
PSQF 6270: Lecture 1

Review of Fixed Effects within 

General Linear Models (and 

especially interaction terms)
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• Topics:

➢ Fixed slopes: Interpretation and significance

➢ Scaling predictor variables: Centering and coding

▪ Categorical predictors: Manual vs. program-automated coding

▪ Semi-continuous predictor coding: If and how much (piecewise/spline)

▪ Testing multiple slopes (for a single predictor or multiple predictors)

➢ Linear models with interaction terms

▪ Taxonomy terminology: Bivariate marginal, unique marginal, 

or unique conditional fixed slopes

▪ Interpreting interaction slopes as modifiers of main effect slopes
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Naming Conventions in the GLM
• The general linear model incorporates many different labels of 

single-level analyses (for independent obs) under 1 unifying term:

• What these models all have in common is the use of a normal 
conditional distribution (i.e., for the residuals that remain after 
creating conditional outcomes from the model predictors)

• Btw, predictors do NOT have distributional assumptions!

• The use of these words almost always implies estimation using
“least squares” (LS), aka “ordinary least squares” (OLS)

Categorical

Predictors

Quantitative

Predictors

Both Types of

Predictors

Univariate

(one outcome)

“ANOVA” “Regression” “ANCOVA”

Multivariate

(2+ outcomes)

“MANOVA” “Multivariate 

Regression”

“MANCOVA”
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A One-Slope GLM Example

Empty Model for 𝑦𝑖 = income:

𝒚𝒊 = 𝜷𝟎 + 𝒆𝒊

ෝ𝒚𝑭𝒐𝒄𝒖𝒔 = 𝟏𝟕. 𝟑

𝒚𝑭𝒐𝒄𝒖𝒔 = 𝟏𝟕. 𝟑 + 𝟒𝟏. 𝟓

Variance: 𝝈𝒆
𝟐 =

σ𝑖=1
𝑁 𝑦𝑖−ෝ𝒚𝒊

2

𝑁−1
= 190.2

→ 190.2 is all the 𝑦𝑖 variance

Add Education as Predictor:

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝑬𝒅𝒖𝒄𝒊 − 𝟏𝟐) + 𝒆𝒊

ෝ𝒚𝑭𝒐𝒄𝒖𝒔 = 𝟏𝟒. 𝟎 + 𝟏. 𝟖 𝟖 = 𝟐𝟖. 𝟒

𝒚𝑭𝒐𝒄𝒖𝒔 = 𝟐𝟖. 𝟒 + 𝟑𝟎. 𝟒

Variance: 𝝈𝒆
𝟐 =

σ𝑖=1
𝑁 𝑦𝑖−ෝ𝒚𝒊

2

𝑁−2
= 162.3

→ 162.3 is leftover 𝑦𝑖 variance

The 𝜷 formulas result from the goal of 

minimizing the squared residuals across 

the sample—this is called “ordinary 

least squares estimation”—let’s see 

what happens for one example person

unexplained

explained

Empty model 

prediction

Focus: 𝑥𝑖 = 8, 𝑦𝑖 = 58.8
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General Linear Models, More Generally
• A General Linear Model (GLM*) for outcome 𝒚𝒊 looks like this:

➢ actual 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊) + ⋯𝜷𝒑(𝒙𝒑𝒊) + 𝒆𝒊

➢ predicted ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊) + ⋯𝜷𝒑(𝒙𝒑𝒊)

➢ The “𝑖” subscript denotes variables (that are individual-specific)

➢ The 𝜷 (“beta”) terms are the model fixed effects → constants
whose subscripts range from 0 up to 𝑝 as the last fixed effect):

▪ 𝜷𝟎 = intercept = expected 𝒚𝒊 when all 𝑥𝑖 predictors are 0

▪ 𝜷𝟏 = slope of 𝒙𝟏𝒊 = difference in 𝒚𝒊 per one-unit difference in 𝒙𝟏𝒊
▪ 𝜷𝟐 = slope of 𝒙𝟐𝒊 = difference in 𝒚𝒊 per one-unit difference in 𝒙𝟐𝒊

…

▪ 𝜷𝒑 = slope of 𝒙𝒑𝒊 = difference in 𝒚𝒊 per one-unit difference in 𝒙𝒑𝒊

* GLM may also stand for Generalized Linear Models, which includes General as one type (ugh)
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Significance Tests of Fixed Slopes
• Each 𝜷 fixed slope has 6 relevant characteristics (*essential to report):

➢ *Estimate = best guess for the fixed slope from our data (ML→ tallest answer)

➢ *Standard Error = 𝑺𝑬 = average distance of sample slope from population slope 

→ expected inconsistency of slope across samples                                      

➢ 𝒕-value = (Estimate − 𝐻0) / 𝑆𝐸 = test-statistic for fixed slope against 𝐻0(= 0)

➢ Denominator DF = 𝑁 − 𝑘 (where 𝑘 = total number of fixed effects)

➢ 𝒑-value = (two-tailed) probability of fixed slope estimate as or more extreme IF 

