Example 4: Cross-Classified Models for Students Nested within Primary and Secondary Schools (as estimated using restricted maximum likelihood in SAS MIXED and STATA MIXED, although note that the results in STATA do not match exactly)

Crossed random effects models (also known as cross-classified models) are useful in situations in which people belong to more than one cluster (but the kinds of clusters are not nested). A simulated data example is shown below from Hox (2012) chapter 7, in which kids are nested within primary schools AND within secondary schools, but primary and secondary schools are <u>crossed</u> with each other at level 2 (1000 kids, 30 secondary schools, 50 primary schools).

SAS Syntax and Output for Data Import, Manipulation, and Description:

```
* Define global variable for file location to be replaced in code below;
* \\Client\ precedes actual path when using UIowa Virtual Desktop;
%LET filesave=C:\Dropbox\19 PSQF7375 Clustered\PSQF7375 Clustered Example4;
LIBNAME example "&filesave.";
* Open output directory to save results to;
ODS RTF FILE="&filesave.\SAS Example4 Output.rtf" STYLE=HTMLBlue STARTPAGE=NO;
* Import example 4 SAS dataset;
DATA work.pupcross; SET example.pupcross;
     LABEL pupSES="Student SES"
           achiev="Student Achievement in Secondary"; RUN;
* Getting means per primary school and secondary school of kid variables;
PROC SORT DATA=work.pupcross; BY pschool pdenom; RUN;
PROC MEANS NOPRINT DATA=work.pupcross; BY pschool pdenom; VAR pupSES achiev;
     OUTPUT OUT=work.Primary MEAN (pupSES achiev)=pmSES pmAchiev; RUN;
PROC SORT DATA=work.pupcross; BY sschool sdenom; RUN;
PROC MEANS NOPRINT DATA=work.pupcross; BY sschool sdenom; VAR pupSES achiev;
     OUTPUT OUT=work.Secondary MEAN (pupSES achiev)=smSES smAchiev; RUN;
* Label new variables;
DATA work.Primary; SET work.Primary;
      LABEL pmSES= "Primary School Mean Student SES"
            pmAchiev= "Primary School Mean Student Achievement";
     DROP _TYPE _ FREQ ; RUN ;
DATA work.Secondary; SET work.Secondary;
      LABEL smSES=
                     "Secondary School Mean Student SES"
           smAchiev= "Secondary School Mean Student Achievement";
     DROP _TYPE _ FREQ ; RUN ;
* Merge back into individual data;
PROC SORT DATA=work.pupcross; BY pschool; RUN;
DATA work.pupcross; MERGE work.pupcross work.Primary; BY pschool; RUN;
PROC SORT DATA=work.pupcross; BY sschool; RUN;
DATA work.pupcross; MERGE work.pupcross work.Secondary; BY sschool; RUN;
* Center predictors;
DATA work.pupcross; SET work.pupcross;
      pupSES4 = pupSES - 4; LABEL pupSES4= "Student SES (0=4)";
      pmSES4 = pmSES - 4; LABEL pmSES4= "Primary Mean Student SES (0=4)";
smSES4 = smSES - 4; LABEL smSES4= "Secondary Mean Student SES (0=4)"; RUN;
TITLE "SAS Primary School Descriptives";
PROC MEANS NDEC=2 DATA=work.Primary;
     VAR pdenom pmSES pmAchiev; RUN;
TITLE "SAS Secondary School Descriptives";
PROC MEANS NDEC=2 DATA=work.Secondary;
     VAR sdenom smSES smAchiev; RUN;
TITLE "SAS Student Descriptives";
PROC MEANS NDEC=2 DATA=work.pupcross;
     VAR pupSES achiev; RUN;
```

SAS Primary	School Descriptives					
Variable	Label	Ν	Mean	Std Dev	Minimum	Maximum
PDENOM	primary school denominational?	50	0.60	0.49	0.00	1.00
pmSES	Primary Mean Student SES	50	4.10	0.28	3.47	4.73
pmAchiev	Primary Mean Student Achievement	50	6.36	0.45	5.28	7.55
SAS Seconda	ry School Descriptives					
Variable	Label	Ν	Mean	Std Dev	Minimum	Maximum
SDENOM	secondary school denominational?	33	0.67	0.48	0.00	1.00
smSES	Secondary Mean Student SES	33	4.14	0.34	3.47	5.00
smAchiev	Secondary Mean Student Achievement	33	6.32	0.32	5.54	6.91
SAS Student	Descriptives					
Variable	Label	Ν	Mean	Std Dev	Minimum	Maximum
PUPSES	Student SES	1000	4.10	1.40	1.00	6.00
ACHIEV	Student Achievement in Secondary	1000	6.34	0.87	3.90	9.90

