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Example 4b: Generalized Linear Models and Quantile Regression for Positive Skewed Outcomes
(complete syntax, data, and output available for STATA, R, and SAS electronically)

The data for this example come from chapter 4 of Agresti (2015) available here: http://users.stat.ufl.edu/~aa/glm/data/

We will be predicting the sale price of 100 homes from four characteristics: whether they are brand new (0=no, 1=yes),
square footage in 100s (centered at 1500), number of bedrooms (2, 3, or 4+), and number of bathrooms (1, 2, or 3+).
Because this sample’s distribution of home sale prices is bounded by 0 and is positively skewed, we will compare three
types of generalized linear models (all with the same linear predictor) estimated using maximum likelihood: identity link
with a normal distribution (typical regression), a log-transformed outcome in a typical regression (which is equivalent to
an identity link with a lognormal distribution), and a log link with a gamma distribution. In addition, because this outcome
also had several univariate outliers, we will use quantile regression to predict the median home price instead of the mean
and to examine predictor slope differences across other percentiles.

For the generalized linear models: In SAS, | am still using GLIMMIX (even though these are not mixed-effects models).
Because the corresponding STATA options (using GLM to get conditional distribution fit, also using LGAMMA) do not
have denominator degrees of freedom, they were set to “none” in SAS GLIMMIX so that the SAS Wald test results (still
labeled as t or F) will match those of STATA (using z or y?2). In R, | am using the base function GLM (also using z or
x2). For quantile regression: In SAS, 1 am using QUANTREG. In STATA, | am using SQREG and IQREG, and in R | am
using QUANTREG (although I have not yet figured out all the options for obtaining standard errors).

STATA Syntax for Importing and Preparing Data for Analysis:

// Defining global variable for file location to be replaced in code below
// \\Client\ precedes path in Virtual Desktop outside H drive;
global filesave "C:\Dropbox\23_ PSQF6270\PSQF6270_ Example4b"

// Import Houses XLSX data
import excel "$filesave\Houses.xlsx", firstrow case(preserve) clear

// Categories for number of bedrooms

gen bed3v2=.

gen bed3vi4=.

replace bed3v2=1 if beds==

replace bed3v4=0 if beds==2

replace bed3v2=0 if beds==3

replace bed3v4=0 if beds==3

replace bed3v2=0 if beds==4

replace bed3v4=1 if beds==4

replace bed3v2=0 if beds==

replace bed3v4=1 if beds==

// Categories for number of bathrooms

gen bath2vil=.

gen bath2v3=.

replace bath2vl=1 if baths==1

replace bath2v3=0 if baths==1

replace bath2vl=0 if baths==

replace bath2v3=0 if baths==

replace bath2vl=0 if baths==

replace bath2v3=1 if baths==

replace bath2vl=0 if baths==4

replace bath2v3=1 if baths==4

// Center and rescale size into per 100 square feet (0=1500)

gen sqftl50=(size-1500) /100

// Generate quadratic sqgftl50 for use in some routines

gen sqftl50sg=sqftl150*sqftl150

// Log-transform price for lognormal model

gen logprice=log (price)

// Label existing and new variables

label variable price "price: Sale Price in 100,000 units"

label variable new "new: House is new construction (0O=no, l=yes)"
label variable bed3v2 "bed3v2: 2 bedrooms instead of 3 (0=no, l=yes)"
label variable bed3v4 "bed3v4: 4 bedrooms instead of 3 (0=no, l=yes)"
label variable bath2vl "bath2vl: 1 bathroom instead of 2 (0O=no, l=yes)"
label variable bath2v3 "bath2v3: 3 bathrooms instead of 2 (0O=no, l=yes)"


http://users.stat.ufl.edu/~aa/glm/data/
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label variable sqftl50 "sqftl50: Square Footage per 100 feet (0=150)"
label variable logprice "logprice: Natural log of sale price in 100,000 units"

// Install user-written packages for gamma
search lgamma // install from window

R Syntax for Importing and Preparing Data for Analysis (after loading packages
readxl, TeachingDemos, psych, multcomp, and quantreg, as shown online):

# Define variables for working directory and data name
filesave = "C:\\Dropbox/23 PSQF6270/PSQF6270_ Example4b/"
filename = "Houses.xlsx"

setwd (dir=filesave)

# Import Houses XLSX data

Exampled4b = read excel (paste((filesave,filename))

# Convert to data frame without labels to use for analysis
Exampled4b = as.data.frame (Example4b)

# Categories for number of bedrooms
Exampled4b$bed3v2=NA; Exampledb$bed3v4=NA
Exampled4b$bed3v2 [which (Example4b$beds==2)
Exampled4b$bed3v4 [which (Example4b$beds==2)
Exampled4b$bed3v2 [which (Example4b$beds==3)
Exampled4b$bed3v4 [which (Example4bS$beds==3)
Exampled4b$bed3v2 [which (Exampled4b$beds==4)
Exampled4b$bed3v4 [which (Exampled4b$beds==4)
Exampled4b$bed3v2 [which (Exampled4b$beds==5)
Exampled4b$bed3v4 [which (Example4b$beds==5)
# Categories for number of bathrooms
Exampled4b$bath2vl=NA; Example4b$bath2v3=NA
Exampled4b$bath2vl [which (Exampled4b$baths==1) ]=
Exampled4b$bath2v3[which (Exampledb$baths==
Exampled4b$bath2vl [which (Exampledb$baths==
Exampled4b$bath2v3[which (Exampledb$baths==
Exampled4b$bath2vl [which (Exampledb$baths==
Exampled4b$bath2v3 [which (Example4b$baths==3)
Exampled4b$bath2vl [which (Exampled4b$baths==4) ]
Exampled4b$bath2v3[which (Example4b$baths==4) ]=1

