Psychological and Quantitative Foundations (PSQF) 6270 Section 0001: Generalized Linear Models Spring 2022

Instructor and Professor Lesa Hoffman (she/her-you can call me Lesa) Home Department
Educational Measurement and Statistics Program
PSQF Dept Office: South 361 Lindquist Center; DEO: Dr. Megan Foley Nicpon
Email: Lesa-Hoffman@Ulowa.edu (preferred mode of contact)
Office: 356 South Lindquist Center (mostly unattended)
Phone: 319-384-0522 (mostly unattended)
https://uiowa.zoom.us/my/lesahoffmaniowa
and Office Hours:
Meeting ID: 5044356512 ; Mobile Access: +13126266799
166 North Lindquist Center or via zoom
Tuesdays and Thursdays 12:30-1:45 PM
Tuesdays and Thursdays 3:30-4:30 PM in a group format
or individually by appointment

Schedule of Topics and Events:

This course will meet synchronously in person and on zoom. The planned schedule of topics and events given here will likely need to be adjusted throughout the course. The course website will always have the most current schedule of events and due dates: http://www.lesahoffman.com/PSQF6270/index.html

Course Objectives, Pre-Requisites, and Materials:

This course will focus on the uses of generalized linear models for predicting univariate and multivariate outcomes. The course objective is for participants to be able to complete all the necessary steps in a generalized linear model analysis: deciding which type of model is appropriate, creating predictor variables, building models to evaluate unique effects of predictors, and interpreting and presenting empirical findings. Prior to enrolling, participants should be comfortable with general linear models (e.g., regression, ANOVA).

Class time will be devoted primarily to lectures, examples, and spontaneous review, the materials for which will be available for download at the course website. Readings and other resources have been suggested for each topic and may be updated later. Synchronous attendance (in person or via zoom) is encouraged but not required, and you do not need to notify the instructor of a single class absence. Video recordings of each class will be made available on YouTube so that closed captioning will be provided, and supplemental videos for specific topics (e.g., software demos) may be added as well. Auditors and visitors are always welcome to attend class. No required class sessions will be held outside the regular class time given above (i.e., no additional midterm or final exam sessions). However, because the course will have an applied focus requiring the use of statistical software, participants are encouraged to attend group-based office hours (via zoom only), in which multiple participants can receive immediate assistance on homework assignments simultaneously.

Course Requirements:

Course participants will have the opportunity to earn up to $\mathbf{1 0 0}$ total points by completing work outside of class. Up to 88 points can be earned from submitting homework assignments (approximately 6 in total) through a custom online system-these will be graded for accuracy. Up to 12 points may be earned from submitting formative assessments (approximately 6 in total) through ICON; these will be graded for effort only-incorrect answers will not be penalized. Participants may earn up to $\mathbf{2}$ extra credit points for completing homework 0; there may be other opportunities to earn extra credit at the instructor's discretion. Finally, revisions to the planned course schedule and/or content may result in fewer homework assignments and formative assessments (and thus fewer total points) at the instructor's discretion.

Policy on Accepting Late Work and Grades of Incomplete:

Participants may submit work at any point during the semester to be counted towards their course grade. However, in order to provide participants with prompt feedback, late homework assignments will incur a 1point penalty, and late formative assessments will incur a 0.5 -point penalty. Extensions will be granted as needed for extenuating circumstances (e.g., conferences, comprehensive exams, family obligations) if requested at least two weeks in advance of the due date. A final grade of "incomplete" will only be given in dire circumstances and entirely at the instructor's discretion. All work must be submitted by Friday, May 13, 2021 at 5:00 PM to be included in the course grade.

Final grades will be determined by the percentage earned out of the total possible points:

$$
\begin{aligned}
>96 \% & =A+, 93-96 \%=A, 90-92 \%=A-, 87-89 \%=B+, 83-86 \%=B, 80-82 \%=B-, 77-79 \%=C+ \\
73-76 \% & =C, 70-72 \%=\text { C- (PASS) }, 67-69 \%=D+, 63-66 \%=D, 60-62 \%=D-,<60 \%=F
\end{aligned}
$$

Course Software:

Participants will need to have access to statistical software-SAS, STATA, or R+Rstudio-that can estimate the models presented. Each of these programs are freely available to course participants in multiple ways:

- You can connect to the \underline{U} lowa Virtual Desktop (connect to the \underline{U} lowa VPN first) for free
- You can connect to the \underline{U} lowa Research Remote Desktop (connect to the \underline{U} lowa VPN first) for free
- You can install R software for free on your local machine, along with the free graphical Rstudio interface that makes R easier to use (install second after R software)
- You can connect to the web-based SAS OnDemand platform for free on your local machine
- You could also pay $\$ 48$ to install a 6-month student copy of STATA on your local machine

Recommended Course Textbook (to be purchased separately):

Hardin, J. W. \& Hilbe, J. M. (2018). Generalized linear models and extensions (4 ${ }^{\text {th }}$ ed.). STATA Press. Also available from the \underline{U} of lowa library as an e-book (for one user at a time).

