Interactions involving Categorical Predictors

- Topics (still in GLM for now):
 - Fo CLASS or not to CLASS: Manual vs. program-created differences among groups
 - > Interactions of continuous and categorical predictors
 - Interactions among categorical predictors

Categorical Predictors (3+ Groups)

- Two alternatives for how to include grouping predictors
- 1. Manually create and include dummy-coded group contrasts
 - Need g-1 contrasts for g groups, added all at once, treated as continuous (WITH in SPSS, by default in SAS, c. in STATA)
 - Corresponds more directly to linear model representation
 - > Can be easier to set own reference group and contrasts of interest

2. Let the program create and include group contrasts for you

- > **Treated as categorical**: BY in SPSS, CLASS in SAS, i. in STATA
 - SPSS and SAS: reference = highest/last group; STATA: reference = lowest/first group
- Can be more convenient if you have many groups, want many contrasts, or have interactions among categorical predictors
- Program marginalizes over main effects when estimating other effects

Categorical Predictors Treated as **Continuous**

- Model: $y_i = \beta_0 + \beta_1 d1_i + \beta_2 d2_i + \beta_3 d3_i + e_i$
 - "group" variable: Control=0, Treat1=1, Treat2=2, Treat3=3
 - New variables $d1=0, 1, 0, 0 \rightarrow$ difference between Control and T1 to be created $d2=0, 0, 1, 0 \rightarrow$ difference between Control and T2 for the model: $d3=0, 0, 0, 1 \rightarrow$ difference between Control and T3
- How does the model give us all possible group differences?
 By determining each group's mean, and then the difference...

Control Mean	Treatment 1	Treatment 2	Treatment 3
(Reference)	Mean	Mean	Mean
β ₀	$\beta_0 + \beta_1 d1_i$	$\beta_0 + \beta_2 d2_i$	$\beta_0 + \beta_3 d3_i$

 The model for the 4 groups directly provides 3 differences (control vs. each treatment), and indirectly provides another 3 differences (differences between treatments)

Categorical Predictors Treated as **Continuous**

• Model: $y_i = \beta_0 + \beta_1 d1_i + \beta_2 d2_i + \beta_3 d3_i + e_i$

	Control Mean (Reference)	Treatment 1 Mean	Treatment 2 Mean	Treatment 3 Mean
	β ₀	$\beta_0 + \beta_1 d1_i$	$\beta_0 + \beta_2 d2_i$	$\beta_0 + \beta_3 d3_i$
		<u>Alt Group</u>	<u>Ref Group</u>	<u>Difference</u>
• Co	ontrol vs. T1	$= (\beta_0 + \beta_1) -$	- (β ₀)	$= \beta_1$
• Co	ontrol vs. T2	$= (\beta_0 + \beta_2) -$	- (β ₀)	$= \beta_2$
• Co	ontrol vs. T3	$= (\beta_0 + \beta_3) -$	- (β ₀)	$= \beta_3$
• T1	l vs. T2 =	$(\beta_0+\beta_2)$ –	- $(\beta_0 + \beta_1)$	$= \beta_2 - \beta_1$
• T1	l vs. T3 =	$(\beta_0+\beta_3)$ -	- $(\beta_0 + \beta_1)$	$= \beta_3 - \beta_1$
• T2	2 vs. T3 =	$(\beta_0+\beta_3)$ –	- $(\beta_0 + \beta_2)$	$=\beta_3-\beta_2$

Main effects with manual dummy codes

• Control vs. T1 = $(\beta_0 + \beta_1) - (\beta_0)$	$\frac{\text{Difference}}{= \beta_1}$	Note the order of the equations: the reference group mean
 Control vs. T2 = (β₀+β₂) - (β₀) Control vs. T3 = (β₀+β₃) - (β₀) 	$= \beta_2$ $= \beta_3$	<i>is subtracted from</i> the alternative group mean.
• T1 vs. T2 = $(\beta_0 + \beta_2) - (\beta_0 + \beta_1)$ • T1 vs. T3 = $(\beta_0 + \beta_3) - (\beta_0 + \beta_1)$ • T2 vs. T3 = $(\beta_0 + \beta_3) - (\beta_0 + \beta_2)$ TITLE "Manual Contrasts for 4-Gr PROC MIXED DATA=dataname METHOD= MODEL y = d1 d2 d3 / SOLUTION; CONTRAST "Omnibus df=3 main effe	REML;	In SAS ESTIMATE statements (or SPSS TEST or STATA LINCOM), the variables refer to their betas; the numbers refer to the operations of their betas.
ESTIMATE "T2 Mean" intercep ESTIMATE "T3 Mean" intercep ESTIMATE "Control vs. T1"	t 1 d1 1 d2 0 0 t 1 d1 0 d2 1 0 t 1 d1 0 d2 0 0 d1 1 d2 0 d3	 13 0; 13 0; 13 1; 14 Intercepts are used <u>only</u> 15 in predicted values.
ESTIMATE "Control vs. T3" ESTIMATE "T1 vs. T2"	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 Positive values indicate addition; negative values indicate subtraction.