# Center and rescale size into per 100 square feet (0=1500)
Exampled4b$sqftl150= (Exampledb$size-1500) /100

# Make squared version for use
Exampledb$sqftsq=Exampledb$sqft150+2

# Log-transform price for lognormal model
Exampledb$logprice=log (Exampledb$price)
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Syntax and SAS Output for Data Description:

display "STATA Distribution of Sale Price Outcome"
summarize price

hist price, percent start(0) width(20)

graph export "$filesave\STATA Price Histogram.png", replace
graph box price

graph export "$filesave\STATA Price Box Plot.png", replace

display "STATA Descriptive Stats for Example Variables"
summarize price size

tabulate beds

tabulate baths

tabulate new

# to save a plot: open a file, create the plot, then close the file
png(file = "R Price Histogram.png") # open file
hist (x=Example4b$price, freq=FALSE,
ylab="Density" ,xlab="Sale Price in 100,000 units") # axis labels
dev.off() # close file
png(file = "R Price Boxplot.png") # open file
boxplot (x=Exampledb$price)
dev.off() # close file



print ("R Descriptive Stats for Example Variables")

describe (x=Example4b$price) ; describe (x=Example4db$size)
table (x=Exampledb$beds,useNA="ifany")
table (x=Exampled4b$baths,useNA="ifany")
table (x=Example4b$new,useNA="ifany")
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Plots from SAS GLIMMIX:
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Every model we fit in this example will have the same linear predictor so that the reference house
is old (i.e., not new construction) and has 3 bedrooms, 2 bedrooms, and 1500 square feet:

V; = Bo + B1(New;) + B,(Bed3v2;) + Bs(Bed3v4;) + B,(Bath2v1;) + Bs(Bath2v3;)
+B¢(SqFt; — 150) + B,(SqFt; — 150)?

1) Predict Original Price with Identity Link and Normal Conditional Distribution:
Price;~Normal(¥;, 62) = Regular general linear model, but using ML estimation for comparability

display "STATA Predict Price using Identity Link, Normal Distribution"
glm price c.new c.bed3v2 c.bed3v4 c.bath2vl c.bath2v3 c.sqftl50 ///
c.sqftl50#c.sqftl1l50, ml link(identity) family(gaussian)

Generalized linear models
: ML

Optimization
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Scale parameter

c.sqgftl50#c.

new
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bath2vl
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(1/df) Deviance
(1/df) Pearson
[Gaussian]
[Identity]

AIC

BIC

4 P>|z|

11 0.002

87 0.387

35 0.723 -
38 0.707 -
67 0.501 -
37 0.000

65 0.100 -
98 0.000

nolog

= 100

= 92

= 2907.643

= 2907.643

= 2907.643 - REML residual variance
= 10.88959

= 267079.4

[95% Conf. Intervall]
22.00984 97.03346 Betal
-17.9713 46.40098 Beta2
26.38925 38.01557 Beta3
39.55085 26.80628 Beta4d
56.70554 27.72481 Betab
6.369064 13.69026 Beta6
.0285419 .3267458 Beta’7
113.3485 142.922 Betal

display "-2LL= " e(1ll)*-2

-2LL= 1072.9

593

// Print -2LL for model
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test (c.new=0) (c.bed3v2=0) (c.bed3v4=0) (c.bath2vl=0) (c.bath2v3=0) ///
(c.sqftl150=0) (c.sqftl50#c.sqftl50=0) // Multiv Wald test of model
chi2( 7) = 279.49
Prob > chi?2 0.0000

print ("R Predict Price using Identity Link, Normal Distribution")

ModelNorm = glm(data=Exampledb, family=gaussian(link="identity"), # I(x"2) squares predictor
formula=price~l+new+bed3v2+bed3v4+bath2vl+bath2v3+sqftl50+sqftsq)

print("Print -2LL with results"); -2*logLik (ModelNorm); summary (ModelNorm)

'log Lik.' 1072.9593 (df=9) > -2LL for model

Coefficients:
Estimate Std. Error z value Pr(>|z])

(Intercept) 128.135249 7.544411 16.9841 < 2.2e-16 BetaOl
new 59.521653 19.139032 3.1100 0.002491 Betal
bed3v2 14.214838 16.421801 0.8656 0.388957 Beta2
bed3vi 5.813161 16.430103 0.3538 0.724290 Beta3
bath2vl -6.372286 16.928150 -0.3764 0.707463 Beta4d
bath2v3 -14.490364 21.538751 -0.6728 0.502788 Betas
sqftl50 10.029661 1.867685 5.3701 0.0000005877 Beta6
sqgftsqg 0.149102 0.090636 1.6451 0.103371 Beta?

(Dispersion parameter for gaussian family taken to be 2907.6426) > REML residual variance

Null deviance: 1015150 on 99 degrees of freedom
Residual deviance: 267503 on 92 degrees of freedom
AIC: 1090.96

print("Multiv Wald Test of Model")

NormR2 = glht (model=ModelNorm, linfct=c("new=0","bed3v2=0",b"bed3v4=0", "bath2vl=0",
"bath2v3=0","sqft150=0","sqgftsg=0")) # Couldn't square predictor here

summary (NormR2, test=Chisqtest()) # Joint chi-square test

Global Test:
Chisqg DF Pr(>Chisq)
1 257.13 7 8.4006e-52

Residuals for price Residual plots from SAS:
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2a) Predict Log-Transformed Price with Identity Link and Normal Conditional Distribution:
LogPrice;~Normal(9;,62) = Regular general linear model on log-transformed outcome (ML estimation)

display "STATA Predict Log-Transformed Price using Identity Link, Normal Distribution"
glm logprice c.new c.bed3v2 c.bed3v4 c.bath2vl c.bath2v3 c.sqftl50 ///
c.sqftl50#c.sqftl50, ml link(identity) family (gaussian) nolog

