
PSQF 6270: Lecture 3

Generalized Linear Models 

for Count Outcomes and 

Zero-Inflated Count Outcomes
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• Topics:

➢ Roadmap of models for non-normal outcomes

➢ Generalized linear models for count outcomes 

➢ Model adjustments for misfit to Poisson distribution

▪ Overdispersion, missing zeros, and too many zeros

➢ Summary of options in SAS, STATA, and R software for 

estimating models predicting discrete outcomes
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More Generalized Linear Models
• Generalized linear models: link-transformed conditional mean 

is predicted by the linear model; ML estimator uses not-normal 

conditional distributions in the outcome data likelihood

➢ Btw, in multilevel models, level-1 conditional model has some not-normal 

distribution, but level-2 random effects are usually multivariate normal

• Two parts: Link function + other conditional distribution

➢ Done: Categorical → Logit/Probit/Log-Log/C-Log-Log

▪ Bernoulli for binary; multinomial for ordinal or nominal

➢ Now: Counts → Log + some kind of Poisson or Negative Binomial

▪ Zero-inflated counts → zero-inflated or hurdle variants

➢ Later: Bounded → Logit + some kind of Binomial or Beta

➢ Later: Skewed Continuous → Log + Log-Normal/Gamma

▪ Zero-inflated continuous → hurdle variants
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A Taxonomy of Not-Normal Outcomes

• “Discrete” outcomes—all responses are whole numbers

➢ Categorical variables in which values are labels, not numbers

▪ Bernoulli (2 options) or multinomial (3+ options) distributions

▪ Question: Are the values ordered → which link? 

➢ Count of things that happened, so values < 0 cannot exist

▪ Outcome values range from 0 to +∞ (whole numbers only)

▪ Some kind of Poisson or Negative Binomial distribution

▪ Log link (usually) so predicted outcomes can’t go below 0

▪ Question: Are there extra 0 values? What to do about them?

• “Continuous” outcomes—responses can be any number

➢ Question: What does the residual distribution look like?

▪ Symmetric or skewed? Unnatural boundary (censored)? 
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Log Link for Count Outcomes
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This is an unbounded linear 

model that predicts the Log 

of the Expected Count…

𝐿𝑜𝑔 𝐸 𝑦𝑖 = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊)

…that becomes an expected 

count bounded at 0 via an 

inverse link of exp(log count):

𝐸 𝑦𝑖 = 𝒆𝒙𝒑 𝜷𝟎 + 𝜷𝟏(𝒙𝒊)
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Models for Count Outcomes
• Counts: non-negative integer responses (unbounded positive)

➢ Link: g ⦁ 𝐿𝑜𝑔 𝐸 𝑦𝑖 = 𝐿𝑜𝑔 ො𝜇𝑖 = [model]→ predicts log of count as ො𝑦𝑖
➢ Inverse Link: g−1 ⦁ 𝐸(𝑦𝑖) = exp(ො𝑦𝑖)→ use to un-log ො𝑦𝑖 back to count

➢ e.g., if the model-scale predict log count: 𝐿𝑜𝑔( ො𝜇𝑖) = ො𝑦𝑖 = −1, the
data-scale predicted actual count is: ො𝜇𝑖 = exp −1 = 0.368

▪ So even though counts are only integers, predicted counts are not!

➢ Btw, you can control for differences in time measured via an offset (or
exposure) log-transformed predictor variable whose slope is fixed =1

• 𝐞𝐱𝐩(𝜷𝒙) gives an effect size called an “incidence-rate ratio” (IRR) 
that is on same scale as an odds ratio (IRR = 1 means no effect)

➢ e.g., IRR = 1.25 for 𝑥𝑖 = 0 or 1? 𝑥𝑖 = 1 counts are “25% higher”

➢ e.g., IRR = 0.75 for 𝑥𝑖 = 0 or 1? 𝑥𝑖 = 1 counts are “25% lower”

• Choosing the “right” conditional distribution is the tricky part!

➢ This could be a whole semester by itself—here are the highlights…
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• Poisson distribution has one parameter, 𝛌, which is both its mean 
and its variance (so 𝜆 = count mean ො𝜇= variance in Poisson)

• PDF: 𝑓 𝑦𝑖 = 𝑃𝑟𝑜𝑏 𝑦𝑖 = 𝑦 =
ෝ𝜇𝑦∗𝑒𝑥𝑝 −ෝ𝜇

𝑦!