Recommended Textbook for Background on General Linear Models (as needed):

Darlington, R. B., \& Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford. Available from U lowa library as an e-book (for multiple users at a time).

Other Course Readings (all available in ICON under "Files"):
Note-I know this is A LOT of readings, but we are covering a lot of material! I have included these sources to give you some additional tutorials and examples that will be easier to read than the two textbooks. I encourage you to read as much as possible, but your priority should be to participate in class and complete course work first!

Agresti, A. (2015). Foundations of linear and generalized linear models (1st ed.). Wiley \& Sons.
Bürkner, P.-C., \& Vuorre, M. (2019). Ordinal regression models in psychology: A tutorial. Advances in Methods and Practices in Psychological Science, 2(1), 77-101.
Enders, C. K. (2010; chapters 3-5). Applied missing data analysis. Guilford.
Finsaas, M. G., \& Goldstein, B. L. (2021). Do simple slopes follow-up tests lead us astray? Advancements in the visualization and reporting of interactions. Psychological Methods, 26(1), 38-60.

Green, J. A. (2021). Too many zeros and/or highly skewed? A tutorial on modelling health behaviour as count data with Poisson and negative binomial regression. Health Psychology and Behavioral Medicine, 9(1), 436-455.

Hardin, J. W., \& Hilbe, J. M. (2014). Estimation and testing of binomial and beta-binomial regression models with and without zero inflation. The Stata Journal, 14(2), 292-303.

Hoffman, L. (2015 chapters 2-3). Longitudinal analysis: Modeling within-person fluctuation and change. Routledge / Taylor \& Francis.
Hsieh, F. Y. (1989). Sample size tables for logistic regression. Statistics in Medicine, 8, 795-802.
Johfre, S. S., \& Freese, J. (2021). Reconsidering the reference category. Sociological Methodology, 51(2), 235-269.

Knief, U., \& Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, 53, 2576-2590.

Konstantopoulos, S., Li, W., Miller, S., \& van der Ploeg, A. (2019). Using quantile regression to estimate intervention effects beyond the mean. Educational and Psychological Measurement, 79(5), 883-910.

Kumle L., Võ, M. L.-H., \& Draschkow, D. (2021). Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R. Behavior Research Methods, 53, 2528-2573.

MacKinnon, D. P. (2008 chapter 6). Introduction to statistical mediation analysis. Routledge / Taylor \& Francis.

McGinley, J. S., Curran, P. J., \& Hedeker, D. (2015). A novel modeling framework for ordinal data defined by collapsed counts. Statistics in Medicine, 34, 2312-2324.

Mize, T. (2019). Best practices for estimating, interpreting, and presenting nonlinear interaction effects. Sociological Science 6, 81-117.
Rohrer, J. M., Arslan, R. C. (2021). Precise answers to vague questions: Issues with interactions. Advances in Methods and Practices in Psychological Science, 4(2), 1-19.
Williams, R. (2016). Understanding and interpreting generalized ordered logit models. The Journal of Mathematical Sociology, 40, 7-20.

Academic Misconduct:

As a reminder, the University of lowa College of Education has a formal policy on academic misconduct, which all students in this course are expected to follow. While students can work with each other to understand the course content, all homework assignment must be completed individually using the student-specific datasets provided for each assignment. Please consult the instructor if you have questions.

Respect for Each Other:

The instructor wants ALL students to feel welcome and encouraged to participate in this course. There is no such thing as a "stupid" question (or answer). All course participants-enrolled students and auditing visitors-should always feel welcome to ask whatever questions will be helpful in helping them understand the course content. Questions or comments are welcome at any point during class (aloud or using the zoom chat window), in office hours, over email, or in individual appointments with the instructor (available by request). Students with disabilities or who have any special needs are encouraged to contact the instructor for a confidential discussion of their individual needs for academic accommodation.

All participants are welcome to attend class via zoom instead of in person for any reason at any time. If you do attend class in person, the University of lowa strongly encourages everyone to be vaccinated against COVID-19 and to wear a face mask in all classroom settings and during in-person office hours. If it possible that you have been exposed to COVID-19 or any other illness, please DO NOT attend class in person! Similarly, if the instructor has been exposed to illness or the weather prohibits safe travel to class, the course will move to a temporary zoom-only format to protect all course participants. When using zoom, please
provide the name you wish for us to call you inside your zoom account (i.e., so that it appears on your window while in use). Student use of cameras and microphones while on zoom is also encouraged but not required (out of respect for your privacy and/or limited bandwidth). Please note that class video recordings streamed to YouTube will NOT include any video from course participants (only the class audio and screen share from the instructor will be captured). Participants who do not wish for their audio to be captured can use the zoom chat window (which also allows for private direct messages to the instructor).