STATA Syntax for Data Import, Manipulation, and Description:

```
// Define global variable for file location to be replaced in code below
// \\Client\ precedes actual path when using UIowa Virtual Desktop
global filesave "C:\Dropbox\19 PSQF7375 Clustered\PSQF7375 Clustered Example4"
// Import example stata data file
use "$filesave\pupcross.dta", clear
// Save results to separate file
log using $filesave\PSQF7375 Clustered Example4 STATA Output.log, replace
// Get means per primary school and secondary school of kid predictor
egen pmSES = mean(pupses), by (pschool)
egen pmAchiev = mean(achiev), by (pschool)
label variable pmSES "Primary Mean Student SES"
label variable pmAchiev "Primary Mean Student Achievement"
egen smSES = mean(pupses), by (sschool)
egen smAchiev = mean(achiev), by (sschool)
label variable smSES
                     "Secondary Mean Student SES"
label variable smAchiev "Secondary Mean Student Achievement"
// Center and label predictors
gen pupSES4 = pupses - 4
gen pmSES4 = pmSES - 4
gen smSES4 = smSES - 4
label variable pupSES4 "Student SES (0=4)"
label variable pmSES4 "Primary Mean Student SES (0=4)"
label variable smSES4 "Secondary Mean Student SES (0=4)"
display as result "STATA Primary School Descriptives"
preserve // Save for later use, then compute school-level dataset
collapse pdenom pmSES pmAchiev, by (pschool)
format pdenom pmSES pmAchiev %4.2f
summarize pdenom pmSES pmAchiev, format
restore // Go back to student-level dataset
display as result "STATA Secondary School Descriptives"
preserve // Save for later use, then compute school-level dataset
collapse sdenom smSES smAchiev, by(sschool)
        sdenom smSES smAchiev %4.2f
format
summarize sdenom smSES smAchiev, format
restore
        // Go back to student-level dataset
display as result "STATA Student Descriptives"
format
       pupSES achiev %4.2f
summarize pupSES achiev, format
```

Syntax and SAS Output for Empty Means Models 1a and 1b

We can start with a basic model in which we assume that academic achievement for child k who went to primary school p and secondary school s can be modeled by this equation: Achiev_{kps} = $\gamma_{000} + U_{00s} + e_{kps}$

in which achievement in 9th grade (i.e., in secondary school) is expected to be correlated among kids from the same secondary school (i.e., a random intercept at level 2 for secondary school).

TITLE "SAS PROC MIXED CLAS MODE RANI ODS RUN; TITL	Empty Mean DATA=work SS pupil ps EL achiev = DOM INTERCE OUTPUT Inf E;	ns Model 1a .pupcross CC school sscho - / SOLUTI :PT / SUBJEC :oCrit=FitNe	: Second OVTEST N DOl; CON DDFM: CT=sschoo ested; *	ary Random OCLPRINT I =Satterthw ol TYPE=UN Save outp	Intercept C NAMELEN= aite; ; * Level ut for LRT	: Only"; =100 METHO 2 variance ;	D=REML; e for secor	ndary school;
display as mixed achi est	result "S" ev , /// sschool: dfmethod(s imates sto:	TATA Empty 1 , variance satterthwait re FitNestee	Means Mo e reml c te) dfta d // Sa	del 1a: Se ovariance(ble(pvalue ve for LRI	condary Ra un) ///	ndom Inte	rcept Only	"
	Dimensions							
Covariance F	Parameters	2						
Columns in >	<	1						
Columns in Z	Z Per Subjec	t 1						
Subjects	.	30	# of sec	ondary scho	01S			
Max Obs Per	Subject	48	# kids p	er secondar	y school			
	Covar	iance Parame	ter Estim	ates				
			Standard	l Z				
Cov Parm	Subject	Estimate	Error	. Value	Pr Z			
UN(1,1)	SSCHOOL	0.07206	0.02449	2.94	0.0016	Secondary	y Random Int	ercept Variance
Residual		0.6833	0.03102	22.03	<.0001	Residual	Pupil (Stud	lent) Variance
Null Model DF CH 1	l Likelihood ni-Square 53.70	Ratio Test Pr > ChiSo <.000	q This varia	is the LRT fo ince across se	or the random condary scho	intercept ols.		
		Informa [.]	tion Crit	eria				
Neg2LogLike	Parms	AIC	AICC	HQIC	BIC	CAIC		
2504.7	2	2508.7	2508.7	2509.6	2511.5	2513.5		
	Solu	tion for Fix Standard	ed Effect	S				
Effect	Estimate	Error	DF	t Value	Pr > t			
Intercept	6.3386	0.05583	29	113.53	<.0001	Grand Mean	of Secondar	y Mean Achievement

The two-level ICC = 0.07206 / (0.07206 + 0.6883) = .0948, which is the correlation of students from the same secondary school, assuming that students are otherwise independent. However, because primary schools may have lasting effects, it might make sense to also allow a random intercept for primary school that is <u>crossed</u> at level 2 with the random intercept for secondary school: Achiev_{kps} = $\gamma_{000} + U_{0p0} + U_{00s} + e_{kps}$

```
TITLE "SAS Empty Means Model 1b: Primary by Secondary School Random Intercepts Crossed";
PROC MIXED DATA=work.pupcross COVTEST NOCLPRINT IC NAMELEN=100 METHOD=REML;
        CLASS pupil pschool sschool;
        MODEL achiev = / SOLUTION DDFM=Satterthwaite OUTPM=PredEmpty;
        RANDOM INTERCEPT / SUBJECT=sschool TYPE=UN; * Level 2 variance for secondary;
        RANDOM INTERCEPT / SUBJECT=pschool TYPE=UN; * Level 2 variance for primary;
        ODS OUTPUT InfoCrit=FitCrossed CovParms=CovEmpty; * Save output for LRT and pseudo-R2;
        RUN; TITLE;
```

