display as result "Switch to zbin and predict Nincorrect"
zib nincorrect c.nlivssli c.momed12, link(logit) n(ntrials) ///
                ilink(logit) inflate(_cons), // ilink is link for inflate model
estat ic, n(98),
test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model
TITLE1 "SAS Two-Predictor Zero-Inflated Binomial Model";
TITLE2 "Use FMM and predict Nincorrct instead";
PROC FMM DATA=work.Example3a NAMELEN=100;
     MODEL Nincorrect/Ntrials = NLIvsSLI momed12 / LINK=LOGIT DIST=BINOMIAL;
     MODEL + / DIST=CONSTANT; * Inflation model predicting zero;
RUN; TITLE1; TITLE2;
```

STATA Output:

```
Zero-inflated binomial regression
                                           Number of obs =
Regression link: logit
                                           Nonzero obs
                                                                  57
                                           Zero obs
LR chi2(2)
Inflation link : logit
                                                                  40
                                                              126 58
                                          Prob > chi2 =
Log likelihood = -494.1091
 nincorrect | Coef. Std. Err. z P>|z| [95% Conf. Interval]
 _____+
nincorrect

    nlivssli
    .6787023
    .0934716
    7.26
    0.000
    .4955014
    .8619033
    Betalp

    momed12
    -.1148639
    .024894
    -4.61
    0.000
    -.1636552
    -.0660727
    Beta2p

    _cons
    -2.209937
    .0825224
    -26.78
    0.000
    -2.371678
    -2.048196
    Beta0p

                                                                     → logit of being extra 0
    _cons | -.3547476 .2063317 -1.72 0.086 -.7591502 .049655 Beta0z
______
Akaike's information criterion and Bayesian information criterion
                  Obs ll(null) ll(model)
                                                      AIC
     Model
_____
      . 97 -557.3991 -494.1091 4 996.2183 1006.517
 .______
           Note: N=97 used in calculating BIC.
. test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model
        chi2(2) = 116.04
       Prob > chi2 =
                    0.0000
```

SAS Output:

```
Fit Statistics
-2 Log Likelihood
                        988.2
AIC (Smaller is Better)
AICC (Smaller is Better)
                        996.2
                         996.7
BIC (Smaller is Better) 1006.5
                         225.0 \rightarrow Divided by DF=96, = 2.34375  (not as good)
Pearson Statistic
Effective Parameters
                             4 → number of parameters here
Effective Components
                             2 → This is a mixture model
              Parameter Estimates for Binomial Model
                                 Standard
  Component
             Effect
                                   Error z Value Pr > |z|
                       Estimate
         1
             Intercept -2.2099 0.08252 -26.78 <.0001 beta0p
             NLIVSSLI
                         0.6787 0.09347
                                               7.26
                                                       <.0001 beta1p
         1
                         -0.1149 0.02489 -4.61
                                                      <.0001 beta2p
         1
             momed12
             Parameter Estimates for Mixing Probabilities
                       -----Linked Scale-----
                             Standard
               Mixing
Component
           Probability Logit(Prob) Error z Value Pr > |z|
                           0.3547 0.2063 1.72
               0.5878
                                                        0.0856
      1
      2
               0.4122
                           -0.3547
                                                                 → Prob and logit of being an extra 0
```

6) Two-Predictor Beta-Binomial Model with Zero-Inflation (predicting number incorrect now)

The model below says that number incorrect comes from a beta-binomial distribution that has extra zero values (instead of a binomial distribution that has extra zero values), allowing multiplicative overdispersion.

$$Logit(p_{ip} \text{ for incorrect}) = \beta_{0p} + \beta_{1p}(NLIvsSLI_i) + \beta_{2p}(MotherEd_i - 12)$$

 $Logit(p_{iz} \text{ for } y_i = 0) = \beta_{0z}$
Conditional mean: $\#Incorrect_i = (Ntrials_i * p_{ip}) * p_{iz}$

I'm not even going to try to get the distributional notation or conditional variance right...

