
Generalized Multilevel Models for 
Non-Normal Clustered Data
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• Topics:
 Clarifying distribution terminology
 3 parts of a generalized (multilevel) model
 Single-level models for binary, proportion, 

and categorical outcomes
 Complications for generalized multilevel models
 A brief tour of other generalized models: 

 Models for discrete count or continuous skewed outcomes
 Models for two-part discrete or continuous outcomes



Clarifying Distribution Terminology
• The MLM variants we’ve seen so far all fit under the “general” 

( all normal distributions) linear mixed model family:
 G matrix: Holds variances and covariances of level-2 random effects 

(denoted with U), which are assumed multivariate normal
 R matrix: Holds variances and covariances of level-1 residuals 

(denoted with e), which are also assumed multivariate normal

• e.g., a random slope for Group-MC
xpg for four persons in a group:

Level 1:  ypg = β0g + β1g(xpg) + epg

Level 2:  β0g = γ00 + U0g
β1g = γ10 + U1g

Composite: ypg = (γ00 + U0g) + (γ10 + U1g)(xpg) + epg
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The SAME Random Slope Model 
written another, more combined way

• Scalar “mixed” model equation per group:
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Xg = n x k values of predictors with 
fixed effects, so can differ per group
(k = 2: intercept, linear xpg)

γ = k x 1 estimated fixed effects, 
so will be the same for all groups
(γ00 = intercept, γ10 = linear xpg)

Zg = n x u values of level-1 predictors 
with level-2 random effects, so can differ 
per group (u = 2: intercept, linear xpg)

Ug = u x 2 estimated individual level-2 
random effects, so can differ per group

Eg = n x n person-specific level-1 
residuals, so can differ per group
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Level 1:  ypg = β0g + β1g(xpg) + epg

Level 2:  β0g = γ00 + U0g
β1g = γ10 + U1g

• This model says the “marginal” distribution of the total 
column of 𝐘𝐘 outcomes is:     𝐘𝐘 ~ 𝑁𝑁(𝐗𝐗𝐗𝐗,𝐕𝐕)

• This model says the “conditional” distribution of the total 
column of 𝐘𝐘 outcomes is:  𝐘𝐘|𝐔𝐔 ~ 𝑁𝑁(𝐗𝐗𝐗𝐗 + 𝐙𝐙𝐙𝐙,𝐑𝐑)
 Conditional = after controlling for fixed and random effects
 Marginal and conditional “general” models both have same normal 

distribution (which makes ML estimation relatively straightforward)

where 𝛍𝛍g = 
Conditional Mean 

created by fixed effects 
in the model for means

Clarifying Distribution Terminology
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Model for the Variance creates 𝐕𝐕𝐠𝐠 as:



Clarifying Terminology
• Conditional distribution:  𝐘𝐘|𝐔𝐔 ~ 𝑁𝑁(𝐗𝐗𝐗𝐗 + 𝐙𝐙𝐙𝐙,𝐑𝐑)
• Distribution of level-1 residuals:  𝐄𝐄 = 𝐘𝐘 − 𝐗𝐗𝐗𝐗 + 𝐙𝐙𝐙𝐙,  𝐄𝐄~𝑁𝑁(𝟎𝟎,𝐑𝐑)

• Thus far in “general” linear mixed models, we could have used 
the terms “level-1 residual distribution” and “conditional 
distribution” interchangeably (and I have used the former)
 “Level-1 residual distribution” is assumed multivariate normal
 “Conditional distribution” is assumed multivariate normal

• This may not be the case for outcomes with non-normal 
distributions (and thus, non-normal conditional distributions)
 Level-1 residual variance may not be estimated, so there may not be 

such a thing as a separately calculated “level-1 residual”, even though 
we still expect the conditional model predictions to be imperfect
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Dimensions for Organizing Models
• Outcome type: General (normal) vs. Generalized (not normal)
• Dimensions of sampling: One (so one variance term per outcome) vs. 

Multiple (so multiple variance terms per outcome)  OUR WORLD

• General Linear Models: conditionally normal outcome distribution, 
fixed effects (identity link; only one dimension of sampling)

• Generalized Linear Models: any conditional outcome distribution, 
fixed effects through link functions, no random effects (one dimension)

• General Linear Mixed Models: conditionally normal outcome distribution, 
fixed and random effects (identity link, but multiple sampling dimensions)

• Generalized Linear Mixed Models: any conditional outcome distribution,
fixed and random effects through link functions (multiple dimensions)

• “Linear” means fixed effects predict the link-transformed conditional mean 
(𝑢𝑢) of DV in a linear combination of (effect*predictor) + (effect*predictor)…
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Note: Least 
Squares is 
only for GLM



Generalized Linear Models
• Generalized linear models: link-transformed conditional 

mean is predicted instead; ML estimator uses not-normal 
conditional distributions in the outcome data likelihood
 Level-1 conditional model uses some not-normal distribution that may 

not have a residual variance, but level-2 random effects are still MVN
• Many kinds of non-normally distributed outcomes have some 

kind of generalized linear model to go with them via ML:
 Binary (dichotomous)
 Unordered categorical (nominal)
 Ordered categorical (ordinal)
 Counts (discrete, positive values)
 Censored (piled up and cut off at one end)
 Zero-inflated (pile of 0’s, then some distribution after)
 Continuous but skewed data (long tail)
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3 Parts of Generalized Multilevel Models

1. Non-normal conditional distribution of 𝒀𝒀:
 General MLM uses a normal conditional distribution to describe the 𝑌𝑌

variance remaining after fixed + random effects  we called this the 
level-1 residual variance, which is estimated separately and usually 
assumed constant across observations (unless modeled otherwise)

 Other distributions will be more plausible for bounded/skewed 
outcomes, so ML function maximizes the likelihood using those instead

 Why? To get the most correct standard errors for fixed effects 
 Although you can still think of this as model for the variance, not all 

conditional distributions will actually have a separately estimated level-1 
residual variance (e.g., binary  Bernoulli, count  Poisson)
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3 Parts of Generalized Multilevel Models

2. Link Function = 𝒈𝒈(⋅): How the conditional mean to be predicted is 
transformed so that the model predicts an unbounded outcome instead

 Inverse link 𝒈𝒈−𝟏𝟏(⋅)= how to go back to conditional mean in 𝑌𝑌 scale 
 Predicted outcomes (found via inverse link) will then stay within bounds
 e.g., binary outcome: conditional mean to be predicted is probability of 
𝑌𝑌 = 1, so the model predicts a linked version (when inverse-linked, the 
predicted outcome will stay between a probability of 0 and 1)

 e.g., count outcome: conditional mean is expected count, so the log of 
the expected count is predicted so that the expected count stays > 0

 e.g., for normal outcome: an “identity” link function (𝑌𝑌 * 1) is used given 
that the conditional mean to be predicted is already unbounded…
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3 Parts of Generalized Multilevel Models

3. Linear Predictor: How the fixed AND random effects of predictors 
combine additively to predict a link-transformed conditional mean

 This works the same as usual, except the linear predictor model 
directly predicts the link-transformed conditional mean, which we 
then convert (via inverse link) back into the original conditional mean

 That way we can still use the familiar “one-unit change” language to 
describe effects of model predictors (on the linked conditional mean)

 You can think of this as “model for the means” still, but it also includes 
the level-2 random effects for dependency of level-1 observations

 Fixed effects are no longer determined: they now have to be found 
through the ML algorithm, the same as the variance parameters

PSQF 7375 Clustered:  Lecture 5 10

3. Linear Predictor 
of Fixed AND 

Random Effects
=2. Link 

Function

1. Non-Normal 
Conditional 

Distribution of 𝒀𝒀



Normal GLM for Binary Outcomes?
• Let’s say we have a single binary (0 or 1) outcome…

(concepts for longitudinal data will proceed similarly)
 Expected mean is proportion of people who have a 1, so the 

probability of having a 1 is the conditional mean we’re 
trying to predict for each person: 𝒑𝒑(𝐲𝐲𝐢𝐢 = 𝟏𝟏)

 General linear model: 𝒑𝒑(𝐲𝐲𝐢𝐢 = 𝟏𝟏) = 𝛃𝛃𝟎𝟎 + 𝛃𝛃𝟏𝟏𝐗𝐗𝐢𝐢 + 𝛃𝛃𝟐𝟐𝐙𝐙𝐢𝐢 + 𝐞𝐞𝐢𝐢
 𝛃𝛃𝟎𝟎 = expected probability when all predictors are 0
 𝛃𝛃’s = expected change in 𝒑𝒑(𝐲𝐲𝐢𝐢 = 𝟏𝟏) for a one-unit Δ in predictor
 𝐞𝐞𝐢𝐢 = difference between observed and predicted binary values

