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• Topics:

➢ Taxonomy of multivariate dependency: balanced vs. unbalanced

➢ Multivariate models: in univariate vs. “truly multivariate” software

➢ 𝑹 matrix choices for residual variance and covariance

➢ Adding dependency indirectly via random intercept variance

➢ Fixed effects parameterization choices: 

direct slopes vs. differences in slopes
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3 Parts of Generalized Linear Models

A. Link Function: Transformation of conditional mean used to 
keep predicted outcomes within the bounds of the outcome

B. Same Linear Predictor: How the model fixed effects linearly 
predict the link-transformed conditional mean of the outcome

➢ Btw, I call fixed effects the “model for the means” more generally

C. Conditional Distribution: How the outcome residuals should 
be distributed given the possible values of the outcome

• Now we need to consider how the model needs to adapt 
when residuals are correlated → capture “dependency”

➢ Btw, I call this idea the “model for the variance” more generally
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Types of Multivariate Dependency
• Dependency (aka, “residual correlation”) arises whenever multiple 

outcomes are collected from the same sampling unit, for example:

➢ A single outcome across repeated occasions, under multiple conditions, 
or multiple measures from the same person (“repeated measures” data)

➢ Multiple persons from the same pair (“dyadic” data)

➢ Multiple persons from the same group (“clustered” data)

• A key distinction in guiding modeling options is whether the multiple 
outcomes are “balanced”—is structured the same for every sampling unit

➢ Balanced: all persons have the same potential occasions, conditions, or 
measures (where potential allows missing values) from a common set

➢ Unbalanced: no common set (e.g., observed occasions differ across 
persons; number of persons within a group differs across groups)

• We will not cover unbalanced outcomes in this class—they will be covered 
instead in classes focused on multilevel models (aka, mixed-effects 
models, hierarchical linear models) involving random intercepts and slopes
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Estimating (Balanced) Multivariate Models
• Multivariate models can be estimated by “tricking” univariate software for 

general(ized) linear models (e.g., SAS MIXED, STATA MIXED, R GLS) if each
variable is either a predictor OR an outcome, not both, such as when:

➢ You want to examine mean differences across the outcomes (e.g., over 
time or across conditions, as in traditional Repeated Measures ANOVA)

➢ You want to test differences in the slopes of predictors across outcomes 
(as in traditional multivariate analysis of variance, or MANOVA)

➢ A big downside for generalized models is that some parameters are forced equal 
across outcomes (e.g., categorical submodel intercepts, over-dispersion scale factors) 

• Multivariate models will need to be estimated in “truly” multivariate 
software instead (i.e., as path analysis models or structural equation models) 
if some variables are both predictors and outcomes, such as in mediation

➢ e.g., X → M → Y, in which M is both an outcome of X and a predictor of Y, 
which involves regressions instead of correlations between outcomes

➢ Path analysis can be more flexible for generalized models (options differ by program)

• For both types of analyses, we will use likelihood estimation instead of 
ordinary least squares, so that cases with missing outcomes are not removed 
from the model (for what happens with missing predictors, stay tuned)
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Back to General Linear Models…
• Regardless of software, multivariate relations among outcomes 

from the same sampling unit can be specified in one of two ways:

➢ Directly → is only possible for models with normal residuals (GLM)

▪ Linear predictor will only include fixed effects, like usual, because 
residual dependency is captured directly via residual covariances

➢ Indirectly → is the only option using true likelihood estimation using 
non-normal conditional distributions (i.e., generalized linear models)

▪ Add (latent) random intercept to the linear predictor to capture residual 
dependency (so the usual conditional distributions can still be used)

• To understand the difference, we first need to describe models for 
independent observations using new vocabulary—fun with matrices!

➢ Let’s start with this general linear model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊

▪ In this “scalar” notation, the assumed independence is hidden… 

▪ What follows is the “direct” way of including relations among outcomes
(we will see the “indirect” way at work shortly, stay tuned…)
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Example: 𝑁 = 6 persons, 𝑛 = 1 outcome 
• This GLM as scalar: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒙𝒊 + 𝒆𝒊 with binary 𝒙𝒊 = 0 or 1

• This GLM using matrices with 𝑘 = 2 fixed effects: 𝒀 = 𝑿𝜷 + 𝑬

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6

=

1 𝑥1
1 𝑥2
1 𝑥3
1 𝑥4
1 𝑥5
1 𝑥6

𝛽0
𝛽1

+

𝑒1
𝑒2
𝑒3
𝑒4
𝑒5
𝑒6

=
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6

=

𝛽01 + 𝛽1𝑥1
𝛽01 + 𝛽1𝑥2
𝛽01 + 𝛽1𝑥3
𝛽01 + 𝛽1𝑥4
𝛽01 + 𝛽1𝑥5
𝛽01 + 𝛽1𝑥6

+

𝑒1
𝑒2
𝑒3
𝑒4
𝑒5
𝑒6
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𝒀 = 𝑁 ∗ 1 outcome vector

𝑿 = 𝑁 ∗ 𝑘 “design” matrix for predictors 

that have fixed effects

𝜷 = 𝑘 ∗ 1 fixed effects vector

𝑬 = 𝑁 ∗ 1 residual vector

where (by default) 𝒆𝒊~Normal 0, 𝜎𝑒
2

Across all 6 

persons, the 

combined 

residual 

variance-

covariance 

matrix is “VC”:

𝜎𝑒
2 0 0 0 0 0

0 𝜎𝑒
2 0 0 0 0

0 0 𝜎𝑒
2 0 0 0

0 0 0 𝜎𝑒
2 0 0

0 0 0 0 𝜎𝑒
2 0

0 0 0 0 0 𝜎𝑒
2

𝒀 𝑿 𝜷 𝑬

Off-diagonal 0 values → independent residuals

𝜎𝑒
2
→ all persons share common residual variance
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Review: Univariate Normal PDF
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• This PDF tells us how 

likely (i.e., tall) any value 

of 𝒚𝒊 is given two things:

➢ Conditional mean ෝ𝒚𝒊

➢ Residual variance 𝝈𝒆
𝟐

• We can see this work 

using the NORMDIST 

function in excel!