Generalized linear models No. of obs = 100
Optimization : ML Residual df = 92
Scale parameter = .1180992
Deviance = 10.86512647 (1/df) Deviance = .1180992
Pearson = 10.86512647 (1/df) Pearson = .1180992 = REML residual variance
Variance function: V(u) =1 [Gaussian]
Link function : g(u) =u [Identity]
AIC = .7782651
Log likelihood = -30.91325673 BIC = -412.8105
| 0IM
logprice | Coef. Std. Err. z P> z| [95% Conf. Interval]
____________________ +________________________________________________________________
new | .2391817 .1219756 1.96 0.050 .0001139 .4782494 Betal
bed3v2 | .1539676 .1046583 1.47 0.141 -.051159 .3590941 Beta2
bed3v4d | .0129777 .1047112 0.12 0.901 -.1922525 .2182079 Beta3
bath2vl | -.1455129 .1078853 -1.35 0.177 -.3569643 .0659385 Beta4
bath2v3 | -.0561446 .1372693 -0.41 0.683 -.3251876 .2128983 Betabs
sqftl50 | .0795194 .011903 6.68 0.000 .0561899 .1028488 Betab
c.sqftl50#c.sqgftl50 | -.0012611 .0005776 -2.18 0.029 -.0023933 -.000129 Beta?
_cons | 4.814402 .0480815 100.13 0.000 4.720164 4.90864 Betal

display "-2LL= " e(ll)*-2 // Print -2LL for model
-2LL= 61.826513

test (c.new=0) (c.bed3v2=0) (c.bed3v4=0) (c.bath2vl=0) (c.bath2v3=0) ///
(c.sqftl150=0) (c.sqftl50#c.sqftl50=0) // Multiv Wald test of model
chi2( 7) = 172.69
Prob > chi2 = 0.0000

print ("R Predict Log-Transformed Price using Identity Link, Normal Distribution")

ModelLogNorm = glm(data=Example4b, family=gaussian(link="identity"),
formula=logprice~l+new+bed3v2+bed3v4+bath2vl+bath2v3+sqftl150+sqgftsq)

print("Print -2LL with results"); -2*logLik (ModelLogNorm); summary (ModelLogNorm)

'log Lik.' 61.826517 (df=9) = -2LL for model

Coefficients:
Estimate Std. Error =z value Pr(>|z])

(Intercept) 4.81440211 0.04808153 100.1300 < 2.2e-16 Betal
new 0.23918164 0.12197559 1.9609 0.05292 Betal
bed3v2 0.15396753 0.10465832 1.4711 0.14466 Beta2
bed3vi4 0.01297764 0.10471123 0.1239 0.90164 Beta3
bath2vl -0.14551293 0.10788535 -1.3488 0.18072 Beta4d
bath2v3 -0.05614470 0.13726932 -0.4090 0.68348 Betab
sqftl50 0.07951937 0.01190301 6.6806 0.000000001786 Beta6
sqftsqg -0.00126111 0.00057764 -2.1832 0.03156 Beta?7

(Dispersion parameter for gaussian family taken to be 0.11809921) -> REML residual variance

Null deviance: 31.2597 on 99 degrees of freedom
Residual deviance: 10.8651 on 92 degrees of freedom
AIC: 79.8265

print("Multiv Wald Test of Model")
LogTNormR2 = glht (model=ModelLogNorm, linfct=c("new=0", "bed3v2=0", "bed3v4=0",
"bath2vl=0", "bath2v3=0","sqftl150=0","sqftsg=0"))
summary (LogTNormR2, test=Chisqgtest()) # Joint chi-square test
Global Test:
Chisg DF Pr (>Chisq)
1 172.69 7 6.7988e-34



2b) Predict Price with Identity Link and Lognormal Conditional Distribution:
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Price;~Lognormal(§;,62) - Residuals are expected to follow a lognormal distribution

TITLEl1l "SAS Predict Price using Identity Link, Log-Normal Distribution";
TITLE2 " Using RSPL=OLS=REML to get SEs that match STATA and R";
PROC GLIMMIX DATA=work.Exampled4b NAMELEN=100 GRADIENT METHOD=RSPL;

MODEL price = new bed3v2 bed3v4 bath2vl bath2v3 sqftl50 sqftl50*sqftl50

/ SOLUTION DDFM=NONE LINK=IDENTITY DIST=LOGNORMAL;

CONTRAST "Multiv Wald test of Model" new 1, bed3v2 1, bed3v4 1,

RUN; TITLE;

bath2vl 1, bath2v3 1, sqftl50 1, sqftl50*sqftl50 1 / CHISQ;

// No Stata regression with a lognormal distribution that I could find
# Could not find lognormal conditional distribution in R that was likelihood-equivalent

3) Predict Price with Log Link and Gamma Conditional Distribution: Price;~Gamma(u, ¢), where y; =
Log(w) and ¢ is a “scale” multiplier of the variance, such that variance = u?¢ (or at least I think that’s right).