𝐻0 is true → how unexpected our result is on a t-distribution with 0=𝐻0, SD=SE

➢ (95%) Confidence Interval = 𝑪𝑰 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ∗ 𝑆𝐸 = range in which 

true (population) value of estimate is expected to fall across 95% of samples

• Compare 𝒕 test-statistic to 𝑡 critical-value at pre-chosen level of significance

(where % unexpected = alpha level): this is a “univariate Wald test”

➢ Btw, if denominator DF are not used, then 𝒕 is treated as a 𝒛 instead (same value)

➢ Btw, whether the 𝑝-value is found using a 𝒕- or 𝒛-distribution 

will differ by program and variant in generalized linear models…
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Significance of Each Fixed Slope
• Standard Error (SE) for fixed effect estimate βX in a one-predictor 

model (remember, SE is like the SD of the estimated parameter):

SEβX =
residual variance of Y

Var X ∗ 𝑁−𝑘

• When more than one predictor is included, SE turns into:

SEβX =
residual variance of Y

Var X ∗ 𝟏−𝐑𝐗
𝟐 ∗ 𝑁−𝑘

• So all things being equal, SE is smaller when:

➢ More of the outcome variance has been reduced (better predictive model)

▪ This means fixed effects can become significant later if R2 is higher then

➢ The predictor has less covariance with other predictors

▪ Best case scenario: X is uncorrelated with all other predictors

• If SE is smaller → 𝑡-value or 𝑧-value is bigger→ 𝑝-value is smaller 

RX
2 = X variance accounted 

for by other predictors, so 

1−𝐑𝐗
𝟐 = unique X variance

𝑁 = sample size

𝑘 = number of fixed effects
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Scaling of Predictor Variables
• Get in the habit of rescaling all predictors so 0 is meaningful value 

➢ Why? To maintain a meaningful intercept in ALL models

➢ For meaningful conditional slopes within interactions (stay tuned) 

➢ (To avoid estimation problems in multilevel models with random slopes)

• For quantitative predictors, this is called (constant) “centering”

➢ Center by subtracting a constant: sample mean is a common choice, 
but any meaningful value is good (e.g., known reference, minimum)

• For categorical predictors, this is called “coding”

➢ Create 𝑪 − 𝟏 slopes to describe 𝑪 categories using values of 0 or 1 
(“dummy coding”) or values of 0, 1, −1 (“effect coding”) in a pattern 
that creates the desired interpretation of group differences

▪ Will perfectly re-create all category means and mean differences using 
either fixed effects directly or linear combinations of fixed effects

▪ I prefer dummy coding, in which 1 chosen category is the “reference” 
for which all predictors = 0 (instead of reference = overall mean)
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Coding Strategies for Categorical Predictors
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Indicator coding: Each non-

ref category has a 1 value in 

1 predictor only to represent 

its mean difference from 

reference (good for nominal)

Sequential coding: Each non-ref category 

can have multiple 1 values → predictors 

then give mean differences between 

sequential categories (good for ordinal)

Group

(Inter-

cept): 

A mean

AvsB:

Diff for 

A vs B

AvsC:

Diff for 

A vs C

A 1 0 0

B 1 1 0

C 1 0 1

Happy
(Intercept): 

1 Mean

h1v2:

1→2 

Diff

h2v3:

2→3 

Diff

h3v4:

3→4 

Diff

h4v5:

4→5 

Diff

1 1 0 0 0 0

2 1 1 0 0 0

3 1 1 1 0 0

4 1 1 1 1 0

5 1 1 1 1 1Either way, all possible category 

means and mean differences not 

directly provided by the model 

fixed effects can be found from 

linear combinations of them…

Sequential coding can be used to test whether an 

ordinal predictor can be treated as interval—whether 

it has a linear slope in predicting an outcome—by 

testing differences between the sequential slopes
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Categorical Predictors: Manual Indicator Coding

• Model:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) + 𝒆𝒊

➢ Variable called “group”:  Control=0, Treat1=1, Treat2=2, Treat3=3

➢ New predictors d1= 0, 1, 0, 0  → difference between Control and Treat1 

we must create d2= 0, 0, 1, 0  → difference between Control and Treat2

for the model: d3= 0, 0, 0, 1  → difference between Control and Treat3

➢ These interpretations only hold if all three new predictors are included!

• How does the model give us all possible group differences? 