➢ Easiest for empty model:

𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊

• We can check our math 

via software using ML!
Sum over persons of log of 𝑓(y𝑖)= 

Model Log-Likelihood → Model Fit

https://en.wikipedia.org/wiki/Normal_distribution
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Univariate ML via Excel “NORMDIST”
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Mean 5.19 5.24

Variance 6.56 2.00

Right Wrong

Outcome Log(Height) Log(Height)

1.0 -3.20 -5.76

2.1 -2.59 -3.73

3.0 -2.22 -2.52

4.3 -1.92 -1.49

4.6 -1.89 -1.37

6.2 -1.94 -1.50

7.3 -2.20 -2.33

7.6 -2.30 -2.66

7.8 -2.38 -2.90

8.0 -2.46 -3.17

SUM =  Model LL = taller is better

-23.09 -27.42
-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

1 2 3 4 5 6 7 8

Right Answers = 

tallest possible 

function across 

all persons

Key idea: Normal Distribution formula → data height
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Tricking Univariate into Multivariate…
• What if the 6 observations were 2 outcomes (e.g., T1 and T2 

occasions here) each from 3 persons instead? We need a new 
model that builds in per-person residual dependency (and maybe 
different residual variances across outcomes as well, stay tuned)

• If the outcomes are in separate columns, then to use univariate 
software, we need to “stack” the separate outcomes into a single 
column (i.e., go from a “wide” to “long” data structure) like this:
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Person yT1 yT2

1 𝑦1𝑡1 𝑦1𝑡2

2 𝑦2𝑡1 𝑦2𝑡2

3 𝑦3𝑡1 𝑦3𝑡2

Person Time x y

1 1 0 𝑦1𝑡1

1 2 1 𝑦1𝑡2

2 1 0 𝑦2𝑡1

2 2 1 𝑦2𝑡2

3 1 0 𝑦3𝑡1

3 2 1 𝑦3𝑡2

“Wide” Structure: 

1 row per person

“Long” Structure: 

1 row per outcome
In the “long” structure 

we add a time column 

to index which occasion 

is included in each row

We also need to make 

a centered version of 

the time index, 𝑥, to 

include as a predictor
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Multivariate: 𝑁 = 3 persons, 𝑛 = 2 outcomes

• Multiv. GLM: 𝒚𝒊𝒕 = 𝜷𝟎𝟎 + 𝜷𝟎𝟏 𝒙𝒊𝒕 + 𝒆𝒊𝒕 with binary 𝒙𝒊 = 0 or 

1 requires a per-person model in matrices: 𝒀𝒊 = 𝑿𝒊𝜷 + 𝑬𝒊

𝑦𝑡1
𝑦𝑡2

=
1 𝑥𝑡1
1 𝑥𝑡2

𝛽00
𝛽01

+
𝑒𝑡1
𝑒𝑡2
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where 𝒆𝒊𝒕~MVN 0,𝑹 , and 2*2 𝑹 is 

chosen to predict 3 unique terms:

𝑹 =
𝜎1
2 𝜎1,2

𝜎1,2 𝜎2
2

(same matrix pattern would be 

repeated including whichever 

complete rows each person has)

Across all 3 persons, the combined 

residual variance-covariance matrix 

now has a “block diagonal” structure 

with three 2*2 per-person pockets of 

variances (𝜎2) and covariance (𝜎):

𝒀𝒊 𝑿𝒊 𝜷 𝑬𝒊

Off-block-diagonal 0 values → no residual covariances across persons

Same symbols → all persons share common residual variances and covariance

𝜎1
2 𝜎1,2 0 0 0 0

𝜎1,2 𝜎2
2 0 0 0 0

0 0 𝜎1
2 𝜎1,2 0 0

0 0 𝜎1,2 𝜎2
2 0 0

0 0 0 0 𝜎1
2 𝜎1,2

0 0 0 0 𝜎1,2 𝜎2
2

MVN = 

multivariate normal
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Welcome to Multivariate Normal!
• Same principle as univariate normal, but LL is calculated for 

each person’s SET of outcomes (then LL is summed over persons)

• Model parameters to be found include parameters that predict 
EACH outcome’s residual variance and all residual covariances

• So each outcome’s likelihood height has its own dimension, but 
the joint shape depends on the covariance between outcomes:

11

No covariance Negative covariance
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Multivariate Normal for 𝒀𝑖

(height for all 𝑛 outcomes for person 𝑖)

• In MVN, the single ෝ𝒚𝒊 per person is replaced with 𝑿𝒊𝜷 from the model

• The model also gives 𝑹𝑖 → the predicted residual variance-covariance 

matrix across outcomes (built using the same terms for each person here)

• Uses |𝑹𝑖| = determinant of 𝑹𝑖 = summary of non-redundant info

➢ Reflects sum of variances across outcomes controlling for covariances

• (𝑹𝑖)
-1
→ matrix inverse → like dividing (so can’t be 0 or negative)