Stata’s GLM does not give the same LL as in SAS for gamma, but here is an “Lgamma” routine that does:

display "STATA: Price using Log Link, Gamma Distribution"

display "Using LGAMMA that does not allow factor variables or interactions"
display "GLM gives different LL and solution for gamma distribution"

lgamma price new bed3v2 bed3v4 bath2vl bath2v3 sqftl50 sqftl50sq, nolog

Log-gamma model Number of obs = 100
LR chi2 (7) = 117.57

Log likelihood = -517.21898 Prob > chi?2 = 0.0000
price | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
new | .204721 .1136043 1.80 0.072 -.0179394 .4273814

bed3v2 | .1728484 .1002319 1.72 0.085 -.0236026 .3692993
bed3vid | .0218806 .0952913 0.23 0.818 -.1648869 .2086482
bath2vl | -.1323233 .0999321 -1.32 0.185 -.3281866 .06354
bath2v3 | -.0526695 .1244118 -0.42 0.672 -.2965123 .1911732
sgftl50 | .0752007 .0111396 6.75 0.000 .0533675 .0970339
sqftl50sg | =-.0009965 .0005487 -1.82 0.069 -.0020719 .0000789
_cons | 4.854958 .0441468 109.97 0.000 4.768432 4.941484
_____________ +________________________________________________________________
/1ln phi | -2.298655 1391173 -16.52 0.000 -2.57132 -2.02599
_________ +____________________________________________________________________
phi | .1003938 0139665 .07643406 .1318632

display "-2LL
-2LL= 1034.43

test (c.new=0

8

)

" @(ll)*-2 // Print -2LL for model

(c.bed3v2=0) (c.bed3v4=0) (c.bath2v1=0) (c.bath2v3=0) ///

(c.sqftl50=0) (c.sqftl50#c.sqftl50=0) // Multiv Wald test of model
chi2( 7) = 187.18
Prob > chi2 = 0.0000

display "STATA LGAMMA: Price using Log Link, Gamma Distribution"
Incident-Rate Ratios as exp(slope)"
new bed3v2 bed3v4 bath2vl bath2v3 sqftl50 sqftl50sq, eform nolog

display "Get
lgamma price

new
bed3v2
bed3v4
bath2vl
bath2v3
sgqftl50
sqftl50sg
_cons

IRR Std. Err. z P>|z| [95% Conf. Intervall]
1.227183 .1394133 1.80 0.072 .9822205 1.533237
1.188686 .1191443 1.72 0.085 .9766738 1.446721
1.022122 .0973993 0.23 0.818 .8479896 1.232011
.8760577 .0875463 -1.32 0.185 .7202286 1.065602
. 9486935 .1180287 -0.42 0.672 . 7434065 1.210669

1.0781 .0120096 6.75 0.000 1.054817 1.101898
.999004 .0005481 -1.82 0.069 .9979302 1.000079
128.3753 5.667357 109.97 0.000 117.7345 139.9779

Betal
Beta2
Beta3
Beta4
Betab
Beta6
Beta?7
Betal

- log(phi)

- phi variance multiplier

exp (Betal)
exp (Beta2)
exp (Beta3)
exp (Betad)
exp (Betab)
exp (Betab)
exp (Beta7)
exp (Beta0l)
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print ("R Predict Price using Log Link, Gamma Distribution")

print("SEs and scale parameter are differ slightly from SAS and STATA")

ModelGamma = glm(data=Exampledb, family=Gamma (link="log"), # I (x*2) squares predictor
formula=price~l+new+bed3v2+bed3v4+bath2vl+bath2v3+sqftl50+sqftsq)

print("Print -2LL, with results"); -2*logLik (ModelGamma),; summary (ModelGamma)

'log Lik.' 1034.4521 (df=9) -> -2LL for model

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 4.85495821 0.04559534 106.4793 < 0.00000000000000022 Betal
new 0.20472068 0.11566850 1.7699 0.08006 Betal
bed3v2 0.17285544 0.09924667 1.7417 0.08491 Beta2
bed3v4 0.02188128 0.09929685 0.2204 0.82608 Beta3
bath2vl -0.13232450 0.10230684 -1.2934 0.19911 Beta4
bath2v3 -0.05266582 0.13017143 -0.4046 0.68672 Betab
sqftl50 0.07520161 0.01128753 6.6624 0.000000001942 Betab
sqgftsqg -0.00099659 0.00054777 -1.8194 0.07211 Beta7

(Dispersion parameter for Gamma family taken to be 0.10620167) = phi variance multiplier (close to Stata)

Null deviance: 31.9401 on 99 degrees of freedom
Residual deviance: 10.2072 on 92 degrees of freedom
AIC: 1052.45

print ("Pearson Chi-Square / DF Index of Fit")
sum(residuals (ModelGamma, type="pearson")”*2)/(100-8)

[1] 0.10620167 > less variance in residuals than model expects!

print("Multiv Wald Test of Model -- differs from SAS and STATA")

GammaR2 = glht (model=ModelGamma, linfct=c('"new=0", "bed3v2=0", "bed3v4=0",
"bath2vl=0","bath2v3=0", "sqft150=0","sqftsg=0"))

summary (GammaR2, test=Chisqtest()) # Joint chi-square test

Global Test:
Chisg DF Pr (>Chisq)
1 178.37 7 4.2939%9e-35 = results differ from SAS or STATA

print ("Get incidence rate ratios with 95% CIs")
exp (cbind (IRRR=coefficients (ModelGamma) , confint.default (ModelGamma)))

IRR 2.5 % 97.5 %
(Intercept) 128.37532692 117.40071335 140.3758469 exp(Beta0l)

new 1.22718224 0.97825449 1.5394524 exp(Betal)
bed3v2 1.18869426 0.97856853 1.4439398 exp(Beta2)
bed3vi 1.02212243 0.84135889 1.2417225 exp(Beta3)
bath2vl 0.87605667 0.71688330 1.0705721 exp(Beta4)
bath2v3 0.94869699 0.73506442 1.2244178 exp(Betab)
sqgftl50 1.07810149 1.05451238 1.1022183 exp(Betab)
sagftsqg 0.99900391 0.99793195 1.0000770 exp(Beta7)

4) Predict Price Median (50t Percentile) instead of Mean using Quantile Regression