PSQF 7375 Clustered: Lecture 2c

LINCOMs with manual dummy codes

	Alt Group Ref Group	<u>Difference</u>	Note the order of the equations:
Control vs. T1 =	$= (\beta_0 + \beta_1) - (\beta_0)$	$= \beta_1$	the reference group mean
Control vs. T2 =	$= (\beta_0 + \beta_2) - (\beta_0)$	$=\beta_2$	<i>is subtracted from</i> the alternative group mean.
• Control vs. T3 =	$= (\beta_0 + \beta_3) - (\beta_0)$	$= \beta_3$	the alternative group mean.
• T1 vs. T2 =	$(\beta_0+\beta_2) - (\beta_0+\beta_1)$	$= \beta_2 - \beta_1$	In SAS ESTIMATE statements (or
• T1 vs. T3 =	$(\beta_0+\beta_3) - (\beta_0+\beta_1)$	$= \beta_3 - \beta_1$	SPSS TEST or STATA LINCOM), the variables refer to their fixed
• T2 vs. T3 =	$(\beta_0+\beta_3) - (\beta_0+\beta_2)$	$= \beta_3 - \beta_2$	effects; the numbers refer to the
			operations of their fixed effects.
display as result "Manual Contrasts for 4-Group Diffs"			

display as result "Manual Contrasts for 4-Group Diffs"				
<pre>mixed y c.d1 c.d2 c.d3, /// variance reml dfmethod(residual),</pre>				
test (c.d1=0) (c.d2=0) (c.d3=0), small // Omnibus F-test df=3 group main effect				
lincom _cons*1 + c.d1*0 + c.d2*0 + c.d3*0, small // Control Mean				
lincom _cons*1 + c.d1*1 + c.d2*0 + c.d3*0, small // T1 Mean				
lincom _cons*1 + c.d1*0 + c.d2*1 + c.d3*0, small // T2 Mean				
lincom _cons*1 + c.d1*0 + c.d2*0 + c.d3*1, small // T3 Mean				
lincom c.dl*1 + c.d2*0 + c.d3*0, small // Control vs T1				
lincom c.dl*0 + c.d2*1 + c.d3*0, small // Control vs T2				
lincom c.d1*0 + c.d2*0 + c.d3*1, small // Control vs T3				
lincom c.dl*-1 + c.d2*1 + c.d3*0, small // T1 vs T2				
lincom c.d1*-1 + c.d2*0 + c.d3*1, small // T1 vs T3				
lincom c.d1*0 + c.d2*-1 + c.d3*1, small // T2 vs T3				

Interactions with manual dummy codes

- When using manual dummy-codes for group contrasts treated as continuous, any interactions have to be specified with **each** contrast
- For example, adding an interaction of group with age (0=85):