 Model becomes 𝐲𝐲𝐢𝐢 = (𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐨𝐨𝐨𝐨 𝟏𝟏) + 𝐞𝐞𝐢𝐢
 What could possibly go wrong?
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Normal GLM for Binary Outcomes?
• Problem #1: A linear relationship between X and Y??? 
• Probability of a 1 is bounded between 0 and 1, but predicted 

probabilities from a linear model aren’t going to be bounded 
• Linear relationship needs to shut off  made nonlinear
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We have this… But we need this…
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Data

		Prob		Odds		LN(odds)								B0		B1		X1		Linear P				B0		B1		X1		Logit		Prob P

		0.05		0.05		-2.94								-0.20		0.15		0		-0.20				-2.50		0.5		0		-2.50		0.08

		0.10		0.11		-2.20								-0.20		0.15		1		-0.05				-2.50		0.5		1		-2.00		0.12

		0.15		0.18		-1.73								-0.20		0.15		2		0.10				-2.50		0.5		2		-1.50		0.18

		0.20		0.25		-1.39								-0.20		0.15		3		0.25				-2.50		0.5		3		-1.00		0.27

		0.25		0.33		-1.10								-0.20		0.15		4		0.40				-2.50		0.5		4		-0.50		0.38

		0.30		0.43		-0.85								-0.20		0.15		5		0.55				-2.50		0.5		5		0.00		0.50

		0.35		0.54		-0.62								-0.20		0.15		6		0.70				-2.50		0.5		6		0.50		0.62

		0.40		0.67		-0.41								-0.20		0.15		7		0.85				-2.50		0.5		7		1.00		0.73

		0.45		0.82		-0.20								-0.20		0.15		8		1.00				-2.50		0.5		8		1.50		0.82

		0.50		1.00		0.00								-0.20		0.15		9		1.15				-2.50		0.5		9		2.00		0.88

		0.55		1.22		0.20								-0.20		0.15		10		1.30				-2.50		0.5		10		2.50		0.92

		0.60		1.50		0.41

		0.65		1.86		0.62

		0.70		2.33		0.85

		0.75		3.00		1.10

		0.80		4.00		1.39

		0.85		5.67		1.73

		0.90		9.00		2.20

		0.95		19.00		2.94

		B0		B1		X1		Linear Y		Logistic Y

		0.53		-0.025		10		0.28		0.24

		0.53		-0.025		12		0.23		0.19

		0.53		-0.025		14		0.18		0.15

		0.53		-0.025		16		0.13		0.11

		0.53		-0.025		18		0.08		0.08

		0.53		-0.025		20		0.03		0.06

		0.53		-0.025		22		-0.02		0.05

		0.53		-0.025		24		-0.07		0.04

		0.53		-0.025		26		-0.12		0.03

		0.53		-0.025		28		-0.17		0.02

		0.53		-0.025		30		-0.22		0.01

		B0		B1		X1				Log Y

		0.37		-0.153		10				0.24

		0.37		-0.153		12				0.19

		0.37		-0.153		14				0.15

		0.37		-0.153		16				0.11

		0.37		-0.153		18				0.08

		0.37		-0.153		20				0.06

		0.37		-0.153		22				0.05

		0.37		-0.153		24				0.04

		0.37		-0.153		26				0.03

		0.37		-0.153		28				0.02

		0.37		-0.153		30				0.01

		Good Model				First Part		Second Part

		Y		Pred Y		Y*ln(PredY)		(1-Y)*ln(1-PredY)				LL

		1.00		0.95		-0.051		0				-0.051

		1.00		0.90		-0.105		0				-0.105

		1.00		0.85		-0.163		0				-0.163

		0.00		0.15		0		-0.163				-0.163

		0.00		0.10		0		-0.105				-0.105

		0.00		0.05		0		-0.051				-0.051

		Sum										-0.638

		Bad Model				First Part		Second Part

		Y		Pred Y		Y*ln(PredY)		(1-Y)*ln(1-PredY)				LL

		1.00		0.65		-0.431		0				-0.431

		1.00		0.60		-0.511		0				-0.511

		1.00		0.55		-0.598		0				-0.598

		0.00		0.45		0		-0.598				-0.598

		0.00		0.40		0		-0.511				-0.511

		0.00		0.35		0		-0.431				-0.431

		Sum										-3.079
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		0.70		2.33		0.85

		0.75		3.00		1.10

		0.80		4.00		1.39

		0.85		5.67		1.73

		0.90		9.00		2.20

		0.95		19.00		2.94

		B0		B1		X1		Linear Y		Logistic Y

		0.53		-0.025		10		0.28		0.24

		0.53		-0.025		12		0.23		0.19

		0.53		-0.025		14		0.18		0.15

		0.53		-0.025		16		0.13		0.11

		0.53		-0.025		18		0.08		0.08

		0.53		-0.025		20		0.03		0.06

		0.53		-0.025		22		-0.02		0.05

		0.53		-0.025		24		-0.07		0.04

		0.53		-0.025		26		-0.12		0.03

		0.53		-0.025		28		-0.17		0.02

		0.53		-0.025		30		-0.22		0.01

		B0		B1		X1				Log Y

		0.37		-0.153		10				0.24

		0.37		-0.153		12				0.19

		0.37		-0.153		14				0.15

		0.37		-0.153		16				0.11

		0.37		-0.153		18				0.08

		0.37		-0.153		20				0.06

		0.37		-0.153		22				0.05

		0.37		-0.153		24				0.04

		0.37		-0.153		26				0.03

		0.37		-0.153		28				0.02

		0.37		-0.153		30				0.01

		Good Model				First Part		Second Part

		Y		Pred Y		Y*ln(PredY)		(1-Y)*ln(1-PredY)				LL

		1.00		0.95		-0.051		0				-0.051

		1.00		0.90		-0.105		0				-0.105

		1.00		0.85		-0.163		0				-0.163

		0.00		0.15		0		-0.163				-0.163

		0.00		0.10		0		-0.105				-0.105

		0.00		0.05		0		-0.051				-0.051

		Sum										-0.638

		Bad Model				First Part		Second Part

		Y		Pred Y		Y*ln(PredY)		(1-Y)*ln(1-PredY)				LL

		1.00		0.65		-0.431		0				-0.431

		1.00		0.60		-0.511		0				-0.511

		1.00		0.55		-0.598		0				-0.598

		0.00		0.45		0		-0.598				-0.598

		0.00		0.40		0		-0.511				-0.511

		0.00		0.35		0		-0.431				-0.431

		Sum										-3.079





Data

		



X Predictor

Prob (Y=1)



Odds

		



X Predictor

Prob (Y=1)



LN(Odds)

		0.05

		0.1

		0.15

		0.2

		0.25

		0.3

		0.35

		0.4

		0.45

		0.5

		0.55

		0.6

		0.65

		0.7

		0.75

		0.8

		0.85

		0.9

		0.95



Probability (1)

Odds Ratio

Odds Ratio by Probability

0.0526315789

0.1111111111

0.1764705882

0.25

0.3333333333

0.4285714286

0.5384615385

0.6666666667

0.8181818182

1

1.2222222222

1.5

1.8571428571

2.3333333333

3

4

5.6666666667
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Pred

		0.05

		0.1

		0.15

		0.2

		0.25

		0.3

		0.35

		0.4

		0.45

		0.5

		0.55

		0.6

		0.65

		0.7

		0.75

		0.8

		0.85

		0.9

		0.95



Probability (1)

LN (Odds Ratio)

Log of Odds Ratio by Probability

-2.9444389792

-2.1972245773

-1.7346010554

-1.3862943611

-1.0986122887

-0.8472978604

-0.6190392084

-0.4054651081

-0.2006706955

0

0.2006706955

0.4054651081

0.6190392084

0.8472978604

1.0986122887

1.3862943611

1.7346010554

2.1972245773

2.9444389792



		10		10

		12		12

		14		14

		16		16

		18		18

		20		20

		22		22

		24		24

		26		26

		28		28

		30		30



Linear Y

Logistic Y

0.284

0.2386672852

0.234

0.1875513557

0.184

0.1452937857

0.134

0.1112535654

0.084

0.0844009417

0.034

0.0635660183

-0.016

0.0476069073

-0.066

0.0355026412

-0.116

0.0263906594

-0.166

0.0195698747

-0.216

0.014485724





Generalized Models for Binary Outcomes
• Solution to #1: Rather than predicting 𝒑𝒑(𝐲𝐲𝐢𝐢 = 𝟏𝟏) directly, we must 

transform it into an unbounded variable with a link function:
 Transform probability into an odds ratio: 𝑝𝑝

1−𝑝𝑝
= prob y=1

prob(y=0)
 If 𝑝𝑝 yi = 1 = .7 then Odds(1) = 2.33; Odds(0) = 0.429
 But odds scale is skewed, asymmetric, and ranges from 0 to +∞  Not helpful

 Take natural log of odds ratio called “logit” link:  𝐋𝐋𝐋𝐋𝐋𝐋 𝒑𝒑
𝟏𝟏−𝒑𝒑

 If 𝑝𝑝 yi = 1 = .7, then Logit(1) = 0.846; Logit(0) = −0.846
 Logit scale is now symmetric about 0, range is ±∞ DING

-4 -2 0 2 4

0.
0
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Probability Logit
0.99 4.6
0.90 2.2
0.50 0.0
0.10 −2.2

Can you guess 
what 𝑝𝑝 .01
would be on 
the logit scale?