display as mixed achie estim rtes	result "S av, /// _all: R.s _all: R.p dfmethod(mates stor st FitCros	TATA Empty school , school , satterthwai e FitCrosse sed FitNest	Means Mod /// variance te) dftab ed // Sa ced // Re	STATA So the _a downsid intercept covarian	STATA assumes that random effect levels are nested, so the _all R. is needed to override that default. The downside to this specification is that only a random intercept can be estimated per dimension because covariance_(unstructured) is not allowed with R.			
Covariance P Columns in X Columns in Z Subjects Max Obs Per	Dimensions arameters Per Subjec Subject	3 1 ct 80 1 1000	Notic 1000 is how matrix	e that SAS th observations v many cases x, which nev	ninks we have —that's ok. W s share the exa er occurs here.	1 subject with /hat it refers to ct same V		
	Cova	riance Parame	eter Estima	ates				
			Standard	Z				
Cov Parm	Subject	Estimate	Error	Value	Pr Z			
UN(1,1)	SSCHOOL	0.06666	0.02190	3.04	0.0012	Secondary Random Intercept Variance		
UN(1,1)	PSCHOOL	0.1719	0.04018	4.28	<.0001	Primary Random Intercept Variance		
Residual		0.5131	0.02390	21.47	<.0001	Residual Pupil Variance		
		Informa	ation Crite	eria				
Neg2LogLike	Parms	AIC	AICC	HQIC	BIC	CAIC		
2321.1	3	2327.1	2327.1	2321.1	2321.1	2324.1		
	Solut:	ion for Fixed Standard	d Effects					
Effect	Estimate	Error	DF	t Value	Pr > t			
Intercept	6.3486	0.07890	66	80.46	<.0001			
* Calculate	differen	ce in model	. fit rela	tive to n	ested model	L 1a;		

%FitTest(FitFewer=FitNested, FitMore=FitCrossed); Likelihood Ratio Test for FitNested vs. FitCrossed Do we need both random intercept variances?

Likelinood	Ratio lest t	or Fitnes	rossed				
	Neg2Log						
Name	Like	Parms	AIC	BIC	DevDiff	DFdiff	Pvalue
FitNested	2504.7	2	2508.7	2511.5			
FitCrossed	2321.1	3	2327.1	2321.1	183.570	1	0

Rather than reporting traditional ICCs as in two-level nested models, it can be more intuitive to simply give the proportions of total variance attributable to each source:

Of the total variation of 0.75166 (from summing all three orthogonal variances):

0.06666 / 0.75166 = .089 reflects mean achievement differences between secondary schools 0.1719 / 0.75166 = .229 reflects mean achievement differences between primary schools

0.5131 / 0.75166 = .683 reflects achievement differences between kids with same schooling

95% random effect confidence interval for the intercept across each type of school: Fixed effect ± 1.96*SQRT(random variance)

Secondary: 6.3486 ± 1.96 *SQRT(0.06666) = 5.84 to 6.85

 \rightarrow 95% of secondary schools are predicted to have school mean achievement from 5.84 to 6.85

Primary: 6.3486 ± 1.96 *SQRT(0.1719) = 5.54 to 7.16

 \rightarrow 95% of primary schools are predicted to have school mean achievement from 5.54 to 7.16