• In SAS GLIMMIX LINK=LOG, DIST=POISSON; STATA POISSON or 
GLM link(log) family(poisson); R GLM family=“poisson” or VGAM

Image borrowed from: https://en.wikipedia.org/wiki/Poisson_distribution 
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Poisson Conditional Distribution

𝑦! = factorial of 𝑦 = 

gamma function 𝛤 𝑦 + 1

The dots indicate that only integer 

values are observed.

Distributions with a small expected 

value (mean or 𝜆) are predicted to 

have a lot of 0’s.

Once 𝜆 > 6 or so, the shape of the 

distribution is close to normal.

𝑦
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3 potential problems with Poisson…
• The standard Poisson distribution is rarely sufficient, though

• Problem #1: When mean ≠ variance

➢ If variance < mean, this leads to “under-dispersion” (not that likely)

➢ If variance > mean, this leads to “over-dispersion” (happens frequently)

• Problem #2: When there are no 0 values

➢ Some 0 values are expected from count models, but in some contexts 𝑦𝑖 > 0
always (but subtracting 1 won’t fix it correctly; need to adjust the model)

• Problem #3: When there are too many 0 values

➢ Some amount of 0 values are expected from count distributions already, 
but in many cases, there are even more 0 values observed than that

➢ To fix it, there are two main options, depending on what you do to the 0’s

• Each of these problems requires a model adjustment to fix it…
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Problem #1: Variance > mean = over-dispersion

• To fix it, we must add a parameter that allows the variance to exceed 
the mean… it then can become a Negative Binomial distribution

➢ Two types of extra variance: constant = NB1, quadratic = NB2 (better)

• Negative Binomial (2) PDF with mean 𝝁 and dispersion scale 𝒌:

➢ Prob 𝑦𝑖 = 𝑦 =
𝛤 𝑦+

1

𝑘

𝛤 𝑦+1 ∗𝛤
1

𝑘

∗
𝑘ෝ𝜇 y

1+𝑘ෝ𝜇
y+

1
𝑘

➢ Can test if 𝑘 > 0 via −2LL test, although LL for 𝑘 = 0 is undefined

➢ In SAS GLIMMIX DIST = NEGBIN; STATA NBREG or GLM; 
R VGAM, MASS, or PSCL (see more info here)

• An alternative model with the same idea is generalized Poisson:

➢ Mean: 
𝜆

1−𝑘
, Variance: 

ෝ𝜇

1−𝑘 2, so LL is actually defined for 𝑘 = 0

➢ Much less common, but it’s in SAS FMM (and in GLIMMIX via 
user-defined functions); STATA GPOISSON; VGAM in R  

𝒌 is a multiplier: Var 𝑦 = Ƹ𝜇 + 𝒌 Ƹ𝜇2

(so Negbin ≈ Poisson if 𝑘 = 0)
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Negative Binomial (NB) = “Stretchy” Poisson…

• Because its 𝑘 dispersion parameter is fixed to 0, the Poisson model is 
nested within the Negative Binomial model—to test improvement in fit:

• Is −2 𝐿𝐿𝑃𝑜𝑖𝑠𝑠𝑜𝑛 − 𝐿𝐿𝑁𝑒𝑔𝐵𝑖𝑛 > 3.84 for 𝐷𝐹 = 1? Then 𝑝 < .05, keep NB

• If using a mixture of 𝐷𝐹 = 0 and 𝐷𝐹 = 1, use −2∆𝐿𝐿 > 2.71 instead

Mean = 𝜇
Dispersion = k

𝑉𝑎𝑟 𝑦𝑖 = Ƹ𝜇 + 𝑘 Ƹ𝜇2

A Negative Binomial 

model can be useful 

for count outcomes 

with extra skewness, 

but that otherwise 

follow a Poisson 

conditional 

distribution.
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Pause: Clarifying Terminology
The same words can mean lots of different things, such as:

• “nonlinear”—this adjective could refer to:

➢ A category of model that’s not in “slope*variable + slope*variable” form

➢ A consequence of a slope (e.g., that creates a quadratic relationship)