$$y_{i} = \beta_{0} + \beta_{1}(d1_{i}) + \beta_{2}(d2_{i}) + \beta_{3}(d3_{i}) + \beta_{4}(Age_{i} - 85) + \beta_{5}(d1_{i})(Age_{i} - 85) + \beta_{6}(d2_{i})(Age_{i} - 85) + \beta_{7}(d3_{i})(Age_{i} - 85) + e_{i}$$

```
TITLE "Group by Age for 4-Group Variable Treated as Continuous";
PROC MIXED DATA=dataname METHOD=REML;
MODEL y = d1 d2 d3 age d1*age d2*age d3*age / SOLUTION;
CONTRAST "Omnibus df=3 SIMPLE effect F-test" d1 1, d2 1, d3 1;
CONTRAST "Omnibus df=3 interaction F-test"
                                             d1*age 1, d2*age 1, d3*age 1;
                                                           0 d3*age
ESTIMATE "Age Slope for Control"
                                 age 1
                                        d1*age
                                                 0 d2*age
                                                                     0;
ESTIMATE "Age Slope for T1"
                                        d1*aqe
                                                1 d2*age
                                                           0 d3*age
                                 age 1
                                                                     0;
                                                           1 d3*age
ESTIMATE "Age Slope for T2"
                                        d1*aqe
                                                0 d2*aqe
                                 age 1
                                                                     0;
ESTIMATE "Age Slope for T3"
                                        d1*aqe
                                                0 d2*aqe
                                                           0 d3*age
                                 age 1
                                                                     1;
ESTIMATE "Age Slope: Control vs.
                                                1 d2*age
                                                           0 d3*age
                                 T1"
                                        d1*aqe
                                                                     0;
                                        d1*age 0 d2*age
ESTIMATE "Age Slope: Control vs.
                                 T2"
                                                           1 d3*age
                                                                     0;
                                                 0 d2*age
                                                           0 d3*aqe
ESTIMATE "Age Slope: Control vs.
                                 T3"
                                        d1*age
                                                                     1;
ESTIMATE "Age Slope: T1 vs. T2"
                                        d1*aqe -1 d2*aqe
                                                           1 d3*age
                                                                     0;
ESTIMATE "Age Slope: T1 vs. T3"
                                        d1*age -1 d2*age
                                                           0 d3*age
                                                                     1;
ESTIMATE "Age Slope: T2 vs. T3"
                                        d1*aqe
                                                 0 d2*age
                                                          -1 d3*age
                                                                     1;
```

Interactions with manual dummy codes

- When using manual dummy-codes for group contrasts treated as continuous, any interactions have to be specified with **each** contrast
- For example, adding an interaction of group with age (0=85):

$$y_{i} = \beta_{0} + \beta_{1}(d1_{i}) + \beta_{2}(d2_{i}) + \beta_{3}(d3_{i}) + \beta_{4}(Age_{i} - 85) + \beta_{5}(d1_{i})(Age_{i} - 85) + \beta_{6}(d2_{i})(Age_{i} - 85) + \beta_{7}(d3_{i})(Age_{i} - 85) + e_{i}$$

display as result "Group by Age for 4-Group Variable Treated as Continuous" mixed y c.dl c.d2 c.d3 c.age c.d1#c.age c.d2#c.age c.d3#c.age,

/// variance reml dfmethod(residual),

```
test (c.d1=0) (c.d2=0) (c.d3=0), small // Omnibus df=3 simple effect F-test
test (c.d1#c.age=0) (c.d2#c.age=0) (c.d3#c.age=0), small // df=3 interaction F-test
lincom c.age*1 c.d1#c.age*0 + c.d2#c.age*0 + c.d3#c.age*0, small // Age Slope for Cont
lincom c.age*1 c.d1#c.age*1 + c.d2#c.age*0 + c.d3#c.age*0, small // Age Slope for T1
lincom c.age*1 c.d1#c.age*0 + c.d2#c.age*1 + c.d3#c.age*0, small // Age Slope for T2
lincom c.age*1 c.d1#c.age*0 + c.d2#c.age*0 + c.d3#c.age*1, small // Age Slope for T3
```

```
lincom c.d1#c.age*1
                     + c.d2#c.aqe*0
                                     + c.d3#c.age*0, small // Age Slope: Cont vs T1
lincom c.d1#c.age*0
                     + c.d2#c.age*1
                                     + c.d3#c.age*0, small // Age Slope: Cont vs T2
lincom c.d1#c.age*0
                     + c.d2#c.age*0
                                     + c.d3#c.age*1, small // Age Slope: Cont vs T3
lincom
      c.dl#c.age*-1 + c.d2#c.age*1
                                     + c.d3#c.age*0, small // Age Slope: T1 vs T2
       c.d1#c.age*-1 + c.d2#c.age*0
                                     + c.d3#c.age*1, small // Age Slope: T1 vs T3
lincom
lincom
       c.d1#c.age*0
                     + c.d2#c.age*-1
                                     + c.d3#c.age*1, small // Age Slope: T2 vs T3
```

Using BY/CLASS/i. statements instead

- Designate as "categorical" predictor in program syntax
 - If you let SAS/SPSS do the dummy coding via CLASS/BY, then the highest/last group is default reference
 - In SAS 9.4 you can change reference group: REF='level' | FIRST | LAST but it changes that group to be last in the data (\rightarrow confusing)
 - "Type III test of fixed effects" provide omnibus tests by default
 - LSMEANS/EMMEANS can be used to get all means and comparisons without specifying each individual contrast
 - If you let STATA do the dummy coding via i.group, then the lowest/first group is default reference
 - Can change reference group, e.g., last = ref \rightarrow ib(last).group
 - CONTRAST used to get omnibus tests (not provided by default)
 - MARGINS can be used to get all means and comparisons with much less code than describing each individual contrast
 - ▹ No such thing as "categorical" predictors in Mplus ☺
 - You must create contrasts manually for all grouping variables