Syntax and SAS Output for Model 2: Adding primary school and secondary school denomination

```
Achiev<sub>kps</sub> = \gamma_{000} + \gamma_{010} (PrimDenom<sub>p</sub>) + \gamma_{001} (SecDenom<sub>s</sub>) + U<sub>0p0</sub> + U<sub>00s</sub> + e<sub>kps</sub>
TITLE "SAS Model 2: Add School Denomination Variables";
PROC MIXED DATA=work.pupcross COVTEST NOCLPRINT IC NAMELEN=100 METHOD=REML;
       CLASS pupil pschool sschool;
       MODEL achiev = pdenom sdenom / SOLUTION DDFM=Satterthwaite OUTPM=PredDenom;
       RANDOM INTERCEPT / SUBJECT=sschool TYPE=UN; * Level 2 variance for secondary;
       RANDOM INTERCEPT / SUBJECT=pschool TYPE=UN; * Level 2 variance for primary;
       ESTIMATE "Joint Test of Denomination" pdenom 1 sdenom 1;
       ODS OUTPUT CovParms=CovDenom; * Save output for pseudo-R2;
 RUN; TITLE;
display as result "STATA Model 2: Add School Denomination Variables"
mixed achiev pdenom sdenom,
                                     111
         || all: R.sschool ,
                                     111
         || all: R.pschool ,
                                   variance reml ///
            dfmethod(satterthwaite) dftable(pvalue)
      predict preddenom,
                                     // save fixed-effect predicted outcomes
      corr achiev preddenom
      display as result r(rho)^2 // total R2
                  Covariance Parameter Estimates
                                    Standard
                                                      Ζ
Cov Parm
             Subject
                        Estimate
                                       Error
                                                 Value
                                                             Pr > Z
             SSCHOOL
                         0.06017
                                     0.02044
                                                             0.0016 leftover secondary intercept variance
UN(1,1)
                                                  2.94
             PSCHOOL
                                                             <.0001 leftover primary intercept variance
UN(1,1)
                          0.1679
                                     0.03976
                                                  4.22
Residual
                          0.5129
                                     0.02388
                                                 21.47
                                                             <.0001 residual pupil variance
                            Information Criteria
                                      AICC
                                                 HQIC
Neg2LogLike
                                                              BIC
                                                                        CAIC
               Parms
                            AIC
     2320.3
                   3
                         2326.3
                                    2326.4
                                               2320.3
                                                           2320.3
                                                                      2323.3
                   Solution for Fixed Effects
                         Standard
Effect
             Estimate
                            Error
                                       DF
                                             t Value
                                                         Pr > |t|
Intercept
               6.1115
                           0.1259
                                     79.1
                                               48.55
                                                           <.0001
PDENOM
               0.1868
                           0.1276
                                     48.2
                                                1.46
                                                           0.1495 Effect of Denomination of Primary
SDENOM
               0.1899
                          0.09853
                                     46.5
                                                1.93
                                                           0.0601 Effect of Denomination of Secondary
* Calculate PseudoR2 relative to empty means model 1b;
                                                                    Which predictor caused the reduction in
  %PseudoR2(NCov=3, CovFewer=CovEmpty, CovMore=CovDenom);
                                                                    each random intercept variance?
PseudoR2 (% Reduction) for CovEmpty vs. CovDenom
  Name
            CovParm
                        Subject
                                   Estimate
                                                 StdErr
                                                            ZValue
                                                                       ProbZ
                                                                                PseudoR2
CovEmpty
                        SSCHOOL
                                    0.06666
                                                0.02190
                                                              3.04
                                                                      0.0012
            UN(1,1)
                        PSCHOOL
                                                0.04018
                                                              4.28
                                                                      <.0001
CovEmpty
            UN(1,1)
                                     0.1719
                                                0.02390
CovEmpty
            Residual
                                     0.5131
                                                             21.47
                                                                      <.0001
CovDenom
            UN(1,1)
                        SSCHOOL
                                    0.06017
                                                0.02044
                                                              2.94
                                                                      0.0016
                                                                                0.097296
CovDenom
            UN(1,1)
                        PSCHOOL
                                     0.1679
                                                0.03976
                                                              4.22
                                                                      <.0001
                                                                                0.023550
            Residual
                                                                                0.000525
CovDenom
                                     0.5129
                                                0.02388
                                                             21.47
                                                                      <.0001
* Calculate TotalR2 relative to empty means model 1b;
  %TotalR2(DV=achiev, PredFewer=PredEmpty, PredMore=PredDenom);
Total R2 (% Reduction) for PredEmpty vs. PredDenom
               Pred
                                      Total
                         TotalR2
                                     R2Diff
  Name
               Corr
                                                The total-R<sup>2</sup> is almost significant, as given by the
PredEmptv
             0.00000
                        0.000000
                                     .
                                                multivariate Wald test for the two fixed effects.
PredDenom
             0.14388
                        0.020701
                                    0.020701
```

C	ontrasts			
	Num	Den		
Label	DF	DF	F Value	Pr > F
Joint Test of Denomination	2	47.4	2.97	0.0609

Syntax and SAS Output for Model 3a: Adding fixed effect of student SES

 $Achiev_{kps} = \gamma_{000} + \gamma_{010}(PrimDenom_p) + \gamma_{001}(SecDenom_s) + \gamma_{100}(pupSES_{kps} - 4) + U_{0p0} + U_{00s} + e_{kps}$

TITLE "SAS	Model 3a:	Add Studer	nt SES";				
PROC MIXED	DATA=work	.pupcross (COVTEST N	OCLPRINT I	C NAMELEN=	100 METH	OD=REML;
CLAS	S pupil p	school ssch	1001;				
MODE	L achiev	= pdenom sd	lenom pups	SES4 / SOL	UTION DDFM	=Sattertl	hwaite;
RAND	OM INTERC	EPT / SUBJE	CT=sschoo	1 TYPE=UN	; * Level 2	2 variano	ce for secondary;
RAND	OM INTERC	EPT / SUBJE	CT=pschoo	1 TYPE=UN	; * Level 2	2 variano	ce for primary;
ODS	OUTPUT Co	vParms=CovP	oup1; * Sa	we output	for pseudo	o-R2;	
RUN; TITL	Ξ;						
dieplaw as	rogult "S	Modol	Sa. Add	Student SE	C !!		
mixed achie	ev c.pdenc	om c.sdenom	C. DUDSES	4. ///	5		
	all: R.s	school .	///	-, ,,,			
ii	all: R.r	school ,	variance	reml ///			
	dfmethod	(satterthwa	aite) dft	able(pvalu	e)		
				-			
	Cova	riance Param	eter Estim	ates			
			Standard	Z			
Cov Parm	Subject	Estimate	Error	Value	Pr > Z		
UN(1,1)	SSCHOOL	0.05710	0.01951	2.93	0.0017	leftover	secondary intercept variance
UN(1,1)	PSCH00L	0.1686	0.03966	4.25	<.0001	leftover	primary intercept variance
Residual		0.4915	0.02290	21.46	<.0001	leftover	residual pupil variance
		Inform	ation Crit	onia			
Nog2LogLiko	Danme				RIC	CATC	
Ney2LOYLIKE	raims	2201 1	2201 1	0005 1	0005 1	0000 1	
2203.1	5	2291.1	2291.1	2203.1	2205.1	2200.1	
	Sol	ution for Fi	xed Effect	S			
		Standard					
Effect	Estimate	Error	DF	t Value	Pr > t		
Intercept	6.1095	0.1246	78.9	49.02	<.0001		
PDENOM	0.1890	0.1274	48.2	1.48	0.1446		
SDENOM	0.1745	0.09620	46	1.81	0.0763		