➢ A type of regression (e.g., using link functions, as opposed to “linear”)

• “Fit”—this could mean:

➢ Mistakenly used to refer to predictive quality (i.e., amount of variance 
explained)—this is NOT fit, it’s overall model effect size

▪ LRTs against “saturated” predictor model fall into this category

➢ In multivariate models, fit usually refers to the match between the 
model-predicted and data-estimated covariance matrices (or cross-tabs), 
and has nothing to do with effect size in terms of model predictive quality

▪ e.g., in SEM, things like RMSEA and SRMR; LRT against H1 saturated model

➢ In generalized linear models, fit can also refer to the match of 
the chosen conditional distribution to the observed outcome… 
this is the one I am talking about next!
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Absolute Conditional Distribution Fit
• In addition to comparing the relative fit of the Poisson and Negative 

Binomial (NB) distributions, we also need to examine the “absolute fit” 
of the conditional distribution for the observed outcome distribution

➢ e.g., NB may be relatively better than Poisson, but is NB “good enough”?

• Conditional distribution fit can be examined using a statistic given as 
Pearson 𝝌𝟐 / degrees of freedom in which 1 = good fit

➢ Sum over persons of 
𝑦𝑖−ෝ𝑢𝑖

𝑆𝐷 𝑎𝑡 ෝ𝑢𝑖

2

, then divide by 𝑁 (−#parms) as DF

➢ = average residual / model-expected residual (should be same, 1)

➢ Available in SAS via GENMOD or GLIMMIX (possibly others); in STATA via 
GLM (and more tests in COUNTFIT); in R manually by summing residuals

➢ See details on next slide for different conditional distributions

• Btw, Hardin & Hilbe (2018) describe other “generalized” negative binomial 
models, including  the “heterogeneous negative binomial” in which the 
dispersion scale factor itself can be predicted—see example 3 for a demo
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Hardin, J. W. & Hilbe, J. M. (2018). Generalized linear models and extensions (4th ed.). STATA Press.
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Pearson Residuals by Distribution

Table A.9 (Hardin & Hilbe, 2018) 

• Gaussian (normal) doesn’t have a 

denominator, so Pearson 𝜒2 / DF 

→ is residual variance (and NOT 

misfit of normal distribution)

➢ So please ignore this part of ALL 

my class materials from 2 years 

ago as PSQF 7375 (my bad)!

• For others, Pearson 𝜒2/𝐷𝐹 > 1
indicates overdispersion

→ too much variance relative 

to what the model expects
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Problem #2: There are no 0 values
• “Zero-Altered” or “Zero-Truncated” Poisson or Negative 

Binomial: ZAP/ZANB or ZTP/ZTNB (used in hurdle models)

➢ Is usual count distribution, just not allowing any 0 values

➢ In SAS PROC FMM using DIST=TRUNCPOISSON for ZTP 
or DIST=TRUNCNEGBIN for ZTNB

➢ In STATA as TPOISSON (for ZTP) and TNBREG (for ZTNB)

➢ R package VGAM option “za__” for Poisson and Negative Binomial

➢ Multivariate versions could be fitted in SAS NLMIXED or Mplus, too

• e.g., Poisson PDF:  𝑃𝑟𝑜𝑏 𝑦𝑖 = 𝑦 =
ෝ𝜇𝑦∗𝑒𝑥𝑝 −ෝ𝜇

𝑦!

• e.g., Zero-Truncated Poisson PDF: 𝑃𝑟𝑜𝑏 𝑦𝑖 = 𝑦 |𝑦𝑖 > 0 =
ෝ𝜇𝑦∗𝑒𝑥𝑝 −ෝ𝜇

𝑦! 1−𝑒𝑥𝑝 −ෝ𝜇

➢ 𝑃𝑟𝑜𝑏 𝑦𝑖 = 0 = 𝑒𝑥𝑝 −ො𝜇 , so 𝑃𝑟𝑜𝑏 𝑦𝑖 > 0 = 1 − 𝑒𝑥𝑝 −ො𝜇

➢ Divides by probability of non-0 outcomes so probability still sums to 1
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Problem #3: Too many 0 values, Option #1

• “Zero-Inflated” Poisson (DIST=ZIP) or NB (DIST=ZINB) in SAS 
GENMOD or COUNTREG; STATA ZIP/ZINB/ZIGP; R VGAM or PSCL

➢ Distinguishes two kinds of 0 values: expected and inflated/structural
(extra) through a mixture of Bernoulli + Poisson/NB/GenPoisson)

➢ Creates two submodels to predict “if extra 0” and “if not, how much”?