The University of lowa is committed to making the class environment (in person or online) a respectful and inclusive space for people of all gender, sexual, racial, religious, and other identities. Toward this goal, students are invited to optionally share the names and pronouns they would like their instructors to use to address them. The University of lowa prohibits discrimination and harassment against individuals on the basis of race, class, gender, sexual orientation, national origin, and other identity categories. For more information, contact the Office of Institutional Equity. Additional university guidelines about classroom behavior and other student resources are provided here, and the university acknowledgement of land and sovereignty is here.

Respect for The Rest of Your World:

The instructor realizes that this course is not your only obligation in your work or your life. While class attendance in real time is not mandatory, it is strongly encouraged because frequent review of the material will be your best strategy for success in this course. However, if work or life events may compromise your ability to succeed, please contact the instructor for a confidential discussion so that we can work together to make a plan for your success. Please do not wait until you are too far behind to try to catch up!

Schedule of Events for Weeks 1-3:

Week Number	Weekday and Date		Topics	Readings and Resources for Each Topic
1	M	1/17	NO HOMEWORK (HW) OR FORMATIVE ASSESSMENT (FA) DUE	
	T	1/18	MEET ON ZOOM ONLY Lecture 0: Introduction to this Course	
	R	1/20	MEET ON ZOOM ONLY Lecture 0, continued	
2	M	1/24	HW0 (2 points extra credit) DUE ONLINE BY 11:59 PM	
	T	1/25	MEET ON ZOOM ONLY Lecture 0, continued	Agresti (2015) ch. 1-3 Hoffman (2015) ch. 2 Enders (2010) ch. 3
			Lecture 1 and Example 1: Review of General Linear Models	Darling \& Hayes (2016) ch. 10 Finsaas \& Goldstein (2021) Johfre \& Freese (2021)
	R	1/27	Lecture 1 and Example 1, continued	
3	M	1/31	FA1 DUE VIA ICON BY 11:59 PM	
	T	2/1	Lecture 1 and Example 1, continued	
	R	2/3	MEET ON ZOOM ONLY Lecture 1 and Example 1, continued	

Schedule of Events for Weeks 4-10:

Schedule of Events for Weeks 11-17:

Week Number	Weekday and Date		Topics	Readings and Resources for Each Topic
11	M	3/28	HW3 (based on Example 2b) DUE ONLINE BY 11:59 PM	
	T	3/29	Lecture 4 and Example 4a, continued	
	R	3/31	Lecture 4 and Example 4a, continued Example 4b: Models for Skewed Continuous Outcomes	H \& H ch. 6 Knief \& Forstmeier (2021) Konstantopoulos et al. (2019)
12	M	4/4	FA4 DUE VIA ICON BY 11:59 PM	Agresti (2015) ch. 9 H \& H ch. 18-19 Kumle et al. (2021)
	T	4/5	Lecture 4, continued Review: Discussion of HW4 and FA4	
	R	4/7	Example 4b, continued Lecture 5: Multivariate Models via Univariate Software	
13	M	4/11	HW4 (based on Example 3) DUE ONLINE BY 11:59 PM	
	T	4/12	Lecture 5, continued	
		4/14	Lecture 5, continued Example 5a Part 1: Models for Triadic Family Outcomes	
14	M	4/18	FA5 DUE VIA ICON BY 11:59 PM	Hoffman (2015) ch. 3
	T	4/19	Lecture 5 and Example 5a Part 1, continued	
	R	4/21	Lecture 5 and Example 5a Part 1, continued	
			(planned Examples 5b and 5c not presented)	
15	M	4/25	HW5 (based on Examples 5a Part 1) DUE ONLINE !!! WED 4/27 !!! BY 11:59 PM	Enders (2010) ch. 4-5 MacKinnon (2008) ch. 6
	T	4/26	Lecture 6: Multivariate Models via Path Analysis	
	R	4/28	Lecture 6, continued Example 5a Part 2 (using materials posted 4/14/22)	
16	M	5/2	FA6 DUE VIA ICON BY 11:59 PM Lecture 6 and Example 5a Part 2, continued Lecture 6, continued Example 6a: Path Models for Mediation with Normal Outcomes Example 6b: Path Models for Mediation with Binary Outcomes	
	T	5/3		
	R	5/5		
	T	5/10	NO CLASS, but office hours from 12:30-4:30 PM	
	R	5/12	NO CLASS, but office hours from 12:30-4:30 PM	
17	F	5/13	HW6 (based on Example 6a) DUE ONLINE BY 5:00 PM ALL OUTSTANDING WORK MUST BE COMPLETED BY 5:00 PM	