Logit Scale
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Solution #1:  Probability into Logits
• A Logit link is a nonlinear transformation of probability:

 Equal intervals in logits are NOT equal intervals of probability
 The logit goes from ±∞ and is symmetric about prob = .5 (logit = 0)
 Now we can use a linear model  The model will be linear with respect to 

the predicted logit, which translates into a nonlinear prediction with respect to 
probability  the conditional mean outcome shuts off at 0 or 1 as needed

Probability:
𝒑𝒑(𝐲𝐲𝐢𝐢 = 𝟏𝟏)

Logit 
(log odds): 
𝐋𝐋𝐋𝐋𝐋𝐋 𝒑𝒑

𝟏𝟏−𝒑𝒑

Zero-point on 
each scale:

Prob = .5
Odds = 1
Logit = 0
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Odds: 𝒑𝒑
𝟏𝟏−𝒑𝒑



Normal GLM for Binary Outcomes?
• General linear model:  𝒑𝒑(𝐲𝐲𝐢𝐢 = 𝟏𝟏) = 𝛃𝛃𝟎𝟎 + 𝛃𝛃𝟏𝟏𝐗𝐗𝐢𝐢 + 𝛃𝛃𝟐𝟐𝐙𝐙𝐢𝐢 + 𝐞𝐞𝐢𝐢
• If 𝐲𝐲𝐢𝐢 is binary, then 𝐞𝐞𝐢𝐢 can only be 2 things:  𝐞𝐞𝐢𝐢 = 𝐲𝐲𝐢𝐢 − �𝐲𝐲𝐢𝐢

 If 𝐲𝐲𝐢𝐢 = 0 then 𝐞𝐞𝐢𝐢= (0 − predicted probability)
 If 𝐲𝐲𝐢𝐢 = 1 then 𝐞𝐞𝐢𝐢= (1 − predicted probability)

• Problem #2a: So the residuals can’t be normally distributed
• Problem #2b: The residual variance can’t be constant over X as 

in GLM because the mean and variance are dependent
 Variance of binary variable: 𝐕𝐕𝐕𝐕𝐕𝐕 𝐲𝐲𝐢𝐢 = 𝒑𝒑 ∗ (𝟏𝟏 − 𝒑𝒑)
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Mean (𝑝𝑝)
Variance

Mean and Variance of a Binary Variable



Solution to #2:  Bernoulli Distribution
• Rather than using a normal conditional distribution for the 

outcome, we will use a Bernoulli conditional distribution a 
special case of a binomial distribution for only one binary outcome
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Predicted Binary Outcomes
• Logit:  𝐋𝐋𝐋𝐋𝐋𝐋 𝒑𝒑(𝐲𝐲𝐢𝐢=𝟏𝟏)

𝟏𝟏−𝒑𝒑(𝐲𝐲𝐢𝐢=𝟏𝟏)
= 𝛃𝛃𝟎𝟎 + 𝛃𝛃𝟏𝟏𝐗𝐗𝐢𝐢 + 𝛃𝛃𝟐𝟐𝐙𝐙𝐢𝐢

 Predictor effects are linear and additive like in GLM, 
but 𝛃𝛃 = change in logit per one-unit change in predictor

• Odds:  𝒑𝒑(𝐲𝐲𝐢𝐢=𝟏𝟏)
𝟏𝟏−𝒑𝒑(𝐲𝐲𝐢𝐢=𝟏𝟏)

= 𝐞𝐞𝐞𝐞𝐞𝐞 𝛃𝛃𝟎𝟎 ∗ 𝛃𝛃𝟏𝟏𝐗𝐗𝐢𝐢 ∗ (𝛃𝛃𝟐𝟐𝐙𝐙𝐢𝐢)

or 𝒑𝒑(𝐲𝐲𝐢𝐢=𝟏𝟏)
𝟏𝟏−𝒑𝒑(𝐲𝐲𝐢𝐢=𝟏𝟏)

= 𝐞𝐞𝐞𝐞𝐞𝐞 𝛃𝛃𝟎𝟎 + 𝛃𝛃𝟏𝟏𝐗𝐗𝐢𝐢 + 𝛃𝛃𝟐𝟐𝐙𝐙𝐢𝐢

• Probability: 𝒑𝒑 𝐲𝐲𝐢𝐢 = 𝟏𝟏 = 𝐞𝐞𝐞𝐞𝐞𝐞 𝛃𝛃𝟎𝟎+𝛃𝛃𝟏𝟏𝐗𝐗𝐢𝐢+𝛃𝛃𝟐𝟐𝐙𝐙𝐢𝐢
𝟏𝟏+𝐞𝐞𝐞𝐞𝐞𝐞 𝛃𝛃𝟎𝟎+𝛃𝛃𝟏𝟏𝐗𝐗𝐢𝐢+𝛃𝛃𝟐𝟐𝐙𝐙𝐢𝐢

or           𝒑𝒑 𝐲𝐲𝐢𝐢 = 𝟏𝟏 = 𝟏𝟏
𝟏𝟏+𝐞𝐞𝐞𝐞𝐞𝐞 −𝟏𝟏(𝛃𝛃𝟎𝟎+𝛃𝛃𝟏𝟏𝐗𝐗𝐢𝐢+𝛃𝛃𝟐𝟐𝐙𝐙𝐢𝐢)
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𝐠𝐠(⋅) link

𝐠𝐠−𝟏𝟏(⋅)
inverse 
link



“Logistic Regression” for Binary Data
• This model is sometimes expressed by calling the logit(yi) a 

underlying continuous (“latent”) response of 𝐲𝐲𝐢𝐢∗ instead:
𝐲𝐲𝐢𝐢∗ = 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 + 𝐞𝐞𝐢𝐢

 In which 𝐲𝐲𝐢𝐢 = 𝟏𝟏 if yi∗ > 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , or 𝐲𝐲𝐢𝐢 = 𝟎𝟎 if yi∗ ≤ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

So if predicting 𝐲𝐲𝐢𝐢∗ instead, 
then ei ~ Logistic 0,σe2 = 3.29

Logistic Distribution:
Mean = μ, Variance = π

2

3
𝑠𝑠2, 

where s = scale factor that 
allows for “over-dispersion” 
(must be fixed to 1 in binary 
outcomes for identification)

Logistic 
Distributions
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𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 = 𝛽𝛽0 ∗ −1 is given 
in Mplus, not intercept



Other Models for Binary Data
• The idea that a “latent” continuous variable underlies an observed 

binary response also appears in a Probit Regression model:

 A probit link, such that now your model predicts a different transformed 𝑌𝑌𝑝𝑝: 
Probit yi = 1 = Φ−1[𝑝𝑝 yi = 1 ] = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 Where Φ = standard normal cumulative distribution function, so the transformed 
yi is the z-score that corresponds to the value of standard normal curve below
which conditional mean probability is found (requires integration to inverse link)

 Same Bernoulli distribution for the conditional binary outcomes, in which 
residual variance cannot be separately estimated (so no ei in the model)
 Probit also predicts “latent” response: yi∗ = threshold + your model + ei

 But Probit says ei ~ Normal 0,σe2 = 1.00 , whereas Logit σe2 = π
2

3
= 3.29

 So given this difference in variance, probit estimates are on a different scale 
than logit estimates, and so their estimates won’t match… however…

𝐠𝐠(⋅)

PSQF 7375 Clustered:  Lecture 5 19



Probit vs. Logit:  Should you care? Pry not.