```
display as result "STATA Two-Predictor Zero-Inflated Beta-Binomial Model"
display as result "Switch to zibbin and predict Nincorrect"
zibbin nincorrect c.nlivssli c.momed12, link(logit) n(ntrials) ///
               ilink(logit) inflate(_cons),
estat ic, n(98),
test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model
TITLE1 "SAS Two-Predictor Zero-Inflated Beta-Binomial Model";
TITLE2 "Use FMM and predict Nincorrct instead";
PROC FMM DATA=work.Example3a NAMELEN=100;
    MODEL Nincorrect/Ntrials = NLIvsSLI momed12 / LINK=LOGIT DIST=BETABINOMIAL;
    MODEL + / DIST=CONSTANT; * Inflation model predicting zero;
RUN; TITLE1; TITLE2;
STATA Output:
Zero-inflated beta-binomial regression
                                     Number of obs =
                                      Nonzero obs
Regression link: logit
                                                         57
                                                        40
                                      Zero obs
Inflation link : logit
                                      LR chi2(2)
                                                       11.61
                                     Prob > chi2
Log likelihood = -263.789
                                                      0.0030
 nincorrect | Coef. Std. Err. z P>|z| [95% Conf. Interval]
nincorrect
  nlivssli 1.128224 .3464563 3.26 0.001 .4491825 1.807266 Betalp momed12 -.0178967 .0894132 -0.20 0.841 -.1931434 .1573499 Beta2p _cons | -2.750534 .3270209 -8.41 0.000 -3.391483 -2.109585 Beta0p
     ------
                                                            → logit of being an extra 0
    ______
  /lnsigma | -1.870879 .2495082
                                           -2.359906 -1.381852
______
   sigma | .1539883 .0384213
                                           .0944291 .2511131 \rightarrow 1/scale multiplier in SAS
______
Akaike's information criterion and Bayesian information criterion
    Model | Obs 11(null) 11(model) df AIC BIC
                                                              Stata would not let me do an LRT
______
                                                              to compare the zero-inflated
       . 97 -269.5932 -263.789 5 537.578 550.4516
                                                              models (even though it should
           Note: N=97 used in calculating BIC.
```

. test (c.nlivssli=0)(c.momed12=0) // Multiv Wald test of model chi2(2) = 12.43Prob > chi2 = 0.0020

have been possible according to their documentation)...

SAS Output:

Fit Statistics -2 Log Likelihood $527.6 \rightarrow -2$ LL diff = 460.0 relative to zero-inflated binomial, so is better AIC (Smaller is Better) 537.6 538.2 AICC (Smaller is Better) 550.5 BIC (Smaller is Better) Pearson Statistic $84.2707 \rightarrow Divided by DF=96, = 0.878 (better)$ Effective Parameters 5 → number of parameters here Effective Components 2 → still a mixture model

Parameter Estimates for Beta-Binomial Model

			Standard			
Component	Effect	Estimate	Error	z Value	Pr > z	
1	Intercept	-2.7505	0.3270	-8.41	<.0001	beta0p
1	NLIvsSLI	1.1282	0.3465	3.26	0.0011	beta1p
1	momed12	-0.01789	0.08941	-0.20	0.8414	beta2p
1	Scale Parameter	6.4940	1.6203			ightarrow phi multiplier is bigger now

```
Parameter Estimates for Mixing Probabilities
                       -----Linked Scale-----
                                   Standard
               Mixing
                        Logit(Prob)
                                               z Value Pr > |z|
Component
           Probability
                                      Error
               0.7494
                           1.0954
                                      0.4370
                                                  2.51
                                                        0.0122
               0.2506
                           -1.0954
                                                                 → Prob and Logit of being an extra 0
```

7) Four-Predictor Beta-Binomial Model with Zero-Inflation (now predictors in inflation model)

The model below adds our two predictors to the zero-inflation model (customizing probability of being an extra zero).