➢ (𝑹𝑖)
-1 must be “positive definite”, which in practice means no 0 residual 

variances and no out-of-bounds residual correlations between outcomes

➢ Otherwise, programs use “generalized inverse” → questionable results
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What about Missing Data? Bad news…
• In univariate software using likelihood 

estimation: each row must be complete
(otherwise, software drops it from model)

➢ So whole people are not removed if 
they are missing some outcomes

➢ (Untestable) assumption is then “missing 
at random” which means random after 
taking into account the person’s other 
rows—said differently, the shape of each 
person’s likelihood function would stay the 
same given complete or incomplete cases

• Whole people will be removed if they are 
missing a person-level predictor, which 
then implies the predictor is missing
completely at random (what it sounds like)

➢ Two solutions: multiple imputation, or 
treat the predictor as an outcome in a 
“truly” multivariate model—both require 
making distributional assumptions for the 
predictor with missing values… stay tuned
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Person Time x y

1 1 0 𝑦1𝑡1

1 2 1 𝑦1𝑡2

2 1 0 𝑦2𝑡1

2 2 1 𝑦2𝑡2

3 1 0 𝑦3𝑡1

3 2 1 𝑦3𝑡2

“Long” Structure: 

1 row per outcome

For now, we will 

pre-select our sample for 

complete observations to 

keep the sample (and all 

model fit statistics) 

comparable across models.
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Multivariate: 𝑁 = 2 persons, 3 outcomes
• Multiv. GLM: 𝒚𝒊𝒕 = 𝜷𝟎𝟎 + 𝜷𝟎𝟏 𝒙𝟏𝒊𝒕 + 𝜷𝟎𝟐 𝒙𝟐𝒊𝒕 + 𝒆𝒊𝒕 with 

2 binary predictors per-person model: 𝒀𝒊 = 𝑿𝒊𝜷 + 𝑬𝒊

𝑦𝑡1
𝑦𝑡2
𝑦𝑡3

=

1 𝑥1𝑡1 𝑥2𝑡1
1 𝑥1𝑡2 𝑥2𝑡2
1 𝑥1𝑡3 𝑥2𝑡3

𝛽00
𝛽01
𝛽02

+

𝑒𝑡1
𝑒𝑡2
𝑒𝑡3
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where 𝒆𝒊𝒕~MVN 0, 𝑹 , and 3*3 𝑹 is 

chosen to predict 6 unique terms:

𝑹 =

𝜎1
2 𝜎1,2 𝜎1,3

𝜎1,2 𝜎2
2 𝜎2,3

𝜎1,3 𝜎2,3 𝜎3
2

(same matrix pattern would be 

repeated including whichever 

complete rows each person has)

Across both persons, the combined 

residual variance-covariance matrix 

now has a “block diagonal” structure 

with two 3*3 per-person pockets of 

variances (𝜎2) and covariances (𝜎):

𝒀𝒊 𝑿𝒊 𝜷 𝑬𝒊

Off-block-diagonal 0 values → no residual covariances across persons

Same symbols → all persons share common residual variances and covariances

𝜎1
2 𝜎1,2 𝜎1,3 0 0 0

𝜎1,2 𝜎2
2 𝜎2,3 0 0 0

𝜎1,3 𝜎2,3 𝜎3
2 0 0 0

0 0 0 𝜎1
2 𝜎1,2 𝜎1,3

0 0 0 𝜎1,2 𝜎2
2 𝜎2,3

0 0 0 𝜎1,3 𝜎2,3 𝜎3
2
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What should the 𝑹 Matrix Look Like? 
• Goal: predict all unique variances and covariances in 𝑹

➢ The “direct” way of doing so uses only different 𝑹 patterns (“R-side” models, 
as opposed to “G-side” models with random intercepts, stay tuned)

• Next are 3 “direct” choices relevant for unordered multiple outcomes
(btw, there are way more choices for outcomes ordered in time or space)

➢ SAS MIXED: REPEATED DVindex /TYPE=?? SUBJECT=PersonID R RCORR;

➢ SAS GLIMMIX: RANDOM DVindex /TYPE=?? SUBJECT=PersonID RESIDUAL;

➢ Stata MIXED: Goes into option residuals(??, t(DVindex))

▪ Not possible in STATA GLM or MEGLM (as far as I know)

➢ R GLS (within LME package): gls(correlation= , weights= )

• The 3 choices for 𝑹 patterns we will use differ in 2 respects:

➢ Are the residual variances (𝜎2) the same across outcomes?

▪ If so, then are residual covariances (𝜎) are also the same across 
outcome pairs (remember: covariance is unstandardized correlation)?

▪ If not, might residual correlations (𝑟) still be the same across 
outcome pairs (because covariances will differ if variances differ)?
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Option 1 for 𝑹 Patterns: The Answer Key
• Option 1 is an “unstructured” 𝑹 matrix: all variances and covariances are 

estimated separately (i.e., non-constant, outcome-specific dependency)

➢ UN is a description, not a prediction, 
so it will fit best (i.e., as tallest LL)

➢ Requires parameters = 
𝑛 ∗(𝑛+1)

2
for 

𝑛 outcomes  (so is hard to estimate 
past 5ish outcomes in smaller samples)

➢ Left: 𝑹𝐜𝐨𝐯 is a covariance matrix; 𝑹𝐜𝐨𝐫 is a correlation matrix

• Btw, an unstructured 𝑹 matrix is also known as a “multivariate (MANOVA)  
model” or the “multivariate approach” to repeated measures (RM) ANOVA 