• Other fun facts about probit:
 Probit = “ogive” in the Item Response Theory (IRT) world
 Probit has no odds ratios (because it’s not based on odds)

• Both logit and probit assume symmetry of the probability 
curve, but there are other asymmetric options as well…

Probit 𝛔𝛔𝐞𝐞𝟐𝟐 = 1.00
(SD=1)

Logit 
𝛔𝛔𝐞𝐞𝟐𝟐 = 3.29
(SD=1.8)

Rescale to equate 
model coefficients: 
𝜷𝜷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 =
𝜷𝜷𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 ∗ 𝟏𝟏.𝟕𝟕

You’d think it would 
be 1.8 to rescale, 
but it’s actually 1.7…

yi = 0

Threshold

Pr
ob

ab
ili

ty
 

yi = 1

Transformed yi (yi∗) 

Pr
ob

ab
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ty
 

Transformed yi (yi∗) 
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Other Link Functions for Binary Outcomes

𝛍𝛍 = 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 Logit Probit Log-Log Complement. Log-Log
g(⋅) link Log 𝑝𝑝

1−𝑝𝑝
= μ Φ−1 𝑝𝑝 = μ −Log −Log 𝑝𝑝 = μ Log −Log 1 − 𝑝𝑝 = μ

g−1(⋅)
inverse link 
(go back to 
probability):

𝑝𝑝 =
exp μ

1 + exp μ
𝑝𝑝 = Φ−1 μ 𝑝𝑝 = exp −exp −μ 𝑝𝑝 = 1 − exp −exp μ

In SAS LINK= LOGIT PROBIT LOGLOG CLOGLOG

-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0

0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

Tr
an

sf
or

m
ed

 Y

Original Probability

Logit Probit = Z*1.7

Log-Log Complementary Log-Log

Logit = Probit*1.7
which both assume 
symmetry of prediction

Log-Log is for outcomes in 
which 1 is more frequent

Complementary 
Log-Log is for outcomes in 
which 0 is more frequent
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ei~log − Weibull extreme value 0.577,σe2 =
π2

6



Too Logit to Quit: Predicting Proportions
• The logit link can also be useful in predicting proportions:

 Range between 0 and 1, so model needs to “shut off” predictions for 
conditional mean as they approach those ends, just as in binary data

 Data to model:  μ in logits = Log 𝑝𝑝
1−𝑝𝑝

 Model to data  𝑝𝑝 = exp μ
1+exp μ

• However, because the outcome values aren’t just 0 or 1, 
a Bernoulli conditional distribution won’t work for proportions

• Two distributions: Binomial (discrete) vs. Beta (continuous)
 Binomial: Less flexible (just one hump), but can include 0 and 1 values
 Beta: Way more flexible (????), but cannot directly include 0 or 1 values

 There are “zero-inflated” and/or “one-inflated” versions for these cases
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𝐠𝐠(⋅) Link

𝐠𝐠−𝟏𝟏 ⋅ Inverse-Link



Binomial Distribution for Proportions
• The discrete binomial distribution can be used to predict 
𝒄𝒄 correct responses given 𝒏𝒏 trials
 Bernoulli for binary = special case of binomial when 𝑛𝑛=1

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑦𝑦 = 𝑐𝑐 = 𝑛𝑛!
𝑐𝑐! 𝑛𝑛−𝑐𝑐 !

𝑝𝑝𝑐𝑐 1 − 𝑝𝑝 𝑛𝑛−𝑐𝑐
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𝑝𝑝 = probability of 1

As 𝑝𝑝 gets closer to 
.5 and n gets larger, 
the binomial pdf
will look more like a 
normal distribution.

But if many people 
show floor/ceiling 
effects, a normal 
distribution is not 
likely to work well… 
so use a binomial!

Mean = 𝑛𝑛𝑛𝑛
Variance = 𝑛𝑛𝑛𝑛(1 − 𝑝𝑝)



Binomial Distribution for Proportions
• SAS PROC GLIMMIX allows the outcome variable to be 

defined as #events/#trials on MODEL statement
 LINK=LOGIT so that the conditional mean stays bounded 

between 0 and 1 as needed (or alternatively, CLOGLOG/LOGLOG)
 DIST=BINOMIAL so variance (and SEs) are determined by that 

mean, as they should be assuming independent events
• STATA MELOGIT does the same with this option after ||:
 Binomial(VarforNtrials); outcome then has number of events

• Be careful of overdispersion
 Overdispersion = more variability than the mean would predict 

(cannot happen in binary outcomes, but it can for binomial)
 Indicated by Pearson χ2/df > 1 in SAS output
 Can be caused by an improperly specified linear predictor model 

(e.g., forgot some interaction terms) or correlated observations 
(i.e., due to nesting, clustering, multivariate, and so forth)
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Beta Distribution for Proportions
• The continuous beta distribution (LINK=LOGIT, DIST=BETA) 

can predict percentage correct 𝒑𝒑 (must be 0 < 𝒑𝒑 < 1)
 𝐹𝐹 𝑦𝑦|𝛼𝛼,𝛽𝛽 = Γ 𝛼𝛼+𝛽𝛽

Γ 𝛼𝛼 Γ 𝛽𝛽
y𝛼𝛼−1 1 − y 𝛽𝛽−1
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𝛼𝛼 and 𝛽𝛽 are ”shape” parameters (> 0)
Mean = μ = α

α+β

“Scale” = ϕ = α + β

Variance = μ 1−μ
1+ϕ

SAS GLIMMIX will 
provide a fixed 
intercept as logit(μ) 
and the “scale” ϕ



Beta Distribution for Proportions
• STATA does not appear to have a mixed effects version…?
• SAS NLMIXED can be used for beta mixed models

• The beta distribution is extremely flexible (i.e., can take on 
many shapes), but outcomes must be 0 < 𝒚𝒚 < 1
 If have 0’s, need to add “zero-inflation” factor:  predicts logit of 

0, then beta after 0 in two simultaneous models
 If have 1’s, need to add “one-inflation” factor:  predicts beta, 

then logit of 1 via two simultaneous models
 Need both inflation factors if you have 0s and 1s (3 models)
 Can be used with outcomes that have other ranges of possible 

values if they are rescaled into 0 to 1

PSQF 7375 Clustered:  Lecture 5 26



Too Logit to Quit* https://www.youtube.com/watch?v=HFCv86Olk8E

• The logit is the basis for many other generalized models for 
categorical (ordinal or nominal; polytomous) outcomes

• Next we’ll see how 𝐶𝐶 possible response categories can be 
predicted using 𝐶𝐶 − 1 binary “submodels” that involve carving 
up the categories in different ways, in which each binary 
submodel uses a logit link to predict its outcome

• Types of categorical outcomes:
 Definitely ordered categories: “cumulative logit”
 Maybe ordered categories: “adjacent category logit” (not used much)
 Definitely NOT ordered categories: “generalized logit”

* Starts about 8 minutes into 15-minute video
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Logit-Based Models for C Ordinal Categories
• Known as “cumulative logit” or “proportional odds” model in 

generalized models; known as “graded response model” in IRT
 LINK=CLOGIT, (DIST=MULT) in SAS GLIMMIX; MEOLOGIT or MEGLM in STATA

• Models the probability of lower vs. higher cumulative categories via 
𝐶𝐶 − 1 submodels (e.g., if 𝐶𝐶 = 4 possible responses of 𝑐𝑐 = 0,1,2,3): 

0 vs. 1, 2,3 0,1 vs. 2,3 0,1,2 vs. 3

• In SAS, what the binary submodels predict depends on whether the model 
is predicting DOWN (𝐲𝐲𝐢𝐢 = 𝟎𝟎, the default) or UP (𝐲𝐲𝐢𝐢 = 𝟏𝟏) cumulatively

• Example predicting UP in an empty model (subscripts=parm,submodel)
• Submodel 1: Logit[𝑝𝑝(yi > 0)] = β01  𝑝𝑝 yi > 0 = exp β01 / 1 + exp β01
• Submodel 2: Logit[𝑝𝑝(yi > 1)] = β02  𝑝𝑝 yi > 1 = exp β02 / 1 + exp β02
• Submodel 3: Logit[𝑝𝑝(yi > 2)] = β03  𝑝𝑝 yi > 2 = exp β03 / 1 + exp β03

Submodel3Submodel2Submodel1
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Logit-Based Models for C Ordinal Categories
• Models the probability of lower vs. higher cumulative categories via 𝐶𝐶 − 1

submodels (e.g., if 𝐶𝐶 = 4 possible responses of 𝑐𝑐 = 0,1,2,3): 
0 vs. 1,2,3 0,1 vs. 2,3 0,1,2 vs. 3

• In SAS, what the binary submodels predict depends on whether the model 
is predicting DOWN (𝐲𝐲𝐢𝐢 = 𝟎𝟎, the default) or UP (𝐲𝐲𝐢𝐢 = 𝟏𝟏) cumulatively
 Either way, the model predicts the middle category responses indirectly

• Example if predicting UP with an empty model:
 Probability of 0 =       1 – Prob1

Probability of 1 = Prob1– Prob2
Probability of 2 = Prob2– Prob3
Probability of 3 = Prob3– 0

Submodel3
 Prob3

Submodel2
 Prob2

Submodel1
 Prob1

The cumulative submodels that create these 
probabilities are each estimated using all the 
data (good, especially for categories not chosen 
often), but assume order in doing so (may be 
bad or ok, depending on your response format).