Back in intro stat you learned that variables with skewness, outliers, or other kinds of non-normal distributions could be
better described using median and interquartile range (i.e., the 50" percentile and the distance from the 25" to 75"
percentile) than using the mean and standard deviation. So why not predict these percentiles instead of the mean using
a regression model? This is the basis of quantile regression: the slope estimates are those that minimize a weighted
absolute value of the residuals (rather than an unweighted sum of squared residuals as in traditional regression). While the
residuals are still assumed to be normal, this is of little consequence because most quantile procedures use some kind of
resampling (i.e., bootstrapping in SAS and STATA) to get the standard errors without relying on distributional properties.
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TITLE "SAS Predict Price 50th Percentile (Median) using Quantile Regression";
PROC QUANTREG DATA=work.Exampled4b NAMELEN=100 CI=RESAMPLING (NREP=500) ;
MODEL price = new bed3v2 bed3v4 bath2vl bath2v3 sqftl50 sqftl50*sqftl150
/ QUANTILE=.50 SEED=8675309; * Jenny is my random seed;
Model: TEST new bed3v2 bed3v4 bath2vl bath2v3 sqftl50 sqftl50*sqftl50 / WALD;
RUN; TITLE;
Parameter Estimates

Standard 95% Confidence
Parameter DF Estimate Error Limits t Value Pr > |t]
Intercept 1 133.0000 7.2909 118.5197 147.4803 18.24 <.0001 predicted 50 percentile at ref
new 1 32.1650 24.6156 -16.7236 81.0536 1.31 0.1946
bed3v2 1 1.0778 18.4457 -35.5569 37.7125 0.06 0.9535
bed3v4 1 -28.1157 17.6509 -63.1719 6.9404 -1.59 0.1146
bath2v1 1 -13.7301 15.3765 -44.2691 16.8088 -0.89 0.3742
bath2v3 1 -1.2992 29.5853 -60.0581 57.4596 -0.04 0.9651
sqft150 1 8.6648 2.4979 3.7038 13.6258 3.47 0.0008
sqft150*sqft150 1 0.3827 0.1653 0.0545 0.7110 2.32 0.0228
For an unknown reason, the bootstrap SEs and
Test MOdiisieSUltS chi- multivariate Wald test results_ differ between SAS
e ) and STATA (beyond correcting for F vs. y?)
Test Statistic DF Square Pr > ChiSq
Wald 109.8928 7 109.89 <.000 > Translates to F = 109.89/7 = 15.70

display "STATA Predict Price 50th Percentile (Median) using Quantile Regression"

set seed 8675309 // Set Jenny as random seed to get same results each time

sqreg price c.new c.bed3v2 c.bed3v4 c.bath2vl c.bath2v3 c.sqftl50 ///
c.sqftl50#c.sqftl50, quantile(.50) reps(500) nolog

Simultaneous quantile regression Number of obs = 100
bootstrap (500) SEs .50 Pseudo R2 = 0.4523
| Bootstrap
price | Coef. Std. Err. t P>t | [95% Conf. Intervall]
____________________ +________________________________________________________________
q50 |
new | 32.16499 29.56973 1.09 0.280 -26.56305 90.89303
bed3v2 | 1.07779 19.89831 0.05 0.957 -38.44197 40.59755
bed3v4 | -28.11573 21.78021 -1.29 0.200 -71.37311 15.14165
bath2vl | -13.73013 14.5145 -0.95 0.347 -42.55717 15.09691
bath2v3 | -1.299235 32.61557 -0.04 0.968 -66.07658 63.47811
sqftl50 | 8.664786 2.330797 3.72 0.000 4.035623 13.29395
c.sqftl50#c.sqftl50 | .3827353 .2509158 1.53 0.131 -.1156051 .8810758
_cons | 133 7.28882 18.25 0.000 118.5238 147.4762 50* percent for ref

test (c.new=0) (c.bed3v2=0) (c.bed3v4=0) (c.bath2vl=0) (c.bath2v3=0) ///
(c.sqftl50=0) (c.sqftl50#c.sqftl50=0) // Multiv Wald test of model does not match SAS

F( 7, 92) = 10.52
Prob > F = 0.0000

print ("R Predict Price 50th Percentile [Median] using Quantile Regression")

print("Did not figure out how to get same SEs and test statistics as SAS and STATA")

set.seed (8675309) # Jenny is my random seed

ModelQ50 = rqg(data=Exampledb, tau=.5, formula=price~l+new+bed3v2+bed3v4+bath2vl+bath2v3+sqftl50+sqftsq)
summary (ModelQ50)

Coefficients:
coefficients lower bd upper bd
(Intercept) 133.000000 119.479154 139.878004 50" percentile for ref

new 32.164989 3.529067 82.654677
bed3v2 1.077787 -14.270654 32.900320
bed3v4 -28.115733 -44.735514 -2.981709
bath2vl -13.730133 -35.257264 7.080776
bath2v3 -1.299234 -43.256743 27.989451
sgqftl150 8.664785 6.543296 13.021328

sqgftsqg 0.382735 -0.149437 0.491025
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4) Predict Price 25" and 75t Percentile using Quantile Regression:

Besides “handling” outliers, another use of quantile regression is to answer research questions about differences at other
points of a distribution. Here, we predict the 25" percentile to ask, “among (relatively) cheap houses, what predicts sale
price?” Likewise, we predict the 75" percentile to ask, “among (relatively) expensive houses, what predicts sale price?”
We can also ask for differences in the predictor effects across these quantiles (e.g., is being a new house more important if
the house is expensive than if the house is cheap?), which is analogous to an interaction of the predictor with the quantiles.