6.52

<.0001

What are we assuming in fitting this student-level SES effect by itself?

943

* Calculate PseudoR2 relative to denom model 2; %PseudoR2(NCov=3, CovFewer=CovDenom, CovMore=CovPup1);

0.01634

pupSES4

0.1066

PseudoR2	(% Reduction)	for CovDend	om vs. CovPup1				
Name	CovParm	Subject	Estimate	StdErr	ZValue	ProbZ	PseudoR2
CovDenom	UN(1,1)	SSCHOOL	0.06017	0.02044	2.94	0.0016	
CovDenom	UN(1,1)	PSCHOOL	0.1679	0.03976	4.22	<.0001	
CovDenom	Residual		0.5129	0.02388	21.47	<.0001	
CovPup1	UN(1,1)	SSCHOOL	0.05710	0.01951	2.93	0.0017	0.051054
CovPup1	UN(1,1)	PSCHOOL	0.1686	0.03966	4.25	<.0001	-0.004480
CovPup1	Residual		0.4915	0.02290	21.46	<.0001	0.041643

Syntax and SAS Output for Model 3b: Adding student SES contextual fixed effects

```
Achiev<sub>kps</sub> = \gamma_{000} + \gamma_{010} (PrimDenom<sub>p</sub>) + \gamma_{020} (pmSES<sub>p</sub> - 4) + \gamma_{001} (SecDenom<sub>s</sub>) + \gamma_{002} (smSES<sub>s</sub> - 4)
             + \gamma_{100} (pupSES<sub>kps</sub> - 4) + U<sub>0p0</sub> + U<sub>00s</sub> + e<sub>kps</sub>
TITLE "SAS Model 3b: Add Pupil SES Contextual Effects";
PROC MIXED DATA=work.pupcross COVTEST NOCLPRINT IC NAMELEN=100 METHOD=REML;
       CLASS pupil pschool sschool;
       MODEL achiev = pdenom sdenom pupSES4 pmSES4 smSES4
                      / SOLUTION DDFM=Satterthwaite OUTPM=PredSES;
       RANDOM INTERCEPT / SUBJECT=sschool TYPE=UN; * Level 2 variance for secondary;
       RANDOM INTERCEPT / SUBJECT=pschool TYPE=UN; * Level 2 variance for primary;
       CONTRAST "Joint Test of SES" pupSES4 1, pmSES4 1, smSES4 1;
       ODS OUTPUT InfoCrit=FitFixSES CovParms=CovPup2; * Save output for LRT and pseudo-R2;
RUN; TITLE;
display as result "STATA Model 3b: Add Student SES Contextual Effects"
mixed achiev c.pdenom c.sdenom c.pupSES4 c.pmSES4 c.smSES4, ///
         || all: R.sschool ,
                                     111
         || _all: R.pschool ,
                                   variance reml ///
             dfmethod(satterthwaite) dftable(pvalue)
      test (c.pupSES4=0) (c.pmSES4=0) (c.smSES4=0), small // Multiv Wald test for SES
      predict predSES,
                                     // save fixed-effect predicted outcomes
      corr achiev predSES
      display as result r(rho)^2 // total R2
                Covariance Parameter Estimates
                                    Standard
                                                     Ζ
Cov Parm
             Subject
                        Estimate
                                       Error
                                                 Value
                                                             Pr > Z
             SSCHOOL
                         0.05864
                                                  2.83
                                                             0.0023
UN(1,1)
                                     0.02072
UN(1,1)
             PSCHOOL
                          0.1737
                                     0.04114
                                                  4.22
                                                             <.0001
Residual
                          0.4897
                                     0.02284
                                                 21.44
                                                             <.0001
                            Information Criteria
                                                 HQIC
Neg2LogLike
               Parms
                            AIC
                                      AICC
                                                              BIC
                                                                        CAIC
     2284.5
                         2290.5
                                    2290.5
                   3
                                               2284.5
                                                           2284.5
                                                                      2287.5
                   Solution for Fixed Effects
                         Standard
Effect
             Estimate
                            Error
                                       DF
                                             t Value
                                                         Pr > |t|
Intercept
              6.1216
                           0.1286
                                     74.5
                                              47.60
                                                          <.0001
PDFNOM
               0.1848
                           0.1292
                                                           0.1590
                                    47.2
                                                1.43
                                   33.8
SDENOM
              0.1214
                           0.1009
                                                1.20
                                                          0.2372
pupSES4
              0.1034
                          0.01646
                                     920
                                                6.28
                                                           <.0001
pmSES4
             -0.03780
                         0.2283
                                     48.2
                                               -0.17
                                                           0.8692
              0.2942
                           0.1555
                                                1.89
                                                           0.0626
smSES4
                                     68.2
What do the new SES effects represent?
* Calculate PseudoR2 relative to smushed model 3a;
  %PseudoR2(NCov=3, CovFewer=CovPup1, CovMore=CovPup2);
PseudoR2 (% Reduction) for CovPup1 vs. CovPup2
Name
          CovParm
                       Subject
                                  Estimate
                                                StdFrr
                                                           ZValue
                                                                      Prob7
                                                                                PseudoR2
CovPup1
                       SSCHOOL
                                   0.05710
                                                            2.93
                                                                     0.0017
           UN(1,1)
                                               0.01951
CovPup1
          UN(1,1)
                       PSCHOOL
                                    0.1686
                                               0.03966
                                                             4.25
                                                                     <.0001
```