➢ Why the difference? When people say “RM ANOVA” or “MANOVA” they are 
often referring to the use of OLS instead of REML (or ML) estimation

▪ Same model, but OLS uses only complete outcomes per person
(so outcomes are assumed missing completely at random), but likelihood 
estimation uses all possible outcomes (assumed missing at random instead)

▪ Btw, generalized least squares (GLS) is how fixed effects arrive after using 
REML or ML to search for the most likely variance model parameters
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Two More Choices for Patterns of 𝑹
• Option 2 is a “compound symmetry heterogeneous” 𝑹 matrix: separate 

variances, but covariances are created using a common correlation (“CSH”):

➢ Uses 𝒏 + 𝟏 total parameters; given different outcome residual variances, all 

outcome residuals are correlated to the same extent (i.e., constant dependency)
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2
1 1 2 1 3

2
cov 2 1 2 2 3

2
3 1 3 2 3

σ CSH CSH

CSH σ CSH

CSH CSH σ

    
 

=     
 

     

R co r

1 CSH CSH

CSH 1 CSH

CSH CSH 1

 
 

=
 
  

R

• Option 3 is a “compound symmetry” 𝑹 matrix: 

equal residual variances and equal residual covariances 

(so only 2 parameters no matter how many outcomes)

➢ All dependency is constant 

across outcomes and is 

caused by person mean 

diffs: the “CS” parameter

➢ Also known as the “univariate” approach to RM ANOVA (if using least squares) and 

equal to “random intercept only” model (the “indirect” way of capturing dependency)

2 2
e e

co r 2 2
e e

2 2
e e

CS CS
1

CS CS

CS CS
1

CS CS

CS CS
1

CS CS

 
 

+  +  
 

=  
+  + 

 
 

+  +   

R2
e

2
cov e

2
e

CS CS CS

CS CS CS

CS CS CS

 + 
 

= +  
 

+   

R

CSH is still not 

available within 

STATA MIXED 
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How to Choose among 𝑹 Matrices
• Use likelihood ratio tests (LRT): treat difference in −2LL as regular 𝜒2

with DF = # parameters different (also, smallest AIC and BIC win)

➢ VC (equal residual variances, no residual covariances) is nested in all others

▪ CS fit better than VC? There’s residual covariance (dependency) across outcomes

➢ CS is nested in CSH, which are both nested in UN (= the data)

▪ CSH fit better than CS? Then residual variances need to differ by outcome

▪ UN fit better than CSH? Then res. correlations need to differ across outcome pairs

• Goal: find a simpler model that fits not worse than UN 

➢ UN will always fit best by −2LL because it is trying to create the complete 
data results (assuming missing at random, so may differ from the data)

➢ Why not just use UN always? It may not always be estimable, 
and using a simpler model that fits not worse can lead to greater 
power (because more unnecessary parameters → less power)

• Btw, 𝑹 matrix residual variances and covariances can also be allowed 
to differ across groups (see example 5c); test if that helps with LRTs

• And in univariate models, residual variance can differ by predictors, too!
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Assessing Relative Model Fit, In General
• Model for the Means (linear predictor of fixed effects) →

which fixed effects of predictors are included in the model 

➢ Because fixed effects of predictors are unbounded, you can always use 
univariate or multivariate Wald tests to see if they contribute to the 
model (with denominator DF depending on software availability)

➢ Could use LRTs, but only for models estimated with maximum likelihood 
(not residual maximum likelihood, a better choice for normal residuals)

• Model for the Variance → what the pattern of variance and 
covariance of residuals from the same sampling unit should be

➢ DOES require assessment of relative model fit using LRTs: Because 
variances cannot be negative, you cannot use Wald test p-values 
(i.e., that show up in MIXED output next to the variance estimate)

➢ Conditional distributions can only be compared using LRTs (usually 
with a  mixture 𝜒2) or information criteria (AIC, BIC) if they are nested

▪ e.g., Poisson and Negative Binomial differ by “stretchy 𝑘”; binomial and 
beta-binomial differ by “stretchy 𝜙”; zero-inflation models add an 
intercept in another submodel that predicts the logit of being an extra 0
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Introducing G & R→ V (Person is Unit)
• e.g., For three outcomes per person, 

a Compound Symmetry R matrix
would have this pattern:

➢ Shown below is how CS can be produced an equivalent way, in which 
“CS” is the same thing as “random intercept variance” (τU0

2 ) which is 

distinguished from “residual variance” (σe
2)
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2
e

2
i e

2
e

CS CS CS

CS CS CS

CS CS CS

 + 
 

= +  
 

+   
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0 0 0

0 0 0
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2 2 2 2
U e U U

2 2 2 2
i U U e U

2 2 2 2
U U U e

  +   
 
 =   +  
 
    +  

V
0

2
Uτ =  G

2
e

2
i e

2
e

σ 0 0

0 σ 0

0 0 σ

 
 

=  
 
  

R

Total Predicted Residual 

Variance-Covariance Matrix is 

called V Matrix (dimensions 

are person-specific)

Random effect 

source(s) of person 

dependency are 

moved to G Matrix 

(dimensions are NOT 

person-specific)

Remaining within-

person variance and 

covariance is in R

matrix (dimensions 

are person-specific)

“+” “=”

So 𝑪𝑺 = 𝝉𝑼𝟎
𝟐 , but what is a “U” anyway ????
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Univariate vs. Multivariate Models

“Indirect” Dependency via 𝑼𝒊𝟎
• Univariate General Linear Model (used for 1 outcome):