Logit[𝑝𝑝(yi > 2)] = β03

 𝑝𝑝 yi > 2 = exp β03
1+exp β03
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Logit-Based Models for C Ordinal Categories
• Ordinal models usually use a logit link transformation, but they can also use 

cumulative log-log or cumulative complementary log-log links
 LINK= CUMLOGLOG or CUMCLL in SAS GLIMMIX; CLOGLOG link in MEGLM in STATA

• Almost always assume proportional odds, that effects of predictors are the 
same across binary submodels—for example (subscripts = parm, submodel)
 Submodel 1: Logit[𝑝𝑝(yi > 0)] = 𝛃𝛃𝟎𝟎𝟎𝟎 + β1Xi + β2Zi + β3XiZi
 Submodel 2: Logit[𝑝𝑝(yi > 1)] = 𝛃𝛃𝟎𝟎𝟐𝟐 + β1Xi + β2Zi + β3XiZi
 Submodel 3: Logit[𝑝𝑝(yi > 2)] = 𝛃𝛃𝟎𝟎𝟑𝟑 + β1Xi + β2Zi + β3XiZi

• Proportional odds essentially means no interaction between submodel and 
predictor effects, which greatly reduces the number of estimated parameters
 Despite the importance of this assumption, there appears to be no way to test it 

directly in most software packages for mixed effects models (except SAS NLMIXED)
 If the proportional odds assumption fails, you can use a nominal model instead

(dummy-coding to create separate outcomes can approximate a nominal model)
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Logit-Based Models for C Categories
• Uses multinomial distribution, whose PDF for 𝐶𝐶 = 4 categories 

of 𝑐𝑐 = 0,1,2,3, an observed 𝑦𝑦𝑖𝑖 = 𝑐𝑐, and indicators 𝐼𝐼 if 𝑐𝑐 = 𝑦𝑦𝑖𝑖
𝑓𝑓 yi = c = 𝑝𝑝i0

I[yi=0]𝑝𝑝i1
I[yi=1]𝑝𝑝i2

I[yi=2]𝑝𝑝i3
I[yi=3]

 Maximum likelihood is then used to find the most likely parameters in 
the model to predict the probability of each response through the 
(usually logit) link function; probabilities sum to 1: ∑c=1C 𝑝𝑝ic = 1

• Other models for categorical data that use the multinomial:
 Adjacent category logit (partial credit): Models the probability of 

each next highest category via 𝐶𝐶 − 1 submodels (e.g., if 𝐶𝐶 = 4): 
0 vs. 1 1 vs. 2 2 vs. 3

 Baseline category logit (nominal): Models the probability of reference 
vs. other category via 𝐶𝐶 − 1 submodels (e.g., if 𝐶𝐶 = 4 and 0 = ref): 

0 vs. 1 0 vs. 2 0 vs. 3

Only 𝑝𝑝𝑖𝑖𝑖𝑖 for the response 
𝑦𝑦𝑖𝑖 = 𝑐𝑐 gets used
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Generalized MLM: Intermediate Summary
• Statistical models come from probability distributions
 Outcomes are assumed to have some conditional distribution
 The normal distribution is one choice, but there are lots of others: 

so far we’ve seen Bernoulli, binomial, beta, and multinomial
 ML estimation tries to maximize the height of the data using that 

distribution along with the model parameters

• Generalized models have three parts:
1. Non-normal conditional outcome distribution
2. Link function: how bounded conditional mean of 𝑌𝑌 gets 

transformed into something unbounded we can predict linearly
 So far we’ve seen identity, logit, probit, log-log, and cumulative log-log

3. Linear predictor: how we predict that linked conditional mean
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From Single-Level to Multilevel…
• Multilevel generalized models have the same 3 parts as 

single-level generalized models:
 Alternative conditional distribution for the outcome (e.g., Bernoulli)
 Link function to transform bounded conditional mean into unbounded
 Linear model that directly predicts the linked conditional mean instead

• But in adding random effects (i.e., additional piles of variance) 
to address dependency in multilevel data:
 Piles of variance will appear to be ADDED TO, not EXTRACTED FROM, 

the original residual variance when fixed to a known value (e.g., 3.29), 
which causes all coefficients to change scale across models

 ML estimation is way more difficult because normal random effects + 
not-normal residuals does not have a known distribution like MVN

 No such thing as REML for generalized multilevel models with true ML
 Pseudo-R2 is not possible for level-1 effects (so use odds ratio instead)
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Empty Multilevel Model for Binary Outcomes

• Level 1:  Logit [p(ypg = 1)] = β0g

• Level 2:            β0g = γ00 + U0g

• Composite: Logit [p(ypg = 1)] = γ00 + U0g

• σe2 residual variance is not estimated  π2/3 = 3.29
 (Known) residual is in model for actual ypg, so σe2 = 3.29 is for logit(ypg) 

• Logistic ICC = BG
BG+WG

=
𝛕𝛕𝐔𝐔
𝟐𝟐
𝟎𝟎

𝛕𝛕𝐔𝐔
𝟐𝟐
𝟎𝟎+𝛔𝛔𝐞𝐞

𝟐𝟐 =
𝛕𝛕𝐔𝐔
𝟐𝟐
𝟎𝟎

𝛕𝛕𝐔𝐔
𝟐𝟐
𝟎𝟎+𝟑𝟑.𝟐𝟐𝟐𝟐

• Can do −2ΔLL test to see if 𝛕𝛕𝐔𝐔𝟐𝟐𝟎𝟎> 0, although the ICC is problematic to 
interpret due to non-constant and not estimated residual variance

• ICC formulas for other outcomes besides binary vary widely
• Some replace residual variance with 1; others use a function of the mean when the 

variance is dependent (e.g., Poisson) – I’m still not sure which is more correct

Notice what’s 
NOT in level 1…
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Example Random Slope Model for Binary 
Outcomes using Group-MC xpg

• Level 1:  Logit [p(ypg = 1)] = β0g + β1g(xpg)
• Level 2:      β0g = γ00 + U0g

β1g = γ10 + U1g

• Combined: 
Logit [p(ypg = 1)] = (γ00 + U0g) + (γ10 + U1g)(xpg)

• σe2 residual variance is still not estimated  π2/3 = 3.29
• Can test new fixed OR random effects with −2ΔLL tests when 

using true ML estimation (or use univariate or multivariate 
Wald test p-values for fixed effects as usual)
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Example Random Slope Model 
for Ordinal Outcomes (ypg = 0, 1, or 2)

• L1: Logit [p(ypg > 0)] = β0g1 + β1g1(xpg) 

Logit [p(ypg > 1)] = β0g2 + β1g2(xpg)

• L2:    β0g1 = γ001 + U0g1   β1g1 = γ101 + U1g1

β0g2 = γ002 + U0g2 β1g2 = γ102 + U1g2

• Assumes proportional odds 
γ001 ≠ γ002 and γ101 = γ102 and U0g1 = U0g2 and U1g1 = U1g2 
 Testable indirectly via nominal model (all unequal) or directly using 

SAS NLMIXED for a custom model in which some can be constrained
 σe2 residual variance is still not estimated  π2/3 = 3.29 (if link=logit)
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New Interpretation of Fixed Effects
• In general linear mixed models, the fixed effects are 

interpreted as the “average” effect for the sample
 γ00 is “mean of group means” intercept 
 U0g is “group deviation from sample mean”