SAS Main effects of **Categorical** Predictors

TITLE "Program-Created Contrasts for 4-Group Diffs via CLASS";
PROC MIXED DATA=work.dataname METHOD=REML;
CLASS group;
MODEL y = group / SOLUTION;
LSMEANS group / DIFF=ALL;
CLASS tatement means "make
my dummy codes for me"

The <u>LSMEANS line</u> above gives you ALL of the following... note that one value has to be given for each possible level of the categorical predictor in *data* order

ESTIMATE "Control Mean" intercept 1 group 1 0 0 0; When predicting "T1 Mean" intercept 1 group 0 1 0 0; ESTIMATE intercepts, 1 means ESTIMATE "T2 Mean" intercept 1 group 0 0 1 0; intercept 1 group 0 0 0 1; ESTIMATE "T3 Mean" "for that group only" ESTIMATE "Control vs. T1" group -1 1 0 0; When predicting group ESTIMATE "Control vs. T2" group -1 0 1 0; ESTIMATE "Control vs. T3" group -1 0 0 1; differences, contrasts must ESTIMATE "T1 vs. T2" group 0 -1 10; sum to 0; here -1 = ref, 1group 0 - 1 0ESTIMATE "T1 vs. T3" 1; ESTIMATE "T2 vs. T3" group $0 \quad 0 \quad -1$ 1; = alt, and 0 = ignore CONTRAST "Omnibus df=3 main effect F-test" group $-1 \ 1 \ 0 \ 0$, group $-1 \ 0 \ 1 \ 0$, **CLASS** also gives this contrast by default group -1 0 0 1;

Can also make up whatever contrasts you feel like using DIVISOR option:

```
ESTIMATE "Mean of Treat groups" intercept 1 group 0 1 1 1 / DIVISOR=3;
ESTIMATE "Control vs. Mean of Treat groups" group -3 1 1 1 / DIVISOR=3;
RUN;
PSOF 7375 Clustered: Lecture 2c
```

STATA Main effects of **Categorical** Predictors

display as result "Program-Created Contrasts for 4-Group Diffs"
display as result "i. means make my dummy codes for me (factor var)"
mixed y ib(last).group, /// variance reml dfmethod(residual),
contrast i.group, small // Omnibus F-test
margins i.group, pwcompare(pveffects) df(#)// Means per group and mean diffs

The <u>MARGINS line</u> above gives you ALL of the following... note that one value has to be given for each possible level of the categorical predictor in *data* order

<pre>lincom _cons*1 +</pre>	1.group*1 + 2.	.group*0 + 3	.group*0 +	4.group*0, s	small //	Control Mean
<pre>lincom _cons*1 +</pre>	1.group*0 + 2.	.group*1 + 3	.group*0 +	4.group*0, s	small //	T1 Mean
<pre>lincom _cons*1 +</pre>	1.group*0 + 2.	.group*0 + 3	.group*1 +	4.group*0, s	small //	T2 Mean
lincom _cons*1 +	1.group*0 + 2.	.group*0 + 3	.group*3 +	4.group*1, s	small //	T3 Mean
lincom	1.group*-1 + 2	2.group*1 +	- 3.group*0	+ 4.group*(), small	// Control vs T1
lincom	1.group*-1 + 2	2.group*0 +	- 3.group*1	+ 4.group*(), small	// Control vs T2
lincom	1.group*-1 + 2	2.group*0 +	- 3.group*0	+ 4.group*1	, small	// Control vs T3
lincom	1.group*0 + 2	2.group*-1 +	- 3.group*1	+ 4.group*(), small	// T1 vs T2
lincom	1.group*0 + 2	2.group*-1 +	- 3.group*0	+ 4.group*1	, small	// T1 vs T3
lincom	1.group*0 + 2	2.group*0 +	- 3.group*-1	+ 4.group*1	, small	// T2 vs T3

Can also make up whatever contrasts you feel like (no DIVISOR option?) :

SAS Interactions with **Categorical** Predictors

• For example, adding an interaction of group with age (0=85):

```
TITLE "Group by Age for 4-Group Variable Modeled as Categorical";
PROC MIXED DATA=dataname METHOD=REML;
CLASS group;
MODEL y = group age group*age / SOLUTION;
```