𝒚𝒊 = [𝜷𝟎 + 𝜷𝟏 𝒙𝒊 +⋯] + 𝒆𝒊
➢ 𝜷 Fixed effects → create conditional mean from predictors

➢ 𝒆𝒊 = person-specific residual deviation from predicted 𝑦𝑖

• Multivariate General Linear Model (for >1 outcomes):

𝒚𝒊𝒕 = [𝜷𝟎𝟎 + 𝜷𝟏𝟎 𝒙𝒊 +⋯] + 𝑼𝒊𝟎+ 𝒆𝒊𝒕
➢ 𝜷 Fixed effects → create conditional mean from predictors 

➢ 𝑼𝒊𝟎 = random intercept = person deviation from predicted 𝑦𝑖𝑡 mean

➢ 𝒆𝒊𝒕 = outcome-specific residual deviation from predicted by 𝑦𝑖𝑡 + 𝑼𝒊𝟎

21



PSQF 6270: Lecture 5 22

𝑼𝒊𝟎

𝑼𝒊𝟎 = random intercept that represents BP mean variance in 𝒚𝒊𝒕
𝒆𝒊𝒕 = residual that represents WP remaining variance in 𝒚𝒊𝒕

𝒆𝒊𝟏
𝒆𝒊𝟐 𝒆𝒊𝟑 𝒆𝒊𝟒

𝒆𝒊𝟓

In other words: 𝑼𝒊𝟎 represents a source of 

constant dependency (covariance) due to 

mean differences in 𝒚𝒊𝒕 across persons

Example “Error” in a Multivariate GLM
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Indirect Dependency via a Random Intercept

• A scalar example GLM with 𝑛 = 3 outcomes (A, B, and C): 

𝒚𝒊𝒕 = 𝜷𝟎𝟎 + 𝜷𝟎𝟏 𝒅𝒗𝑨𝒊𝒕 + 𝜷𝟎𝟐 𝒅𝒗𝑩𝒊𝒕 +𝑼𝒊𝟎 + 𝒆𝒊𝒕

• In matrix notation, this becomes 𝒀𝒊 = 𝑿𝒊𝜷 + 𝒁𝒊𝑼𝒊 + 𝑬𝒊

𝑦𝑡1
𝑦𝑡2
𝑦𝑡3

=

1 𝑑𝑣𝐴𝑡1 𝑑𝑣𝐵𝑡1
1 𝑑𝑣𝐴𝑡2 𝑑𝑣𝐵𝑡2
1 𝑑𝑣𝐴𝑡3 𝑑𝑣𝐵𝑡3

𝛽00
𝛽01
𝛽02

+
1
1
1

𝑈𝑖0 +

𝑒𝑡1
𝑒𝑡2
𝑒𝑡3

23

𝒀𝒊 = 𝑛 ∗ 1 outcome vector

𝑿𝒊 = 𝑛 ∗ 𝑘 matrix for predictors 

that have fixed effects

𝜷 = 𝑘 ∗ 1 fixed effects vector

𝒁𝒊 = 𝑛 ∗ 𝑢 matrix for predictors 

that have random effects

𝑛 = # outcomes for person 𝑖
𝑘 = # model fixed effects

𝑢 = # model random effects

𝑼𝒊 = 𝑢 ∗ 1 random effects vector

𝑬𝒊 = 𝑛 ∗ 1 residual vector

𝒀𝒊 𝑿𝒊 𝜷 𝒁𝒊 𝑼𝒊 𝑬𝒊
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Predicted 𝑽 in Multivariate GLM: Total Variance and 

Covariance across 𝑛 = 3 Outcomes for Person 𝑖

24

𝒁𝑖 = 𝑛 𝑥 𝑢 values of predictors 

with random effects, so can differ 

per person (u = 1: intercept)

𝒁𝑖
𝑇 = 𝑢 𝑥 𝑛 values of predictors with 

random effects (just 𝒁𝑖 transposed)

𝑮𝑖 = 𝑢 𝑥 𝑢 estimated random effects 

variances and covariances, so will 

be the same for all persons

(𝜏𝑈
2
0

= intercept variance)

𝑹𝑖 = 𝑛 𝑥 𝑛 outcome-specific 

residual variances and covariances, 

so will be same for all persons 

(here, just diagonal 𝜎𝑒
2, although 

it’s possible to add heterogeneous 

variances and/or covariances)
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Same result: 

compound 

symmetry, 

either 

indirectly 

(G&R→V) 

or directly 

(CS for R)
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Distribution Terminology for MVN

• Scalar: 𝒚𝒊𝒕 = 𝜷𝟎𝟎 + 𝜷𝟎𝟏 𝒅𝒗𝑨𝒊𝒕 + 𝜷𝟎𝟐 𝒅𝒗𝑩𝒊𝒕 +𝑼𝒊𝟎 + 𝒆𝒊𝒕
Matrix: 𝒀𝒊 = 𝑿𝒊𝜷 + 𝒁𝒊𝑼𝒊 + 𝑬𝒊

• This model says the “marginal”

distribution of the total column of 𝒀 outcomes is:  𝒀 ~ N(𝑿𝜷, 𝑽)

• This model says the “conditional” distribution of the 

total column of 𝒀 outcomes is:  𝒀|𝑼 ~ N(𝑿𝜷 + 𝒁𝑼, 𝑹)