▪ Does not readily map onto most hypotheses (in my opinion)

▪ But a ZIP example would look like this… (ZINB would add k dispersion, too)

• Submodel 1: 𝐿𝑜𝑔𝑖𝑡[𝑝 𝑦𝑖 = 𝑒𝑥𝑡𝑟𝑎 0 ] = 𝛽0𝑧 + 𝛽1𝑧(𝑥𝑖)

➢ Predict being an extra 0 using Link = Logit, Distribution = Bernoulli

➢ Don’t have to specify predictors for this part, can just estimate an 
intercept to see if zero-inflation is needed at all (see Example 3)

• Submodel 2: 𝐿𝑜𝑔[𝐸 𝑦𝑖 ] = 𝛽0𝑐 + 𝛽1𝑐(𝑥𝑖)

➢ Predict rest of counts (including 0’s) using Link = Log, 
Distribution = Poisson/Negative Binomial/Generalized Poisson 
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Problem #3: Too many 0 values, Option #1

• The Zero-Inflated models get put back together as follows:

➢ 𝜔𝑖 (“omega”) is the model-predicted probability of being an extra 0:

𝜔𝑖 =
𝑒𝑥𝑝 𝐿𝑜𝑔𝑖𝑡[𝑝 𝑦𝑖 = 𝑒𝑥𝑡𝑟𝑎 0 ]

1 + 𝑒𝑥𝑝 𝐿𝑜𝑔𝑖𝑡[𝑝 𝑦𝑖 = 𝑒𝑥𝑡𝑟𝑎 0 ]

➢ 𝜇𝑖 is the model-predicted count for the rest of the distribution:
ො𝜇𝑖 = exp(ො𝑦𝑖)

➢ ZIP: Mean original 𝑦𝑖 = 1 − 𝜔𝑖 ො𝜇𝑖

➢ ZIP: Variance original 𝑦𝑖 = ො𝜇𝑖 +
𝜔𝑖

1−𝜔𝑖
ො𝜇𝑖
2

➢ ZINB: Mean original 𝑦𝑖 = 1 − 𝜔𝑖 ො𝜇𝑖

➢ ZINB: Variance original 𝑦𝑖 = ො𝜇𝑖 +
𝜔𝑖

1−𝜔𝑖
+

𝑘

1−𝜔𝑖
ො𝜇𝑖
2
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Problem #3: Too many 0 values, Option #2

• “Hurdle” models for Poisson or Negative Binomial

➢ PH or NBH: Explicitly separates 0 from non-0 values through two distinct 
outcome distributions (Bernoulli + Zero-Altered Poisson/NB)

➢ Creates two submodels to predict “if any 0” and “if not 0, how much”?

▪ Easier to think about in terms of predicting the 0 values (in my opinion)

• Submodel 1: 𝐿𝑜𝑔𝑖𝑡[𝑝 𝑦𝑖 = 0 ] = 𝛽0𝑧 + 𝛽1𝑧(𝑥𝑖)

➢ Predict being any 0 using Link = Logit, Distribution = Bernoulli

• Submodel 2: 𝐿𝑜𝑔[𝐸(𝑦𝑖)|𝑦𝑖 > 0] = 𝛽0𝑐 + 𝛽1𝑐(𝑥𝑖)

➢ Predict positive counts using Link = Log, Distribution = ZAP/ZANB 

• SAS NLMIXED; STATA CHURDLE, ZTPNM or ZTNB; R VGAM or PSCL

➢ Can also split the outcome explicitly and estimate each submodel separately, 
but then you lose the ability for multivariate test of a predictor effect 
across submodels (which may be an acceptable limitation)
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Image borrowed and doctored from:  Atkins, D. C., & Gallop, R. J. (2007). Rethinking how family researchers model infrequent outcomes:  A 

tutorial on count regression and zero-inflated models. Journal of Family Psychology, 21(4), 726-735. 
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Zero-Inflated Models for Counts

Zero-inflated distributions 

come in many forms: 

Poisson (mean = variance) 

and Negative Binomial 

(variance exceeds mean).