* To explain interaction as how group diffs depend on age: LSMEANS group / DIFF=ALL AT (age)=(-5); * group intercept diffs at age 80; LSMEANS group / DIFF=ALL AT (age)=(0); * group intercept diffs at age 85; LSMEANS group / DIFF=ALL AT (age)=(5); * group intercept diffs at age 90;

* To explain interaction as how age slope depends on group: ESTIMATE "Age Slope for Control" age 1 group*age 1 0 0 0; ESTIMATE "Age Slope for T1" age 1 group*age 0 1 0 0; ESTIMATE "Age Slope for T2" age 1 group*age 0 0 1 0; ESTIMATE "Age Slope for T3" age 1 group*age 0 0 0 1;

```
ESTIMATE "Age Slope: Control vs. T1"group*age -1 1 0 0;ESTIMATE "Age Slope: Control vs. T2"group*age -1 0 1 0;ESTIMATE "Age Slope: Control vs. T3"group*age -1 0 1 0;ESTIMATE "Age Slope: T1 vs. T2"group*age 0 -1 1 0;ESTIMATE "Age Slope: T1 vs. T2"group*age 0 -1 1 0;ESTIMATE "Age Slope: T1 vs. T3"group*age 0 -1 1 0;ESTIMATE "Age Slope: T2 vs. T3"group*age 0 -1 1;
```

Can also make up whatever contrasts you feel like using DIVISOR option:

```
ESTIMATE "Mean Age Slope in Treat groups" age 1 group*age 0 1 1 1 / DIVISOR=3;
ESTIMATE "Age Slope: Control vs. Mean of Treat" group*age -3 1 1 1 / DIVISOR=3;
RUN;
```

STATA Interactions with **Categorical** Predictors

• For example, adding an interaction of group with age (0=85):

```
display as result "Group by Age for 4-Group Variable Treated as Continuous"
mixed y ib(last).group c.age ib(last).group#c.age,
```

```
/// variance reml dfmethod(residual),
contrast i.group, small // Omnibus df=3 simple effect F-test
contrast i.group#c.age, small // df=3 interaction F-test
lincom c.age*1 i1.group#c.age*1, small // Age Slope for Cont
lincom c.age*1 i2.group#c.age*1, small // Age Slope for T1
lincom c.age*1 i3.group#c.age*1, small // Age Slope for T2
lincom c.age*1 i4.group#c.age*1, small // Age Slope for T3
```

```
lincom i1.group#c.age*-1 + i2.group#c.age*1, small // Age Slope: Cont vs T1
lincom i1.group#c.age*-1 + i3.group#c.age*1, small // Age Slope: Cont vs T2
lincom i1.group#c.age*-1 + i4.group#c.age*1, small // Age Slope: Cont vs T3
lincom i2.group#c.age*-1 + i3.group#c.age*1, small // Age Slope: T1 vs T2
lincom i2.group#c.age*-1 + i4.group#c.age*1, small // Age Slope: T1 vs T3
lincom i3.group#c.age*-1 + i4.group#c.age*1, small // Age Slope: T2 vs T3
```

Can also make up whatever contrasts you feel like (no DIVISOR option?) :

Categorical Predictors = Marginal Effects

• Letting the program build contrasts for categorical predictors (instead of creating manual dummy codes) does the following:

> Allows LSMEANS/EMMEANS/MARGINS (for cell means and differences)

- > Provides omnibus (multiple df) multivariate Wald tests for group effects
- Marginalizes the group effect across interacting predictors

 Image: omnibus F-tests represent marginal main effects (instead of simple)

Type 3 Tests of Fixed Effects	Interpretation if sexMW is "continuous" (no CLASS/i)	Interpretation if sexMW is "categorical" on CLASS/i
sexMW	Marginal diff across groups	Marginal diff across groups
group	Group diff if sexMW=0	Marginal diff across sexes
group*sexMW	Interaction	Interaction

Interactions Among **Categorical** Predictors

- By default (i.e., as in "ANOVA"):
 - Model includes all possible higher-order interactions among categorical predictors
 - Software does this for you; nonsignificant interactions usually still are kept in the model (but only significant interactions are interpreted)
 - This is very different from typical practice in "regression"!
 - > Omnibus **marginal** main effects are provided by default
 - i.e., what we ask for via CONTRAST using manual group contrasts
 - But are **basically useless** if given significant interactions
 - > Omnibus interaction effects are provided
 - i.e., what we ask for via CONTRAST using manual group contrasts
 - But are **basically useless** in actually understanding the interaction
- Let's see how to make software give us more useful info...