➢ Conditional = after controlling for fixed AND random effects

➢ Marginal and conditional “general” linear models both have same normal 

distribution (which makes ML estimation relatively straightforward)
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𝒀𝒊 = 𝑿𝒊𝜷 where 𝒀𝒊 is 

the conditional Mean 

created by fixed effects 

in the model for means
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Model for the Variance creates 𝑽𝑖
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Fewer Options for Generalized Models
• Conditional distribution in multivariate general linear models:
𝒀|𝑼 ~ N(𝑿𝜷 + 𝒁𝑼,𝑹)

• But 𝑹 and choices for its patterns doesn’t exist for generalized model 
variants (when using true maximum likelihood, at least)

➢ No separately estimated constant residual variance (e.g., in Bernoulli, 
multinomial, Poisson, or binomial) means no directly estimated residual 
covariances are possible for multivariate models in any software

➢ Univariate software (e.g., SAS GLIMMIX, STATA/R GLM) does not have 
separate “stretchy” terms by outcome for negative binomial, beta-binomial, 
or gamma (and no separate submodel intercepts for ordinal outcomes)

• So to maintain independent observations in the conditional distribution, 
all multivariate outcome relationships must be modeled indirectly in the 
linear predictor using regressions among outcomes OR random effects

➢ In tricking univariate software into multivariate, can use random effects only

➢ In software for path analysis or structural equation models (SEM), 
can use regressions between outcomes OR random effects

• Estimation becomes harder because random effects must be integrated 
out of the likelihood (i.e., via adaptive Gaussian quadrature or Bayes)

26
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Use of Multivariate Models → Strategies:
• Repeated measures designs (e.g., sampling over occasions or 

conditions) readily lend themselves to multivariate models

➢ Goal is to examine mean differences across the per-person outcomes 

(i.e., as in traditional RM ANOVA but using REML or ML for missing data)

➢ Usual “general intercept” fixed effects strategy is likely most useful

• Multivariate models are also the optimal way to predict multiple 

outcomes (DVs)—simultaneously rather than in separate models

➢ Examine differences in predictor effects across outcomes (and then 

constrain effects that are similar in size to be equal for greater power)

▪ Outcomes should be transformed to common scale (such as by z-scoring them) 

if not *similarly interpretable* already (e.g., such as variants of same scale)

▪ If so, a “DV-specific intercepts” fixed effects strategy may be more useful 

➢ Predicting each outcome is a better alternative to predicting difference 

scores or to “controlling for time 1” ANCOVA (“residualized change”, bleh)
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Differences in Effect Size across Outcomes

Absolute Value of Effect Size

0

p = .05

Significant for outcome A?    Yes

Significant for outcome B?     Yes

Difference in effect size 

between outcomes A and B?

Scenario 1: Fixed slope is significant for both outcomes:

Just because a predictor slope is significant for both outcomes

does not mean it has the same magnitude of relationship with 

both outcomes!

28
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Differences in Effect Size across Outcomes

Absolute Value of Effect Size

0

Significant for outcome A?      No

Significant for outcome B?       Yes

Difference in effect size 

between outcomes A and B?

Scenario 2: Fixed slope is significant for outcome B only:

p = .05

Also, just because a predictor slope is non-significant for one 

outcome but significant for another outcome does not mean 

it has different magnitudes of relationships across outcomes!
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Fixed Effects Parameterizations
• Here are 2 ways of fitting the same model predicting 𝑦𝑖𝑑 (a ”long” 

stacked outcome indexed by a categorical variable 𝐷𝑉=A, B, or C) 

from a general intercept (i.e., a single column of 1s), a person-level 

predictor 𝑥𝑖 , and 3 dummy-coded predictors: dvA, dvB, dvC: 

➢ If DV=A, then dvA=1, dvB=0, dvC=0

➢ If DV=B, then dvA=0, dvB=1, dvC=0

➢ If DV=C, then dvA=0, dvB=0, dvC=1

1. “General intercept”: provides fixed effects for a reference DV 

and DV differences in fixed effects relative to the reference DV

➢ So fixed effects for non-reference DV are found as linear combinations

2. “DV-specific intercepts”: provides effects separately by DV

➢ So DV differences in fixed effects are found as linear combinations

➢ This is always how path models are parameterized (stay tuned)
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Outcome “DV” as a Categorical Predictor
• DV-specific dummy codes can be replaced by a categorical DV predictor

➢ SAS: put in on the CLASS statement; STATA: use i. prefix; R: use “factor” 

• For a predictor with 𝐶 categories, the program automatically then 
creates 𝑪 new internal variables, for example “DV” with 𝐶 = 3: 

31

DV _IsA _IsB _IsC

A 1 0 0

B 0 1 0

C 0 0 1

• It then determines how many of these internal variables are needed to create 
𝐶 means—if using an intercept, then it’s 𝐶 − 1; without the intercept, is 𝐶

• It enters them until it hits that criterion—the one left out is your reference; 
if all 𝐶 internal variables are included, then each is a custom intercept

• When referring the categorical predictor (e.g., ESTIMATE, LINCOM, CONTRAST), 
you must tell it what to do with EACH of these internal variables [e.g., 1 0 0 ]

Default reference category by program:

• SAS (and SPSS): highest/last is reference

• STATA and R: lowest/first is reference 

➢ Can easily change reference category, 
e.g. in STATA, last = ref → ib(last).DV
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“General Intercept” Parameterization
• Empty Model:  ෝ𝒚𝒊𝒅 = 𝜷𝟎𝟎 + 𝜷𝟎𝟏 𝒅𝒗𝑨𝒊𝒅 + 𝜷𝟎𝟐 𝒅𝒗𝑩𝒊𝒅