• What “average” means in generalized linear mixed models is 
different, because of the use of nonlinear link functions:
 e.g., the mean of the logs ≠ log of the means
 Therefore, the fixed effects are not the “sample average” effect, they 

are the effect for specifically for Ug = 0
 So fixed effects are conditional on the random effects
 This gets called a “unit-specific” or “subject-specific” model
 This distinction does not exist when using a normal conditional distribution
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Comparing Results across Models
• NEW RULE: Coefficients cannot be compared directly across 

models, because they are not on the same scale! (Bauer, 2009)
• e.g., if residual variance = 3.29 in binary models:

 When adding a random intercept variance to an empty model, the 
total variation in the outcome has increased the fixed effects will 
increase in size because they are unstandardized slopes

 Level-1 predictors cannot decrease the level-1 variance like usual, 
so all other model estimates have to increase to compensate
 If xpg is uncorrelated with other predictors and is a pure level-1 variable 

(ICC ≈ 0), then fixed and SD(U0g) will increase by same factor
 Random effects variances can decrease, though, so level-2 effects 

should be on the same scale across models if level-1 model is the same

0

2
U

mixed fixed

+3.29
γ  ( )

3.29
τ

≈ β
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A Little Bit about Estimation
• Goal: End up with maximum likelihood estimates for all model 

parameters (because they are consistent and most efficient)
 When we have a conditional normal distribution (i.e., V matrix based 

on MVN epg level-1 residuals and MVN Ug level-2 random effects), 
ML is relatively easy because we don’t need to know the Ug values: 
the marginal log-likelihood does not include them

 When we have a non-normal conditional distribution (i.e., binary 
outcomes are Bernoulli after conditioning on the MVN Ug level-2 
random effects) ML is much harder because we do need the Ug values 
in creating linear predictor outcomes and a log-likelihood per group

• 3 main families of estimation approaches:
 Quasi-Likelihood methods (“marginal/penalized quasi ML”)
 Numerical Integration (“adaptive Gaussian quadrature”)
 Also Bayesian methods (MCMC, newly available in SAS or Mplus)
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Quasi-Likelihood Estimation
• Older methods, also known as “pseudo-likelihood”
 Predict link-transformed conditional mean using a general MLM    
 “Marginal QL”  linear approximation using fixed part of model
 “Penalized QL”  linear approximation using fixed + random
 Come in ML and REML variants (MSPL and RSPL in SAS GLIMMIX)
 Are the DEFAULT in SAS GLIMMIX and only option in SPSS!

• Why not use them?
 Provide too small random effects variances (2nd-order PQL is 

supposed to be better than 1st-order MQL in this regard)
 THEY DO NOT PERMIT MODEL −2ΔLL TESTS

 Modern software may also add a Laplace approximation to QL, which 
then does permit −2ΔLL tests (also in SAS GLIMMIX and STATA melogit)
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Marginal Maximum Likelihood Estimation
• ML via Numeric(al) Integration  gold standard

 Synonyms: (adaptive) Gaussian quadrature
 Provides much better estimates and valid −2ΔLL tests (ML flavor only) 
 Can take forever or not converge at all in models with many random effects; 

not available for models with crossed random effects
 “Laplace” approximation can be used, which is equivalent to 1 integration point (???)

 Start values can help speed estimation (i.e., from QL methods)
 Relies on assumptions of local independence, like usual  all level-1 

dependency has been modeled; level-2 units are independent
 So no such thing as an R matrix structure possible, so any differences in 

variance or additional sources of covariance must be specified in G
 Using _RESIDUAL_ option in SAS GLIMMIX RANDOM statements triggers QL
 Also no V matrix, so it can be hard to discern the predicted variance pattern

 Multivariate outcomes can have different links and distributions in SAS 
GLIMMIX using LINK=BYOBS and DIST=BYOBS (Save new variables called 
“link” and “dist” to your data to tell GLIMMIX what to use for each) 
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ML via Numeric(al) Integration
• Step 1: Select starting values for all fixed effects
• Step 2: Compute the likelihood of each observation given by the 

current parameter values using chosen distribution of residuals
 Model gives link-predicted outcome given parameter estimates, but the U’s 

themselves are not parameters—their variances and covariances are instead
 But so long as we can assume the U’s are MVN, we can still proceed…
 Computing the likelihood for each set of possible parameters requires removing

the contribution of the individual U values from the model equation—by 
integrating across possible U values for each level-2 unit

 Integration is accomplished by “Gaussian Quadrature”  summing up rectangles 
that approximate the integral (area under the curve) for each level-2 unit

• Step 3: Decide if you have the right answers, which occurs when the 
log-likelihood changes very little across iterations (i.e., it converges)

• Step 4: If you aren’t converged, choose new parameters values
 Newton-Rhapson or Fisher Scoring (calculus), EM algorithm (U’s =missing data)
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ML via Numerical Integration
• More on Step 2: Divide the U distribution into rectangles

  “Gaussian Quadrature” (# rectangles = # “quadrature points”)
 First divide the whole U distribution into rectangles, then repeat by 

taking the most likely section for each level-2 unit and rectangling that
 This is “adaptive quadrature” and is computationally more demanding, but 

gives more accurate results with fewer rectangles (SAS will pick how many)

The likelihood of each level-2 unit’s 
outcomes at each U rectangle is then 
weighted by that rectangle’s 
probability of being observed (from 
the multivariate normal distribution). 
The weighted likelihoods are then 
summed across all rectangles… 

 ta da! “numerical integration”
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Example of Numeric Integration: Binary DV, 
Fixed Linear Slope, Random Intercept Model 
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1. Start with values for fixed effects: intercept: γ00 = 0.5, xpg: γ10 = 1.5,
2. Compute likelihood for real data based on fixed effects and plausible U0g

(-2,0,2) using model: Logit(ypg=1) = γ00 + γ10(xpg) + U0g

• Here for one group for two persons with ypg=1 for both persons
IF y=1 IF y=0 Likelihood U0 U0 Product

U0 = -2 Logit Prob 1-Prob if both y=1 prob width per U0
x=0 (0.5 -2) -1.5 0.18 0.82 0.09121 0.05 2 0.00912
x=1 (0.5+1.5-2) 0.0 0.50 0.50

U0 = 0 Logit Prob 1-Prob
x=0 (0.5-0) 0.5 0.62 0.38 0.54826 0.40 2 0.43861
x=1 (0.5+1.5-0) 2.0 0.88 0.12

Theta = +2 Logit Prob 1-Prob
x=0 (0.5+2) 2.5 0.92 0.08 0.89705 0.05 2 0.08971
x=1 (0.5+1.5+2) 3.5 0.97 0.03

Overall Likelihood (Sum of Products over All U0 Values): 0.53743

(do this for each level-1 x, then multiply this whole thing over all groups)
(repeat with new values of fixed effects until find highest overall likelihood)



Summary:  Complications of 
Generalized Multilevel Models

• Analyze link-transformed conditional mean (e.g., via logit, log, log-log…)
 Linear relationship between X’s and transformed conditional mean outcome
 Nonlinear relationship between X’s and original conditional mean outcome

 Conditional outcomes then follow some non-normal distribution

• In models for binary or categorical data, level-1 residual variance is fixed and 
varies with the conditional mean (smaller at boundaries)
 So it can’t go decrease after being explained by level-1 predictors, which means 

that the scale of all model parameters has to go UP to compensate
 Scale of model will also be different after adding random effects for 

the same reason—the total variation in the model is now bigger
 Fixed effects may not be comparable across models as a result

• Estimation is trickier, takes longer, and true ML does not come in REML flavor
 Numerical integration is best but may blow up in complex models
 Start values are often essential (can get those with pseudo-likelihood estimators)
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A Taxonomy of Not-Normal Outcomes
• “Discrete” outcomes—all responses are whole numbers
 Categorical variables in which values are labels, not amounts

 Binomial (2 options) or multinomial (3+ options) distributions
 Question: Are the values ordered  which link? 

 Count of things that happened, so values < 0 cannot exist
 Sample space goes from 0 to +∞
 Poisson or Negative Binomial distributions (usually)
 Log link (usually) so predicted outcomes can’t go below 0
 Question: Are there extra 0 values? What to do about them?

• “Continuous” outcomes—responses can be any number
 Question: What does the residual distribution look like?