An alternative is to think of 

them as semi-continuous 

in an “if and how much” 

model (my own term for 

hurdle models):

Pred1: =0 if x=0, 1 if x > 0

= Pred1 is binary

Pred2: =how much if x > 0

= Pred2 is 

quantitative
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More on Comparing Count Models
• Whether or not a dispersion scale parameter is needed (to distinguish 

Poisson and NB) can be answered via a likelihood ratio test (LRT, or −2∆LL)

➢ For the fairest comparison, keep the linear predictor model the same

➢ Some LRTs use a 𝜒2 with a mixture of DF=0 and DF=1 (“chibar” in STATA)

• Whether or not a zero-inflation model is needed should, in theory, also be 
answerable via a likelihood ratio test… But people disagree about this 

➢ Problem? Zero-inflation probability can’t be negative, so is bounded at 0

➢ Solution? Use a 𝜒2 with a mixture of DF=0 and DF=1 (“chibar” in STATA)

➢ Vuong test *had* been used for this, but is currently not recommended

➢ Can always compare AIC and BIC (smaller is better)

• In general, models with the same distribution and different links can be 
compared via AIC and BIC, but one cannot use AIC and BIC to compare 
across alternative distributions (e.g., normal or count?)

➢ Log-likelihoods are not on the same scale due to using different PDFs

➢ Pearson 𝜒2 / DF provides some guidance as to fit of conditional distribution
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Summary: Predicting Counts
• A count is a discrete outcome that:

➢ Is quantitative (numbers are really numbers)

➢ Ranges from 0 (or 1) to positive infinity

▪ Don’t have any zeros? Need “zero-truncated/altered” distribution

➢ Is predicted using a log link function to ensure predicted counts > 0

• Determining the “right” distribution for a count outcome is aided 
by examining conditional distribution fit: Pearson 𝜒2/𝐷𝐹 ≈ 1

➢ Counts often have more variance (because of positive skewness) than 
expected by Poisson (in which mean = variance)—this “over-dispersion” 
can be fixed by adding a “scale” parameter by which variance > mean

➢ If you have more zero values than expected, may need to add a “zero-
inflation” submodel or switch to a “hurdle” two-submodel variant

➢ But both dispersion parameters and zero-inflation models are trying to 
accommodate for skewness, so you may not need both (check fit to see)
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Summary: SAS for Discrete Outcomes
• There are many choices for modeling not-normal discrete outcomes 

(that include integer values only); most use either an identity or log link

• Single-level, univariate generalized models by PROC:

➢ GENMOD: DIST= (and default link): Binomial (Logit), Poisson (Log), Zero-Inflated 

Poisson (Log), Negative Binomial (Log), Zero-Inflated Negative Binomial (Log)

➢ FMM: DIST= (and default link): Binomial (Logit), Poisson (Log), Generalized 

Poisson (Log), Truncated Poisson (Log), Negative Binomial (Log), Uniform

• Multilevel or multivariate generalized models through GLIMMIX:

➢ Binomial (Logit), Poisson (Log), Negative Binomial (Log)

➢ BYOBS, which allows multivariate models by which you specify outcome-specific 

(or submodel specific) link functions and distributions estimated simultaneously

➢ User-defined variance functions for special cases (e.g., generalized Poisson)

➢ NLMIXED can also be used to fit any user-defined model
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Summary: STATA and R 

for Discrete Outcomes
• STATA for single-level, univariate generalized models:

➢ glm for multiple options, logit, probit, or cloglog for binary, ologit or oprobit for 

ordinal, poisson, nbreg, or gnbreg for counts, and many more options

➢ Most of these allow cluster-corrected or robust standard errors (stay tuned)

➢ In R: VGAM seems to have everything, but it is harder to use than other 

packages that have fewer options (IMHO), like GLM, MASS, or PSCL

• STATA for multilevel or multivariate generalized models:

➢ meglm for multiple options, melogit, meprobit, or mecloglog for binary, 

meologit or meoprobit for ordinal, mepoisson or menbreg for counts

➢ menl can also be used to fit any user-defined model (haven’t tried that yet)

➢ In R: glmer, nlmer, glmmML (but I haven’t tried these yet!)
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