➢ 𝛽00 = intercept for DV=C (i.e., when dvA=0 and dvB=0)

➢ 𝛽01 = mean difference for DV=C vs. DV=A

➢ 𝛽02 = mean difference for DV=C vs. DV=B

➢ 𝛽02 − 𝛽01 = mean difference for DV=A vs. DV=B

➢ 𝛽00 + 𝛽01 = intercept for DV=A

➢ 𝛽00 + 𝛽02 = intercept for DV=B

• Add 𝒙𝒊 predictor: + 𝜷𝟏𝟎 𝒙𝒊 + 𝜷𝟏𝟏 𝒅𝒗𝑨𝒊𝒅 𝒙𝒊 + 𝜷𝟏𝟐 𝒅𝒗𝑩𝒊𝒅 𝒙𝒊

➢ 𝛽10 = 𝑥𝑖 slope for DV=C (i.e., when x*dvA=0 and x*dvB=0)

➢ 𝛽11 = difference in 𝑥𝑖 slope for DV=C vs. DV=A

➢ 𝛽12 = difference in 𝑥𝑖 slope for DV=C vs. DV=B

➢ 𝛽12 − 𝛽11 = difference in 𝑥𝑖 slope for DV=A vs. DV=B

➢ 𝛽10 + 𝛽11 = 𝑥𝑖 slope for DV=A

➢ 𝛽10 + 𝛽12 = 𝑥𝑖 slope for DV=B

32

With the general 

intercept (=1 for 

all), the dvA and 

dvB variables act 

like typical group 

differences (just 

between outcomes 

instead of predictor 

groups)
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“General Intercept” Parameterization
• Including a general intercept is convenient when differences 

between occasions or conditions are of most interest (i.e., then 
those difference scores are captured directly by fixed effects)

• Here are 2 equivalent versions of this model using SAS MIXED:

➢ CLASS PersonID DV;

MODEL y = dvA dvB x dvA*x dvB*x 

/ SOLUTION DDFM=Satterthwaite;

REPEATED DV / R RCORR TYPE=?? SUBJECT=PersonID;

➢ CLASS PersonID DV;

MODEL y = DV x DV*x 

/ SOLUTION DDFM=Satterthwaite;

REPEATED DV / R RCORR TYPE=?? SUBJECT=PersonID;

• Here are 2 equivalent versions of this model using STATA MIXED:

➢ mixed y c.dvA c.dvB c.x c.dvA#c.x c.dvB#c.x, /// 

|| personid: , noconstant variance reml ///

dfmethod(satterthwaite) residuals(??,t(DV)) 

➢ mixed y ib(last).DV c.x ib(last).DV#c.x, /// 

|| personid: , noconstant variance reml ///

dfmethod(satterthwaite)residuals(??,t(DV))
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Note SAS REPEATED 

and STATA RESIDUALS R 

matrices stay the same 

across syntax variants

I used ib(last) 

to make C the 

reference DV 

(as in SAS)
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“General Intercept” Parameterization
• Including a general intercept is convenient when differences 

between occasions or conditions are of most interest (i.e., then 

those difference scores are captured directly by fixed effects)

• Here are 2 equivalent versions of this model using R GLS 

(from NLME package, which allows customizable R matrices):

➢ Model = gls(data=Example5a, method="REML", 

model=y~1 +dvA +dvB +x +dvA:x +dvB:x,        

correlation=??, weights=??)

➢ Model = gls(data=Example5a, method="REML", 

model=y~1 +factor(DV3) +x + factor(DV3):x,        

correlation=??, weights=??)
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Note that R matrix (with covariances controlled by 
correlation and variances controlled by weights) 

would stays the same across syntax variants
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“DV-Specific Intercepts” Parameterization
• Empty Model:  ෝ𝒚𝒊𝒅 = 𝜷𝟎𝟎 𝒅𝒗𝑪𝒊𝒅 + 𝜷𝟎𝟏 𝒅𝒗𝑨𝒊𝒅 + 𝜷𝟎𝟐 𝒅𝒗𝑩𝒊𝒅

➢ 𝛽00 = intercept for DV=C (i.e., when dvA=0 and dvB=0)

➢ 𝛽01 = intercept for DV=A (i.e., when dvB=0 and dvC=0) 

➢ 𝛽02 = intercept for DV=B (i.e., when dvA=0 and dvC=0) 

➢ 𝛽01 − 𝛽00 = mean difference for DV=C vs. DV=A

➢ 𝛽02 − 𝛽00 = mean difference for DV=C vs. DV=B

➢ 𝛽02 − 𝛽01 = mean difference for DV=A vs. DV=B

• Add 𝒙𝒊 predictor: + 𝜷𝟏𝟎 𝒙𝒊 𝒅𝒗𝑪𝒅𝒊 + 𝜷𝟏𝟏 𝒙𝒊 𝒅𝒗𝑨𝒊𝒅 + 𝜷𝟏𝟐 𝒙𝒊 𝒅𝒗𝑩𝒊𝒅

➢ 𝛽10 = 𝑥𝑖 slope for DV=C (i.e., when x*dvA=0 and x*dvB=0)

➢ 𝛽11 = 𝑥𝑖 slope for DV=A (i.e., when x*dvB=0 and x*dvC=0)

➢ 𝛽12 = 𝑥𝑖 slope for DV=B (i.e., when x*dvA=0 and x*dvC=0)