 Normal-ish? Skewed? Cut off? Mixture of different distributions?
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A Revised Taxonomy
• Rather than just separating into discrete vs. continuous, think 

about models based on their shape AND kinds of data they fit
 Note: You can use continuous models for discrete data (that only have 

integers), but not discrete models for continuous data (non-integers)

1. Skewed-looking distributions
 Discrete: Poisson, Generalized Poisson, Negative Binomial (NB)
 Continuous: Log-Normal, Beta, Gamma

2. Skewed with a pile of 0’s: Becomes  If 0 and How Much
 These models will differ in how they define the “If 0” part
 Discrete: Zero-Inflated Poisson or NB, Hurdle Poisson or NB
 Continuous: “Two-Part” (with normal or lognormal for how much part)

 Better: Gamma for the how much part because it only includes values > 0 
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Models for Count Outcomes
• Counts: non-negative integer unbounded responses

 e.g., how many cigarettes did you smoke this week?
 Traditionally uses natural log link so that predicted outcomes stay ≥ 0

• g ⦁ Log[E yi ] = Log μi = model predicts mean of yi
• g−1 ⦁ E(yi) = exp(model)  to un-log it, use exp(model)

 e.g., if Log μi = model provides predicted Log(μi) = 1.098, 
that translates to an actual predicted count of exp 1.098 = 3

 e.g., if Log μi = model provides predicted Log(μi) = −5, 
that translates to an actual predicted count of exp −5 = 0.006738

• So that’s how linear model predicts μi, the conditional mean 
for yi, but what about the conditional (residual) variance?
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Poisson Conditional Distribution
• Poisson distribution has one parameter, 𝜆𝜆, which is both its 

mean and its variance (so 𝜆𝜆 = mean = variance in Poisson)

• 𝑓𝑓 yi|λ = Prob yi = y = λy∗exp −λ
y!

• PDF: Prob yi = y|β0,β1,β2 = μi
y∗exp −μi

y!

𝑦𝑦! is factorial of 𝑦𝑦

The dots indicate that only 
integer values are observed.

Distributions with a small 
expected value (mean or 𝜆𝜆) are 
predicted to have a lot of 0’s.

Once 𝜆𝜆 > 6 or so, the shape of 
the distribution is close to a that 
of a normal distribution.𝑦𝑦
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3 potential problems for Poisson…
• The standard Poisson distribution is rarely sufficient, though

• Problem #1: When mean ≠ variance
 If variance < mean, this leads to “under-dispersion” (not that likely)
 If variance > mean, this leads to “over-dispersion” (happens frequently)

• Problem #2: When there are no 0 values
 Some 0 values are expected from count models, but in some contexts 

yi > 0 always (but subtracting 1 won’t fix it; need to adjust the model)

• Problem #3: When there are too many 0 values
 Some 0 values are expected from the Poisson and Negative Binomial models 

already, but many times there are even more 0 values observed than that
 To fix it, there are two main options, depending on what you do to the 0’s

• Each of these problems requires a model adjustment to fix it…
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Problem #1: Variance > mean = over-dispersion
• To fix it, we must add another parameter that allows the variance to 

exceed the mean… becomes a Negative Binomial distribution
 Says residuals are a mixture of Poisson and gamma distributions, 

such that 𝜆𝜆 itself is a random variable with a gamma distribution
 So expected mean is still given by 𝜆𝜆, but the variance will differ from Poisson

• Model: Log[E yi ] = Log(μi) = β0 + β1Xi + β2Zi + eiG

• Negative Binomial PDF with a new 𝑘𝑘 dispersion parameter is now:

 Prob yi = y|β0,β1,β2 =
Γ y+1𝑘𝑘

Γ y+1 ∗Γ 1
𝑘𝑘
∗ 𝑘𝑘μi y

1+𝑘𝑘μi
y+1𝑘𝑘

 𝒌𝒌 is dispersion, such that Var yi = μi + 𝒌𝒌μi2

 Can test whether 𝑘𝑘 > 0 via −2LL test, although LL for 𝑘𝑘 = 0 is undefined

• An alternative model with the same idea is the generalized Poisson:
 Mean: 𝜆𝜆

1−𝑘𝑘
, Variance: 𝜇𝜇

1−𝑘𝑘 2, that way LL is defined for 𝑘𝑘 = 0

 Is in SAS FMM (and in GLIMMIX via user-defined functions)

So ≈ Poisson if 𝑘𝑘 = 0

DIST = NEGBIN in SAS;
MENBREG in STATA 

PSQF 7375 Clustered:  Lecture 5 51

GPOISSON
in STATA 



Negative Binomial (NB) = “Stretchy” Poisson…

• Because its 𝑘𝑘 dispersion parameter is fixed to 0, the Poisson model is 
nested within the Negative Binomial model—to test improvement in fit:

• Is −2 𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 > 3.84 for 𝑑𝑑𝑑𝑑 = 1? Then 𝑝𝑝 < .05, keep NB

Mean = 𝜆𝜆
Dispersion = k

Var yi = λ + kλ2

A Negative Binomial 
model can be useful 
for count outcomes 
with extra skewness, 
but that otherwise 
follow a Poisson 
conditional 
distribution.0.00
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Problem #2: There are no 0 values
• “Zero-Altered” or “Zero-Truncated” Poisson or Negative 

Binomial: ZAP/ZANB or ZTP/ZTNB (used in hurdle models)
 Is usual count distribution, just not allowing any 0 values
 Single-level models are in SAS PROC FMM using DIST=TRUNCPOISSON 

for ZTP or DIST=TRUNCNEGBIN for ZTNB
 Single-level TPOISSON (for ZTP) and TNBREG (for ZTNB) in STATA
 Multivariate versions could be fitted in SAS NLMIXED or Mplus, too

• Poisson PDF was:  Prob yi = y|μi = μi
y∗exp −μi

y!

• Zero-Truncated Poisson PDF is: 

 Prob yi = y|μi,yi > 0 = μi
y∗exp −μi

y! 1−exp −μi

 Prob yi = 0 = exp −μi , so Prob yi > 0 = 1 − exp −μi
 Divides by probability of non-0 outcomes so probability still sums to 1
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SAS for Discrete Outcomes
• There are many choices for modeling not-normal discrete outcomes 

(that include integer values only); most use either an identity or log link
• Single-level, univariate generalized models by PROC:

 GENMOD: DIST= (and default link): Binomial (Logit), Poisson (Log), Zero-Inflated 
Poisson (Log), Negative Binomial (Log), Zero-Inflated Negative Binomial (Log)

 FMM: DIST= (and default link): Binomial (Logit), Poisson (Log), Generalized 
Poisson (Log), Truncated Poisson (Log), Negative Binomial (Log), Uniform

• Multilevel or multivariate generalized models through GLIMMIX:
 Binomial (Logit), Poisson (Log), Negative Binomial (Log)
 BYOBS, which allows multivariate models by which you specify DV-specific link 

functions and distributions estimated simultaneously
 User-defined variance functions for special cases (e.g., generalized Poisson)
 NLMIXED can also be used to fit any user-defined model

• Up next: models for skewed continuous outcomes…
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STATA 16 for Discrete Outcomes
• There are many choices for modeling not-normal discrete outcomes 

(that include integer values only); most use either an identity or log link

• Single-level, univariate generalized models:
 glm for multiple options, logit, probit, or cloglog for binary, ologit or oprobit for 

ordinal, poisson or nbreg for counts, and many, many more options

• Multilevel or multivariate generalized models:
 meglm for multiple options, melogit, meprobit, or mecloglog for binary, 

meologit or meoprobit for ordinal, mepoisson or menbreg for counts
 menl can also be used to fit any user-defined model (haven’t tried that yet)

• Up next: models for skewed continuous outcomes…
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Log-Normal Distribution (Link=Identity)

• ei~LogNormal 0,σe2  log of residuals is normal
 Is same as log-transforming your outcome in this case…
 The log link keeps the predicted values positive, but slopes then 

have an exponential (not linear) relation with original outcome
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Log-Normal Distribution (Link=Identity)

• GLIMMIX parameterization gives 𝜇𝜇 (= intercept) and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 
(variance) to convert back into original data as follows:
 Mean Y = exp 𝜇𝜇 ∗ exp(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

 Variance Y = exp 2𝜇𝜇 ∗ exp 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ [exp 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 1]
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Gamma Response Distribution (y>0)

• GLIMMIX parameterization with LINK=LOG gives 𝜇𝜇 (= intercept) 
and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (dispersion) to convert into original data as follows:
 Mean Y = exp 𝜇𝜇 ≈ (shape*scale)
 Variance Y = exp 𝜇𝜇 2 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≈ shape ∗ scale2
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Software for Continuous Outcomes
• There are many choices for modeling not-normal continuous outcomes 