TITLE "SAS Predict Price 25th and 75th Percentile using Quantile Regression";
PROC QUANTREG DATA=work.Example4b NAMELEN=100 CI=RESAMPLING (NREP=500) ;
MODEL price = new bed3v2 bed3v4 bath2vl bath2v3 sqftl50 sqftl50*sqftl50
/ QUANTILE=.25 .75 SEED=8675309; * Jenny is my random seed;
* Multiv wald test of Model (provided for each quantile);
EachModel: TEST new bed3v2 bed3v4 bath2vl bath2v3 sqftl50 sqftl50*sqftl150 / WALD;
* Multiv wald test of slope differences between quantiles;
ModelDiff: TEST new bed3v2 bed3v4 bath2vl bath2v3 sqftl50 sqftl50*sqftl150 / QINTERACT;
newDiff: TEST new / QINTERACT; * How to test single slope diff across quantiles;
RUN; TITLE;

Parameter Estimates Predicting 25" percentile
Standard 95% Confidence

Parameter DF Estimate Error Limits t Value Pr > |t|
Intercept 1 101.1147 7.2839 86.6482 115.5813 13.88 <.0001
new 1 45.6732 26.3641 -6.6881 98.0345 1.73 0.0866
bed3v2 1 4.7000 16.2591 -27.5920 36.9920 0.29 0.7732
bed3v4 1 -0.2206 18.0406 -36.0508 35.6095 -0.01 0.9903
bath2v1 1 -0.7478 16.5383 -33.5943 32.0988 -0.05 0.9640
bath2v3 1 2.3978 39.9465 -76.9394 81.7351 0.06 0.9523
sqft150 1 9.4049 2.4080 4.6225 14.1874 3.91 0.0002
sqft150*sqft150 1 0.1069  0.2230 -0.3360 0.5498 0.48 0.6329
Parameter Estimates Predicting 75™ percentile
Standard 95% Confidence
Parameter DF Estimate Error Limits t Value Pr > |t|
Intercept 1 145.7357 7.5581 130.7246 160.7467 19.28 <.0001
new 1 24.3886 35.5563 -46.2292 95.0065 0.69 0.4945
bed3v2 1 31.5946 19.8498 -7.8288 71.0179 1.59 0.1149
bed3v4 1 -31.6868 38.1827 -107.5210 44,1474 -0.83 0.4088
bath2v1 1 -15.0642 15.3389 -45.5285 15.4001 -0.98 0.3286
bath2v3 1 -1.2579 38.0627 -76.8537 74.3379 -0.03 0.9737
sqft150 1 10.8404 3.2413 4.4028 17.2779 3.34 0.0012
sqft150*sqft150 1 0.3295 0.2020 -0.0718 0.7307 1.63 0.1063
Test EachModel Results

Quantile Test Chi-

Level Test Statistic DF Square Pr > ChiSq

0.25 Wald 65.3371 7 65.34 <.0001 > F= 65.34/7 = 9.33

0.75 Wald 91.5617 7 91.56 <.0001 »> F= 91.56/7 = 13.08
Test ModelDiff Results Test newDiff Results

Equal Coefficients Equal Coefficients

Across Quantiles Across Quantiles
Chi-Square DF Pr > ChiSq Chi-Square DF Pr > ChiSq

4.4799 7 0.7231 0.3636 1 0.5465
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STATA Syntax and Output from SQREG—these are the predictor slopes per quantile:

display "STATA Predict Price 25th and 75th Percentile using Quantile Regression"

set seed 8675309 // Set Jenny as random seed to get same results each time

sqreg price c.new c.bed3v2 c.bed3v4 c.bath2vl c.bath2v3 c.sqftl50 ///
c.sqftl50#c.sqftl50, quantile(.25 .75) reps(500) nolog

Simultaneous quantile regression Number of obs = 100
bootstrap (500) SEs .25 Pseudo R2 = 0.3747
.75 Pseudo R2 = 0.5713
| Bootstrap
price | Coef. Std. Err. t P>t [95% Conf. Interval]
____________________ +________________________________________________________________
q25 |
new | 45.67319 23.28024 1.96 0.053 -.5633818 91.90976
bed3v2 | 4.7 16.55032 0.28 0.777 -28.17036 37.57036
bed3v4 | -.2206333 22.16177 -0.01 0.992 -44.23583 43.79456
bath2vl | -.7477557 15.38074 -0.05 0.961 -31.29524 29.79972
bath2v3 | 2.397835 33.72783 0.07 0.943 -64.58855 69.38422
sqftl50 | 9.404941 1.757855 5.35 0.000 5.91369 12.89619
c.sqftl50#c.sqgftl50 | .1068575 .2572658 0.42 0.679 -.4040946 .6178097
_cons | 101.1147 7.681166 13.16 0.000 85.85928 116.3702 pred 25 for ref
____________________ +________________________________________________________________
q75 |
new | 24.38865 37.27569 0.65 0.515 -49.64408 98.42139
bed3v2 | 31.59456 18.9706 1.67 0.099 -6.082685 69.2718
bed3v4 | -31.68683 45.05709 -0.70 0.484 -121.1741 57.80045
bath2vl | -15.06422 13.76459 -1.09 0.277 -42.40189 12.27344
bath2v3 | -1.257883 43.82958 -0.03 0.977 -88.30722 85.79145
sqftl50 | 10.84037 3.055926 3.55 0.001 4.771039 16.90971
c.sqftl50#c.sqgftl50 | .3294847 .201842 1.63 0.106 -.0713909 .7303603
_cons | 145.7357 5.482533 26.58 0.000 134.8469 156.6244 pred 75 for ref

// Multiv Wald test of model at 25th percentile
test ([g25]c.new=0) ([g25]c.bed3v2=0) ([g25]c.bed3v4=0) ([g25]c.bath2v1=0) ///
([g25]c.bath2v3=0) ([g25]c.sqft150=0) ([g25]c.sqft150#c.sqft150=0)
F( 7, 92) = 12.10
Prob > F = 0.0000

// Multiv Wald test of model at 75th percentile
test ([g75]c.new=0) ([g75]c.bed3v2=0) ([g75]c.bed3v4=0) ([g75]c.bath2v1=0) ///
([g75]c.bath2v3=0) ([g75]c.sqft150=0) ([g75]c.sqft1l50#c.sqft150=0)
F( 7, 92) = 9.48
Prob > F = 0.0000