```
\begin{split} Logit(p_i \text{ for incorrect}) &= \beta_{0p} + \beta_{1p}(NLIvsSLI_i) + \beta_{2p}(MotherEd_i - 12) \\ Logit(p_{iz} \text{ for } y_i > 0) &= \beta_{0z} + \beta_{1z}(NLIvsSLI_i) + \beta_{2z}(MotherEd_i - 12) \\ \text{Conditional mean: } \#Incorrect_i &= (Ntrials_i * p_i) * p_{iz} \end{split}
```

I'm not even going to try to get the distributional notation or conditional variance right...

STATA Output only (SAS PROC FMM wouldn't allow zero-model predictors):

Zero-inflated Regression lin Inflation link Log likelihood	nk: logit : logit	J		Nonze Zero LR ch	ro obs = obs = i2(2) =	97 57 40 7.38 0.0249	
nincorrect	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]	
	.3036772 2189386 -2.173967	.0812336	-2.70	0.007	3781535	0597237	Beta2p
inflate nlivssli momed12 _cons	-3.970179 9569979 .0198758	1.428802	-0.67	0.503	-3.757398	6.833733 1.843402 1.236991	Betalz
/lnsigma	-1.652934	.3139631			-2.26829	-1.037578	
sigma	.1914873	.0601199			.103489	.354312	→ 1/scale in SAS
Akaike's infor	mation criter	rion and Baye	sian inf	formation	criterion		

Model	Obs	ll(model)	df	AIC	BIC
	97	-261.8274	7	537.6548	555.6777

So which one should be pick? Let's do some informal model comparisons using distribution fit and relative fit (*may not be exactly comparable due to differences in estimation technique, but they should be close)

	Pearson		
Two-Predictor	Chi-Square		
Model	/ DF	AIC*	BIC*
2. Regular Binomial	15.41	1537.7	1545.5
3. +Additive Overdispersion	0.15	557.8	568.1
4. Beta-Binomial	0.75	542.1	552.4
5. Zero-Inflated Binomial	2.34	996.2	1006.5
6. Zero-Inflated Beta-Binomial	0.88	537.6	550.5
7. ZIBB + Predictors	?	537.7	555.7

Sample Write-up using both programs (final model = zero-inflated beta-binomial without inflation predictors):

The extent that grammatical understanding (measured either as percent correct or percent incorrect; see below) at third grade could be predicted by language impairment group (non-specific=0, specific=1) and mother's years of education (centered such that 0=12 years) was examined in a series of generalized linear models. In the sample of N=97 children, the mean percent correct was 0.92, with a large percentage of observations at or near the ceiling (1.00). Accordingly, we predicted the number of correct trials out of the number of possible trials using a logit link function to keep the predicted percent correct outcomes below 1. The type of model specifies that the number of correct responses follows a binomial-based distribution with 100 total trials and a model-predicted probability of a correct response on any trial. While the model predicts the logit (log-odds) of a correct answer for any trial, that prediction can be translated into percent correct via an inverse link function (which provides model-predicted proportions and their standard errors). All models were estimated using maximum likelihood within SAS GLIMMIX and FMM to assess distribution fit, as well as in stata glm, betabin, zib, and zibbin; predictor fixed effects were tested univariately using z-distributions without denominator degrees of freedom. Effect sizes are provided below as odds ratios: the exponentiated logit coefficient in which values from 0 to 1 indicate negative associations, 1 indicates no association, and values above 1 indicate positive associations.

Before interpreting our results, we tested the fit of models with alternative binomial-based conditional outcome distributions (each with main effects of group and mother's education) by examining the Pearson χ^2/DF statistic (in which 1=good fit), as well as likelihood ratio tests (i.e., treating -2 times the difference in log-likelihood between nested models as a χ^2 statistic with degrees of freedom equal to the number of additional parameters). As expected given the negatively skewed observed distribution, a model specifying a standard binomial distribution for number correct did not fit well (Pearson $\chi^2/DF = 15.41$). Two methods of allowing overdispersion were then examined. First, we allowed additive overdispersion via an observation-level random intercept, which significantly improved model fit, $-2\Delta LL(1) = 987.97$, p < .0001, but created a tendency towards underdispersion (Pearson $\chi^2/DF = 0.15$). Second, we allowed multiplicative overdispersion by using a beta-binomial distribution, which significantly improved model fit, $-2\Delta LL(1) = 997.63$, p < .0001, and appeared to fit well (Pearson $\chi^2/DF = 0.75$). We then examined the potential for one-inflation by predicting number *incorrect* instead so that zero-inflation models could be fitted. A model predicting number incorrect with a zero-inflated binomial distribution was examined but did not fit as well (Pearson $\chi^2/DF = 2.34$), although using a zero-inflated beta-binomial distribution instead did result in good fit (Pearson $\chi^2/DF = 0.88$), as well as the lowest AIC and BIC of all the models. We also examined group and mother's education as predictors of zero-inflation but neither was significant (with higher AIC and BIC values), and thus the empty (unconditional) zero-inflation model was retained.

The model results indicated that 25.06% of the sample were predicted to be an extra 0 (i.e., to be part of the zero-inflated part of the distribution for number incorrect). Otherwise, the predicted intercept for a child with non-specific language impairment whose mother had 12 years of education was a logit = -2.75, which translates into percent incorrect = 0.06. Children with specific language impairment were predicted to have significantly more incorrect responses (logit = 1.12, OR = 3.09), although no significant difference was found for mother's years of education (logit = -0.02, OR = 0.98). The scale parameter for multiplicative overdispersion was 6.494, which was significant, $-2\Delta LL(1) = 460.60$, p < .0001.