Residual		0.4915	0.02290	21.46	<.0001	
UN(1,1)	SSCHOOL	0.05864	0.02072	2.83	0.0023	-0.027008
UN(1,1)	PSCHOOL	0.1737	0.04114	4.22	<.0001	-0.030163
Residual		0.4897	0.02284	21.44	<.0001	0.003648
	Residual UN(1,1) UN(1,1) Residual	Residual UN(1,1) SSCHOOL UN(1,1) PSCHOOL Residual	Residual 0.4915 UN(1,1) SSCHOOL 0.05864 UN(1,1) PSCHOOL 0.1737 Residual 0.4897	Residual 0.4915 0.02290 UN(1,1) SSCHOOL 0.05864 0.02072 UN(1,1) PSCHOOL 0.1737 0.04114 Residual 0.4897 0.02284	Residual0.49150.0229021.46UN(1,1)SSCHOOL0.058640.020722.83UN(1,1)PSCHOOL0.17370.041144.22Residual0.48970.0228421.44	Residual0.49150.0229021.46<.0001UN(1,1)SSCHOOL0.058640.020722.830.0023UN(1,1)PSCHOOL0.17370.041144.22<.0001

* Calculate PseudoR2 relative to denom model 2; %PseudoR2(NCov=3, CovFewer=CovDenom, CovMore=CovPup2);

PseudoR2	(% Reduction)	for CovDen	om vs. CovPup2	2			
Name	CovParm	Subject	Estimate	StdErr	ZValue	ProbZ	PseudoR2
CovDenom	UN(1,1)	SSCHOOL	0.06017	0.02044	2.94	0.0016	
CovDenom	UN(1,1)	PSCHOOL	0.1679	0.03976	4.22	<.0001	
CovDenom	Residual		0.5129	0.02388	21.47	<.0001	
CovPup2	UN(1,1)	SSCHOOL	0.05864	0.02072	2.83	0.0023	0.025425
CovPup2	UN(1,1)	PSCHOOL	0.1737	0.04114	4.22	<.0001	-0.034777
CovPup2	Residual		0.4897	0.02284	21.44	<.0001	0.045139

* Calculate TotalR2 relative to denom model 2; %TotalR2(DV=achiev, PredFewer=PredDenom, PredMore=PredSES);

```
Total R2 (% Reduction) for PredDenom vs. PredSES
```

smSES4

0.1213

0.1916

28.4

	Pred			Total	
Name	Corr	Tot	alR2	R2Diff	The share as in tetal D ² from the three new SES fired offerte
PredDenom	0.14388	0.02	20701		The change in total-R ² from the three new SES fixed effects
PredSES	0.23526	0.05	5346	0.034645	is significant, as given by the multivariate wald test.
		Contra	ists		
		Num	Den		
Label		DF	DF	F Value	Pr > F
Joint Test	of SES	3	81.4	15.43	<.0001

Syntax and SAS Output for Model 3c: Adding random effect of student SES across secondary schools:

 $Achiev_{kps} = \gamma_{000} + \gamma_{010}(PrimDenom_p) + \gamma_{020}(pmSES_p - 4) + \gamma_{001}(SecDenom_s) + \gamma_{002}(smSES_s - 4)$

+ $\gamma_{100}(\text{pupSES}_{\text{kps}} - 4) + U_{0p0} + U_{00s} + U_{10s}(\text{pupSES}_{\text{kps}} - 4) + e_{\text{kps}}$