// Multiv Wald test of difference in model between 25th and 75th percentile
test ([g25]c.new=[g75]c.new) ([g25]c.bed3v2=[q75]c.bed3v2) ///
([g25]c.bed3v4=[q75] c.bed3v4) ([g25]c.bath2vl=[q75]c.bath2vl) ///
([g25]c.bath2v3=[g75]c.bath2v3) ([g25]c.sqftl150=[q75]c.sqftl50) ///
([g925]c.sqftl50#c.sqft150=[q75]c.sqft150#c.sqft150)
F( 7, 92) = 0.55
Prob > F = 0.7918

For unknown reasons, the multivariate Wald
// How to test single slope diff across quantiles test results continue to differ between SAS

test ([g25]c.new=[g75]c.new) ; 2
Pl 92) = 0. 37 and STATA (beyond correcting for F vs. y*)

Prob > F = 0.5460




PSQF 6270 Example 4b page 11

STATA Syntax and Output from IQREG—these are differences in predictor slopes between quantiles:

display "STATA Predict Price 25-75 Inter-Quantile Regression"

display "Output now directly provides predictor slope differences"

set seed 8675309 // Set Jenny as random seed to get same results each time

iqgreg price c.new c.bed3v2 c.bed3v4 c.bath2vl c.bath2v3 c.sqftl50 ///
c.sqftl50#c.sqftl50, quantile (.25 .75) reps(500) nolog

.75-.25 Interquantile regression Number of obs = 100
bootstrap (500) SEs .75 Pseudo R2 = 0.5713
.25 Pseudo R2 = 0.3747
| Bootstrap
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]
____________________ +________________________________________________________________
new | -21.28454 35.11913 -0.61 0.546 -91.03417 48.46509
bed3v2 | 26.89456 21.05773 1.28 0.205 -14.92791 68.71703
bed3v4 | -31.46619 43.83957 -0.72 0.475 -118.5354 55.60297
bath2vl | -14.31647 16.55987 -0.86 0.390 -47.2058 18.57287
bath2v3 | -3.655718 42.55953 -0.09 0.932 -88.18263 80.87119
sqftl50 | 1.435431 2.880917 0.50 0.619 -4.286319 7.157181
c.sqftl50#c.sqgftl50 | .2226272 .2837418 0.78 0.435 -.3409085 .7861628
_cons | 44.62092 8.548936 5.22 0.000 27.64199 61.59984

test (c.new=0) (c.bed3v2=0) (c.bed3v4=0) (c.bath2vl=0) (c.bath2v3=0) ///
(c.sqftl150=0) (c.sqftl50#c.sqftl50=0) // Multiv Wald test of differences
F( 7, 92) = 0.55
Prob > F = 0.7918

print ("R Predict Price 25th and 75th Percentile using Quantile Regression")

print("Did not figure out how to get same SEs and test statistics as SAS and STATA")

set.seed(8675309) # Jenny is my random seed

ModelQ2575 = rq(data=Exampledb, tau=c(.25,.75),
formula=price~l+new+bed3v2+bed3v4+bath2vl+bath2v3+sqftl50+sqftsq)

summary (ModelQ2575)

tau: [1] 0.25

Coefficients:
coefficients lower bd upper bd

(Intercept) 101.114737 93.093346 113.687477 predicted 25% percentile for ref
new 45.673190 31.445800 92.285814

bed3v2 4.700000 -14.872686 33.256801

bed3v4 -0.220641 -27.352594 19.000892

bath2vl -0.747755 -18.718106 20.884363

bath2v3 2.397843 -59.449552 37.667577

sqftl150 9.404941 6.816233 10.564952

sqftsqg 0.106858 -0.258119 0.405855

tau: [1] 0.75

Coefficients:
coefficients lower bd upper bd
(Intercept) 145.735654 141.481847 157.961905 predicted 75* percentile for ref

new 24.388649 -0.554536 92.452481
bed3v2 31.594557 4.661877 49.800555
bed3v4 -31.686826 -55.983707 78.477871
bath2vl -15.064223 -28.281428 3.033738
bath2v3 -1.257882 -47.710414 107.001254
sqftl150 10.840372 7.669831 16.773869

sqftsqg 0.329485 0.124996 0.816528
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5) Predict Price All Percentiles using Quantile Regression (couldn’t find this in STATA or R):

TITLE "SAS Predict Price at All Percentiles using Quantile Regression";
PROC QUANTREG DATA=work.Example4b NAMELEN=100 CI=RESAMPLING (NREP=500) ;
MODEL price = new bed3v2 bed3v4 bath2vl bath2v3 sqftl50 sqftl50*sqftl50
/ QUANTILE=PROCESS PLOT=QUANTPLOT SEED=8675309;
RUN; TITLE;

SAS Output Graphical Summary (lots of voluminous output omitted; is Figure 1 in results section):