➢ 𝛽11 − 𝛽10 = difference in 𝑥𝑖 slope for DV=C vs. DV=A

➢ 𝛽12 − 𝛽10 = difference in 𝑥𝑖 slope for DV=C vs. DV=B

➢ 𝛽12 − 𝛽11 = difference in 𝑥𝑖 slope for DV=A vs. DV=B
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Without the 

general intercept 

(=1 for all), the 

dvA, dvB, and dvC

dummy variables 

act like “switches” 

that turn on fixed 

effects for its DV
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“DV-Specific Intercepts” Parameterization
• Removing the general intercept is convenient when fixed effects per 

DV are of most interest or when not all DVs get all fixed effects 

• Here are 2 equivalent versions of this model using SAS MIXED:

➢ CLASS PersonID DV;

MODEL y = dvC dvA dvB dvC*x dvA*x dvB*x 

/ NOINT SOLUTION DDFM=Satterthwaite;

REPEATED DV / R RCORR TYPE=?? SUBJECT=PersonID;

➢ CLASS PersonID DV;

MODEL y = DV DV*x 

/ NOINT SOLUTION DDFM=Satterthwaite;

REPEATED DV / R RCORR TYPE=?? SUBJECT=PersonID;

• Here are 2 equivalent versions of this model using STATA MIXED:

➢ mixed y c.dvC c.dvA c.dvB c.DVc#c.x c.dvA#c.x c.dvB#c.x, /// 

noconstant || personid: , noconstant variance   ///

reml dfmethod(satterthwaite) residuals(??,t(DV)) 

➢ mixed y ib(last).DV ib(last).DV#c.x, /// 

noconstant || personid: , noconstant variance   ///

reml dfmethod(satterthwaite) residuals(??,t(DV)) 
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Note SAS REPEATED 

and STATA RESIDUALS 

stay the same; in 

STATA I used ib(last) to 

make C the reference 

DV (same as in SAS)
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“DV-Specific Intercepts” Parameterization
• Removing the general intercept is convenient when fixed effects per 

DV are of most interest or when not all DVs get all fixed effects 

• Here are 2 equivalent versions of this model using R GLS 

(from NLME package, which allows customizable R matrices):

➢ Model = gls(data=Example5a, method="REML", 

model=y~0 +dvC +dvA +dvB +dvC:x +dvA:x +dvB:x,        

correlation=??, weights=??)

➢ Model = gls(data=Example5a, method="REML", 

model=y~0 +factor(DV3) + factor(DV3):x,        

correlation=??, weights=??)
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Note that R matrix (with covariances controlled by 
correlation and variances controlled by weights) 

would stays the same across syntax variants
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Specifying Fixed Effects: Caveats
• Btw, to constrain the 𝑥𝑖 slope to be equal across DVs, remove its 

DV-interaction terms—just enter 𝑥𝑖 as a main effect (either version)

• You can mix-and-match parameterizations—but do so carefully!

➢ e.g., here is how to retain separate effects of 𝑥1𝑖 for DVs A, B, and C,

but have a slope of 𝑥2𝑖 only for DV=A and DV=B

➢ General intercept version: 

ො𝑦𝑖𝑑 = 𝛽00 + 𝛽01 𝑑𝑣𝐴𝑖𝑑 + 𝛽02 𝑑𝑣𝐵𝑖𝑑
+ 𝛽10 𝑥1𝑖 + 𝛽11 𝑑𝑣𝐴𝑖𝑑 𝑥1𝑖 + 𝛽12 𝑑𝑣𝐵𝑖𝑑 𝑥1𝑖

+ 𝛽21 𝑑𝑣𝐴𝑖𝑑 𝑥2𝑖 + 𝛽22 𝑑𝑣𝐵𝑖𝑑 𝑥2𝑖

➢ DV-specific intercept version: 

ො𝑦𝑖𝑑 = 𝛽00 𝑑𝑣𝐶𝑖𝑑 + 𝛽01 𝑑𝑣𝐴𝑖𝑑 + 𝛽02 𝑑𝑣𝐵𝑖𝑑
+ 𝛽10 𝑑𝑣𝐶𝑖𝑑 𝑥1𝑖 + 𝛽11 𝑑𝑣𝐴𝑖𝑑 𝑥1𝑖 + 𝛽12 𝑑𝑣𝐵𝑖𝑑 𝑥1𝑖

+ 𝛽21 𝑑𝑣𝐴𝑖𝑑 𝑥2𝑖 + 𝛽22 𝑑𝑣𝐵𝑖𝑑 𝑥2𝑖

➢ Either way, 𝛽21 and 𝛽22 give the effect of 𝑥2𝑖 for DV=A and DV=B 

(but it looks logically inconsistent in the general intercept version)
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Wrapping Up…
• When each sampling unit has >1outcome → multivariate models

➢ We need to add terms that capture dependency (correlated residuals), this 
semester for balanced designs (i.e., same potential outcomes for all units) 

➢ For plausibly normal outcomes, dependency can be modeled directly: 
we can allow same or different residual variances and covariances across 
outcomes (in a person-specific R matrix of type UN, CSH, or CS)

➢ We can use likelihood ratio tests (−2ΔLL as 𝜒2) to compare nested models 
to decide which fits least worse to protect our fixed effect SEs

➢ For other outcome types, dependency must be modeled indirectly by 
including random effects (which means more challenging estimation)

• For convenience, fixed effects can be specified in 2 different ways 

➢ Single general intercept → DV terms reflect DV differences

➢ Multiple DV-specific intercepts → DV terms are switches for own effects

• Univariate software for multivariate generalized linear models is less flexible 
than “truly” multivariate software—so onto path analysis models!!
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