TITLE "SAS Model 3c: Add Random Pupil SES across Secondary Schools"; PROC MIXED DATA=work.pupcross COVTEST NOCLPRINT IC NAMELEN=100 METHOD=REML; CLASS pupil pschool sschool; MODEL achiev = pdenom sdenom pupSES4 pmSES4 smSES4 / SOLUTION DDFM=Satterthwaite; RANDOM INTERCEPT pupSES4 / SUBJECT=sschool TYPE=UN; * Level 2 variance for secondary; / SUBJECT=pschool TYPE=UN; * Level 2 variance for primary; RANDOM INTERCEPT ODS OUTPUT InfoCrit=FitRandSESsec; * Save output for LRT; RUN; TITLE; // STATA models with random slopes are not estimable correctly // because covariance(un) is not allowed **Covariance Parameter Estimates** Standard 7 Cov Parm Subject Estimate Frror Value Pr Z Your turn to label these! SSCHOOL 0.05583 0.01951 0.0021 Leftover sec int var UN(1,1) 2.86 UN(2,1) SSCHOOL 0.009256 0.005898 1.57 0.1166 cov sec int and sec slope SSCHOOL 0.004633 0.003324 1.39 0.0817 sec random slope of pupSES UN(2,2)UN(1,1) PSCHOOL 0.1710 0.04058 4.22 <.0001 0.4833 0.02283 <.0001 Residual 21.16 Information Criteria Neg2LogLike AICC HQIC BIC CAIC Parms AIC 2278.6 5 2288.6 2288.6 2278.6 2278.6 2283.6 Solution for Fixed Effects Standard Effect DF t Value Pr > |t| Estimate Error Intercept 6.1049 0.1269 74.8 48.10 <.0001 0.1960 0.1283 47.3 1.53 0.1333 PDENOM SDENOM 0.1597 0.09182 42 1.74 0.0893 pupSES4 0.1055 0.02073 27.7 5.09 <.0001 pmSES4 -0.03258 0.2267 48.2 -0.14 0.8863

0.63

0.5317

* Calculate difference in model fit relative to fixed SES model 3b; %FitTest(FitFewer=FitFixSES, FitMore=FitRandSESsec);

Likelihood Ratio	FitFixSES		The %FitTest macro provides the original <i>p</i> -value— see the excel sheet for the mixture <i>p</i> -value instead.						
	Neg2Log								
Name	Like	Parms	AIC	BIC	DevD	iff	DFdiff	Pvalue	
FitFixSES	2284.5	3	2290.5	2284.5					
FitRandSESsec	2278.6	5	2288.6	2278.6	5.89	779	2	0.052398	

Do we need the random pupil SES slope over secondary schools? What kind of effects would explain that variance?

Syntax and SAS Output for Model 3d: Adding random effect of student SES across primary schools:

$Achiev_{kps} = \gamma_{000} + \gamma_{010} (PrimDenom_p) + \gamma_{020} (pmSES_p - 4) + \gamma_{001} (SecDenom_s) + \gamma_{002} (smSES_s - 4) + \gamma_{002} (smSES_s - 4) + \gamma_{001} (smSES_s - 4) + \gamma_{010} (smS$)
+ $\gamma_{100}(pupSES_{kps} - 4) + U_{0p0} + U_{1p0}(pupSES_{kps} - 4) + U_{00s} + U_{10s}(pupSES_{kps} - 4) + e_{kps}$	kps

TITLE "SAS	Model 3d:	Add Randon	n Pupil S	ES across	Primary Sch	nools";						
PROC MIXED	DATA=work	.pupcross (COVTEST N	OCLPRINT <mark>I</mark>	C NAMELEN=1	LOO METHO	D=REML;					
CLAS	S pupil p	school ssch	001;									
MODE	L achiev	= pdenom sd	lenom pups	SES4 pmSES	4 smSES4 /	SOLUTION	DDFM=Sat	terthwaite;				
RANL	OM INTERC	EPT pupses4	SUBJEC	T=sschool	TYPE=UN; *	Level 2	variance	for primary;				
ODS	OUTPUT In	foCrit=FitR	andSESpri	m: * Save	output for	LRT;	variance	ior primary,				
RUN; TITL	€;		· · · · ·	,		,						
Covariance Parameter Estimates												
			Standard	Z								
Cov Parm	Subject	Estimate	Error	Value	Pr Z	Your turn	n to label	these!				
UN(1,1)	SSCHOOL	0.05355	0.01884	2.84	0.0022							
UN(2,1)	SSCHOOL	0.008731	0.005637	1.55	0.1214							
UN(2,2)	SSCHOOL	0.004225	0.003229	1.31	0.0954							
UN(1,1)	PSCHOOL	0.1615	0.03846	4.20	<.0001							
UN(2,1)	PSCHOOL	0.01810	0.009498	1.91	0.0567							
UN(2,2)	PSCHOOL	0.009637	0.004384	2.20	0.0140							
Residual		0.4656	0.02247	20.72	<.0001							
		Informa	ation Crit	eria								
Neg2LogLike	Parms	AIC	AICC	HQIC	BIC	CAIC						
2263.8	7	2277.8	2277.9	2263.8	2263.8	2270.8						
	So.1	ution for Fi	vod Effoot	•								
	301	Standard	xeu Ellect	5								
Effect	Estimate	Error	DF	t Value	Pr > t							
Intercept	6.1126	0.1219	74.2	50.15	<.0001							
PDENOM	0.1973	0.1209	46.5	1.63	0.1094							
SDENOM	0.1414	0.09045	42	1.56	0.1255							
pupSES4	0.1069	0.02469	35.7	4.33	0.0001							
pmSES4	-0.01314	0.2148	48.3	-0.06	0.9515							
smSES4	0.1562	0.1889	28.6	0.83	0.4153							
* Calculate	e differen	ice in model	l fit rela	ative to r	andom SES r	nodel 3c;						
%FitTest	(FitFewer=	FitRandSESs	sec, FitM	ore=FitRan	dSESprim);							

Likelihood Ratio Test for FitRandSESsec vs. FitRandSESprim

	Neg2Log						
Name	Like	Parms	AIC	BIC	DevDiff	DFdiff	Pvalue
FitRandSESsec	2278.6	5	2288.6	2278.6			
FitRandSESprim	2263.8	7	2277.8	2263.8	14.7603	2	.000623499

Do we need the random pupil SES slope over primary schools? What kind of effects would explain that variance?