Estimated Parqmeter by Quantil_e lLeveI for price Top left: The intercept increases
With 95% Confidence Limits across percentiles (called
300 <« PRT)
. |' quantiles™) as expected.
| 200 .
200 Top right: The slope for new
g 100 construction stays just north of 0
o 130 5 T ~———~J. | |untilthe 40" percentile or so.
= 100 L
-100 Bottom left: The slope for 3 vs 2
50 - bedrooms appears to not be different
0 i than 0 through most percentiles,
— although with an apparent increase
150 in the upper quantiles (with lots of
noise).
100 100
w i Bottom right: The slope for 3 vs 4
Z 50 2 bedrooms appears to not be different
= | 0 {1 | than 0 through most of the
0 |' L percentiles, although with an
I { 100 apparent decre_ase in the upper
percentiles (with lots of noise) until
00 02 04 06 08 10 0.0 02 04 06 08 10 | -80or so, in which it suddenly jumps
Quantile Level Quantile Level up to positive (with lots of noise)...?
Estimated Par;meter by Quantil_e lLeveI for price Top left: The slope for bath 2 vs 1 is
With 95% Confidence Limits 0 with no trend across percentiles.
200
100 Top right: The slope for bath 2 vs 3
is 0 with no trend across percentiles.
E E 0 M
g ! e — v g || Bottom left: The slope for the linear
4 = effect of square footage (which is
100 =00 the instantaneous slope at 1500 sq ft)
is significantly positive across
400 percentiles and looks to grow in
30 strength after .60 or so.
o e Bottom right: The slope the
> % 0s _| | quadratic effect of square footage is
@ 5 not different than O until about .50,
g Wm 2 oo at which point it is significantly
10 LE positive (i.e., an accelerated effect of
Y s square footage). Although it stays
0 positive, there is greater noise
-0 making it not different than 0 after
0o 02 04 08 0s 1.0 0o 02 04 08 08 1.0 .70 or so.
Quantile Level Quantile Level
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Sample results using SAS output:

The present analysis sought to predict the final sale price of 100 homes from four characteristics: whether they were new
construction (0=no, 1=yes), linear and quadratic effects of square footage in 100s (centered at 1500), number of bedrooms
(2,3, or 4+), and number of bathrooms (1,2, or 3+). Because the observed distribution of home sale prices was positively
skewed and contained seven potential outliers, the robustness of the model results to these characteristics was examined
using several distinct approaches. All models included the same predictor effects and were estimated using maximum
likelihood within SAS GLIMMIX unless otherwise noted. The extent of conditional distribution fit was examined using
the Pearson y2/DF statistic (in which 1=good fit); all predictor fixed effects were tested univariately using z-distributions
without denominator degrees of freedom unless otherwise noted. As expected given the positively skewed distribution of
sale prices, the residuals of a model specifying a normal conditional distribution indicated a lack of fit and several outliers.

We then examined two alternative models that were better suited for positively skewed residuals. First, we predicted home
sale prices using a lognormal conditional distribution for the residuals, for which distribution fit is not readily available).
In the lognormal solution, after controlling for the number of bedrooms and bathrooms, new houses sold for significantly
more money (0.24 log $1000 units; p = .0499), and sale prices were also uniquely predicted by a quadratic function of
square footage. More specifically, the sale price increased significantly by 0.08 log $1000 units per 100 additional square
feet as evaluated at 1500 square feet (p <.001), but this positive slope of house size became significantly less positive by
twice the quadratic coefficient of —0.001 per additional 100 square feet (i.e., the impact of being a bigger house was
reduced in bigger houses; p = .023). The number of bedrooms or bathrooms did not have significant unique effects.
Second, we fit the same predictive model using a log link function and a gamma conditional distribution, which showed
evidence for underdispersion given its conditional distribution fit (Pearson y?/DF = 0.10). However, the effect of being
new construction and the quadratic effect of house size were then nonsignificant (p’s = .07).

We then turned to a different modeling approach that would be more robust to outliers—quantile regression, in which one
can predict any percentile of the distribution (labeled a “quantile”) instead of the mean as in traditional regression. In our
guantile regressions, the point estimates for the predictor slopes were found by minimizing a weighted function of the
absolute value of the model residuals (in which the weights reflect the chosen percentile). Standard errors were found
through 500 bootstrap replications (i.e., in which 500 samples with replacement were generated to capture the empirical
sampling distribution of the slope estimates for more valid standard errors). SAS QUANTREG was used to conduct the
analyses, and residual denominator degrees of freedom were used to evaluate the significance of the model predictors.

First, in predicting the 50" percentile (i.e., the median home price), no unique predictor effects were significant except
square footage, for which significant positive linear and quadratic effects were found. More specifically, the sale price
increased by 8.66 $1000 units per 100 additional square feet as evaluated at 1500 square feet (p <.001), and this positive
slope of house size became significantly more positive by twice the quadratic coefficient of 0.38 per additional 100 square
feet (i.e., the price bonus of being a bigger house was magnified in bigger houses; p = .023). We repeated this analysis to
predict the 25" and 75" percentiles to examine potential differences in prediction for relatively inexpensive or relatively
expensive houses, respectively. At the 25" percentile, there was a marginally significant positive effect of new
construction (Est = 45.67, p = .087), a significant linear effect of house size at 1500 square feet (Est = 9.40 per 100 square
feet; p < .001), but no significant quadratic effect of house size (Est = 0.107, p = .633). At the 75" percentile, there was a
nonsignificant effect of new construction (Est = 24.29, p = .495), a significant linear effect of house size at 1500 square
feet (Est = 10.84 per 100 square feet; p = .001), but no significant quadratic effect of house size (Est = 0.33, p = .106).
Finally, Figure 1 provides the results in examining prediction at 144 distinct values ranging from the 0.004" to 99.6™
percentiles, in which the solid line in each image depicts the point estimate for the slope (y-axis) as a function of the
percentile (x-axis), and the shading conveys the 95% confidence interval around the slope estimates. The unique effects of
number of bedrooms and number of bathrooms did not appear to be significant at any percentile. The effect of new
construction appeared marginally significantly positive from approximately the 20" to the 40" percentiles, and
nonsignificantly positive otherwise. The linear effect of house size at 1500 square feet was significantly positive at nearly
every percentile and appeared to grow in size as home prices increased. The quadratic effect of house size appeared to
transition from nonsignificantly negative until the 20" percentile, to nonsignificantly positive until the 40" percentile, to
significantly positive until the 70" percentile, after which it remained nonsignificantly positive. Thus, it appears that
having a bigger house is even more helpful among midrange houses, but not for inexpensive or very expensive houses.