(that can include non-integer values); most use either an identity or log link
• Single-level, univariate generalized models in SAS (not in Mplus):

 GENMOD: DIST= (and default link): Gamma (Inverse), Geometric (Log), Inverse 
Gaussian (Inverse2), Normal (Identity) 

 FMM: DIST= (and default link): Beta (Logit), Betabinomial (Logit), Exponential 
(Log), Gamma (Log), Normal (Identity), Geometric (Log), Inverse Gaussian 
(Inverse2), LogNormal (Identity), TCentral (Identity), Weibull (Log) 

• GLM in STATA has gamma and inverse Gaussian distributions 
(likely many others out there via user-defined routines)

• Multilevel or multivariate generalized models in SAS via GLIMMIX:
 Beta (Logit), Exponential (Log), Gamma (Log), Geometric (Log), Inverse Gaussian 

(Inverse2), Normal (Identity), LogNormal (Identity), TCentral (Identity) 
 BYOBS, which allows multivariate models by which you specify DV-specific link 

functions and distributions estimated simultaneously (e.g., two-part)
 SAS NLMIXED or STATA menl can also be used to fit any user-defined model

• Up next: models for zero-inflated discrete or continuous outcomes…
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Modeling Not-Normal Outcomes
• Previously we examined models for skewed distributions

 Discrete: Poisson, Generalized Poisson, Negative Binomial (NB)
 Continuous: Log-Normal, Gamma (also Beta from before)

• Now we will see additions to these models when the outcome 
also has a pile of 0’s: Model becomes  If 0 and How Much
 These models will differ in how they define the “If 0” part
 Discrete  Zero-Inflated: Poisson, Generalized Poisson, or NB; 

Hurdle: Poisson, Generalized Poisson, or NB
 Continuous  Two-Part (with normal, lognormal, gamma for how much)
 Many of these can be estimated directly in Mplus or SAS GLIMMIX, 

but some will need to be programmed in SAS GLIMMIX or NLMIXED
 More options for single-level data in SAS PROC FMM and in STATA
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Problem #3: Too many 0 values, Option #1
• “Zero-Inflated” Poisson (DIST=ZIP) or NB(DIST=ZINB) in SAS 

GENMOD or Mplus; ZIP/ZI Generalized Poisson (ZIGP) in STATA
 Distinguishes two kinds of 0 values: expected/structural and inflated

(“structural”) through a mixture of distributions (Bernoulli + Poisson/NB)
 Creates two submodels to predict “if extra 0” and “if not, how much”?

 Does not readily map onto most hypotheses (in my opinion)
 But a ZIP example would look like this… (ZINB would add k dispersion, too)

• Submodel 1: Logit[𝑝𝑝 yi = extra 0 ] = β01 + β11Xi + β21Zi
 Predict being an extra 0 using Link = Logit, Distribution = Bernoulli
 Don’t have to specify predictors for this part, can simply allow an intercept

(but need ZEROMODEL option to include predictors in SAS GENMOD)

• Submodel 2: Log[E yi ] = β02 + β12Xi + β22Zi
 Predict rest of counts (including 0’s) using Link = Log, Distribution = Poisson 
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Example of Zero-Inflated Outcomes
Zero-inflated distributions 
have extra “structural 
zeros” not expected from 
Poisson or NB (“stretched 
Poisson”) distributions.

This can be tricky to 
estimate and interpret 
because the model 
distinguishes between 
kinds of zeros rather than 
zero or not...

Image borrowed 
from Atkins & 
Gallop, 2007
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Problem #3: Too many 0 values, Option #1
• The Zero-Inflated models get put back together as follows:
 ωi is the predicted probability of being an extra 0, from:

ωi =
exp Logit[𝑝𝑝 yi = extra 0 ]

1 + exp Logit[𝑝𝑝 yi = extra 0 ]
 μi is the predicted count for the rest of the distribution, from:

μi = exp Log yi

 ZIP: Mean original yi = 1 −ωi μi
 ZIP: Variance original yi = μi + ωi

1−ωi
μi2

 ZINB: Mean original yi = 1 −ωi μi

 ZINB: Variance original yi = μi + ωi
1−ωi

+ k
1−ωi

μi2
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Problem #3: Too many 0 values, Option #2
• “Hurdle” models for Poisson or Negative Binomial

 PH or NBH: Explicitly separates 0 from non-0 values through a mixture of 
distributions (Bernoulli + Zero-Altered Poisson/NB)

 Creates two submodels to predict “if any 0” and “if not 0, how much”?
 Easier to think about in terms of prediction (in my opinion)

• Submodel 1: Logit[𝑝𝑝 yi = 0 ] = β01 + β11Xi + β21Zi
 Predict being any 0 using Link = Logit, Distribution = Bernoulli
 Don’t have to specify predictors for this part, can simply allow it to exist

• Submodel 2: Log[E(yi)|yi > 0] = β02 + β12Xi + β22Zi
 Predict rest of positive counts using Link = Log, Distribution = ZAP/ZANB 

• These models are not readily available in SAS, but NBH is in Mplus
 Could be fit in SAS NLMIXED (as could ZIP/ZINB)
 Can also split DV into each submodel and estimate separately (in STATA)
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Two-Part Models for Continuous Outcomes
• A two-part model is an analog to hurdle models for zero-inflated count 

outcomes (and could be used with count outcomes, too)
 Explicitly separates 0 from non-0 values through a mixture of distributions 

(Bernoulli + Normal or LogNormal or Gamma)
 Creates two submodels to predict “if any not 0” and “if not 0, how much”?

 Easier to think about in terms of prediction (in my opinion)

• Submodel 1: Logit[𝑝𝑝 yi > 0 ] = β01 + β11Xi + β21Zi
 Predict being any not 0 using Link = Logit, Distribution = Bernoulli
 Usually do specify predictors for this part

• Submodel 2: yi|yi > 0 = β02 + β11Xi + β21Zi
 Predict rest of positive amount using Link = Identity, Distribution = Normal 

or Log-Normal (often rest of distribution is skewed, so log works better)

• Two-part is in Mplus, but parts can be estimated separately in SAS/STATA
 Logit of 0/1 for “if part” + log-transformed DV for “how much” part
 Is related to “tobit” models for censored outcomes (for floor/ceiling effects)
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Pile of 0’s Taxonomy
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• What kind of amount do you want to predict?
 Discrete: Count  Poisson
 Stretchy Count  Generalized Poisson or Negative Binomial
 Continuous: Normal, Log-Normal, Gamma

• What kind of If 0 do you want to predict?
 Discrete: Extra “structural” 0 beyond predicted by amount?
 Zero-inflated Poisson or Zero-inflated Negative Binomial

 Discrete: Any 0 at all?
 Hurdle Poisson or Hurdle Negative Binomial

 Continuous: Any 0 at all?
 Two-Part with Continuous Amount (see above)

 Note: Given the same amount distribution, these alternative ways 
of predicting 0 will result in the same empty model fit



Comparing Generalized Models
• Whether or not a dispersion parameter is needed (to distinguish 

Poisson and NB) can be answered via a likelihood ratio test
 For the most fair comparison, keep the linear predictor model the same

• Whether or not a zero-inflation model is needed should, in theory, 
also be answerable via a likelihood ratio test…
 But people disagree about this 
 Problem? Zero-inflation probability can’t be negative, so is bounded at 0
 Other tests have been proposed (e.g., Vuong test—see SAS macro online)
 Can always check AIC and BIC (smaller is better)

• In general, models with the same distribution and different links can 
be compared via AIC and BIC, but one cannot use AIC and BIC to 
compare across alternative distributions (e.g., normal or not?)
 Log-Likelihoods are not on the same scale due to using different PDFs
 You can compute predicted values under different models to see how 

reasonably they approximate the data for some unofficial guidance
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Generalized MLM: Summary
• There are many options for “amount” variables whose 

residuals may not be normally distributed
 Discrete: Poisson, Negative Binomial
 Continuous: Lognormal, Gamma, Beta
 Too many 0’s: Zero-inflated or hurdle for discrete; two-part

• Multivariate and multilevel versions of all the generalized 
models we covered can be estimated…
 But it’s harder to do and takes longer due to numeric integration 

(trying on all combinations of random effects at each iteration) 
 But there are fewer ready-made options for modeling differential 

variance/covariance across DVs (fewer R matrix structures in true ML)

• Program documentation will always be your friend to 
determine exactly what a given model is doing!
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