95% random effect confidence interval for student SES slope across each type of school: Fixed effect ± 1.96*SQRT(random variance)

Secondary Student SES Slope: 0.1069 ± 1.96*SQRT(0.004225) = -0.021 to 0.234 → 95% of secondary schools are predicted to have student SES slopes from -0.021 to 0.234 Primary Student SES Slope: 0.1069 ± 1.96*SQRT(0.009637) = -0.086 to 0.299 → 95% of primary schools are predicted to have student SES slopes from -0.086 to 0.299

Sample Results Section using SAS output (without "smushed" model) [indicates notes about what to change]

The extent to which student socioeconomic status (SES) could predict a student achievement outcomes in secondary school was examined in a series of multilevel models with crossed random effects (i.e., for student cross-classification). Specifically, the 1,000 students at level 1 were modeled as nested within 30 secondary schools at level 2, as well as nested within 50 primary schools, in which secondary and primary schools were crossed sampling dimensions at level 2. Residual maximum likelihood (REML) within SAS [or STATA] MIXED was used in estimating and reporting all model parameters. The significance of fixed effects was evaluated with Wald tests using Satterthwaite denominator degrees of freedom, whereas random effects variances and covariances). Alpha was chosen as .05. Model-implied fixed effects were requested via ESTIMATE [or LINCOM] statements. Effect size was evaluated via pseduo-R² values for the proportion reduction in each variance component, as well as with total R², the squared correlation between the actual math outcomes and the math outcomes predicted by the fixed effects.

We first examined the extent of dependency due to mean differences for each type of school by including a random intercept variance for each. Relative to a model assuming independent students (i.e., with only a single model residual), adding a random intercept variance across secondary schools significantly improved model fit, $-2\Delta LL(1) = 53.70$, p < .001. Adding a second random intercept variance across primary schools also significantly improved model fit, $-2\Delta LL(1) = 183.57$, p < .001, providing empirical support for the need to model the cross-classification of students within primary and secondary schools. Of the total variation in student achievement, 0.089% reflected mean differences between secondary schools, 22.9% reflected mean differences between primary schools, and 68.3% reflected reamining between-student differences after controlling for schooling effects. A 95% random effects confidence interval was calculated for each source of intercept variation as the fixed intercept $\pm 1.96^*$ SQRT(random intercept variance), which revealed that 95% of the secondary schools were predicted to have intercepts for school mean achievement between 5.84 and 6.85, whereas 95% of the primary schools were predicted to have intercepts for school mean achievement between 5.54 and 7.16. We then added the effects for the denomination status (0 = no, 1 = yes) for the primary school and for the secondary school. Both indicated nonsignificantly greater achievement outcomes for denominational schools. Primary school denomination captured 2.36% of the primary school random intercept variance and secondary school denomination captured 9.73% of the secondary school random intercept variance, resulting in a total- $R^2 = 2.07\%$, which was not significant, F(2,47) = 2.97, p = .061. However, both denomination predictors were retained in the model as control variables.

We then considered the effects of student SES. In order to ensure proper interpretation of the student-level SES fixed effect as the within-school effect, we also included two level-2 contextual SES effects: primary school mean SES, and secondary school mean SES. All three predictors were centered at 4 (near the middle of the obtained range). These three effects together significantly improved the total- R^2 by 3.46%, new total- $R^2 = .055$, F(3,81) = 15.43, p < .001. The within-school level-1 SES effect was significant and accounted for 4.51% of the level-1 residual variance. It indicated that for every one-unit higher student SES relative to others in their primary and secondary school, students are expected to have higher achievement by 0.103. The level-2 contextual SES effect for primary schools indicated that primary school achievement was nonsignificantly lower by 0.038 for every unit higher primary mean SES after controlling for student SES (which did not account for any primary school random intercept variance). Likewise, the level-2 contextual SES effect for secondary schools indicated that secondary school achievement was nonsignificantly higher by 0.294 for every unit higher secondary mean SES after controlling for student SES (which accounted for 2.54% of the secondary school random intercept variance). Finally, we considered the potential for random slopes for the student SES effect. Significant slope variation was found across secondary schools, $-2\Delta LL$ (mixture of df=1 and df=2) = 5.90, p = .034, as well as across primary shools, $-2\Delta LL(2) = 14.76$, p < .001, indicating that the size of the relative SES advantage differed significantly across each type of school. A 95% random effects confidence interval for the student SES effect, calculated as fixed slope ± 1.96 *SQRT(random slope variance), revealed that 95% of the secondary schools were predicted to have student SES slopes ranging from -0.021 to 0.234, and that that 95% of the primary schools were predicted to have student SES slopes ranging from -0.086 to 0.299.