By determining each group’s mean, and then the difference…

• Model directly provides 3 mean differences (control vs. each treatment), 

and indirectly provides another 3 mean differences (differences between 

treatments) as linear combinations… let’s see how this works
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Control Mean

(Reference)

Treatment 1 

Mean

Treatment 2 

Mean

Treatment 3

Mean

𝜷𝟎 𝜷𝟎+𝜷𝟏(𝒅𝟏𝒊) 𝜷𝟎+𝜷𝟐(𝒅𝟐𝒊) 𝜷𝟎+𝜷𝟑(𝒅𝟑𝒊)
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Categorical Predictors: Manual Indicator Coding

• Model:  𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) + 𝒆𝒊

Alt Group Ref Group Difference

• Control vs. T1 = (𝛽0+𝛽1) − (𝛽0) = 𝛽1

• Control vs. T2 = (𝛽0+𝛽2) − (𝛽0) = 𝛽2

• Control vs. T3 = (𝛽0+𝛽3) − (𝛽0) = 𝛽3

• T1 vs. T2 =        (𝛽0+𝛽2) − (𝛽0+𝛽1) = 𝛽2 − 𝛽1

• T1 vs. T3 =        (𝛽0+𝛽3) − (𝛽0+𝛽1) = 𝛽3 − 𝛽1

• T2 vs. T3 =        (𝛽0+𝛽3) − (𝛽0+𝛽2) = 𝛽3 − 𝛽2
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Control Mean

(Reference)

Treatment 1 

Mean

Treatment 2 

Mean

Treatment 3

Mean

𝜷𝟎 𝜷𝟎+𝜷𝟏(𝒅𝟏𝒊) 𝜷𝟎+𝜷𝟐(𝒅𝟐𝒊) 𝜷𝟎+𝜷𝟑(𝒅𝟑𝒊)
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2 Ways to Include Categorical Predictors

1. Manually create and include dummy-coded predictors

➢ Need 𝐶 − 1 predictors for 𝐶 categories, added all at once, treated as 
quantitative (WITH in SPSS, by default in SAS and R, c. in STATA) 

➢ We are going to do it this way, in part because it corresponds 
directly to a linear model representation → transparency!

➢ You have complete control of what your predictors represent!

2. Let the program create and include predictors for you

➢ Treated as categorical: BY in SPSS, CLASS in SAS, i. in STATA, factor in R

▪ SPSS and SAS: reference = highest/last; STATA/R: reference = lowest/first

➢ Can be more convenient in GLMs to get predicted means if you have 
many categories, want many differences, or have interactions among 
categorical predictors—but not in all generalized linear models

➢ And it marginalizes over other program-categorical predictors for their 
main effect 𝐹-tests, creating two sets of results (and confusion) 

11



PSQF 6270: Lecture 1

Btw, Program-Created Indicator Predictors
• Designate a predictor as “categorical” in program syntax

➢ Use CLASS in SAS; BY in SPSS; i. prefix in STATA; factor variable in R

• For a predictor with 𝐶 categories, the program automatically then 
creates 𝐶 new dummy codes, for example “group” with 𝐶 = 4: 

12

New Predictors Created 

Internally Mean This:

Control Treat1 Treat2 Treat3

IsControl 1 0 0 0

IsTreat1 0 1 0 0

IsTreat2 0 0 1 0

IsTreat3 0 0 0 1

• It then figures out how many of these internal predictor variables are 
needed—if using an intercept (the default), then it’s 𝐶 − 1, not all 𝐶

• It enters them until it hits that criterion—if it leaves the last one out (as 
when you have an intercept), then last category becomes your reference

• Everywhere in syntax you refer to the categorical predictor, you must tell 
the program what to do with EACH of these internal predictor variables



PSQF 6270: Lecture 1

SAS:   * Do not really need 2 empty vars first;
smoker=.; smkamt=.;

IF cig=0 THEN DO; smoker=0; smkamt=0;     END;

ELSE IF cig>0 THEN DO; smoker=1; smkamt=cig−1; END;

What about Semi-Continuous Predictors?
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# Daily 

Cigarettes

smoker:

0=no,

1=yes

smkamt:

If smoker, 

how much >1?

0 0 0

1 1 0

2 1 1

3 1 2

4 1 3

5 1 4

6 1 5

• Some predictors contain both 
“kinds” and “amount” info

➢ “Kinds” → mixtures of populations

➢ “Amount” → severity within some 
(nested effect within subpopulation) 

• Solution: an “if and how much” 
coding scheme, as shown →

➢ “piecewise slopes” or “linear splines”

STATA:
gen smoker=. // Make 2 empty vars

gen smkamt=.

replace smoker=0     if cig==0

replace smkamt=0     if cig==0

replace smoker=1     if cig>0 

replace smkamt=cig-1 if cig>0

R:
data$smoker = NA # Make 2 empty vars

data$smkamt = NA

data$smoker[which(data$cig==0)]=0

data$smkamt[which(data$cig==0)]=0

data$smoker[which(data$cig>0)]=1

data$smkamt[which(data$cig>0)]=

data$cig[which(data$cig>0)]-1
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How Many Fixed Slopes Per Predictor?
• “Linear” in GLM refers to “slope*variable + slope*variable” format

➢ This means the 𝑥𝑖 predictors can also be nonlinear terms (like 𝑥𝑖
2 to 

create a curve for 𝑥𝑖), which is then called “nonlinear in the variables”

➢ The alternative, “nonlinear in the parameters” would have a nonlinear 
form, e.g., this exponential model:  ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒆𝒙𝒑(𝜷𝟐 𝒙𝟏𝒊 )

• The role of each predictor 𝒙𝒊 in creating a custom expected 
outcome 𝒚𝒊 can be described through one or more fixed slopes

➢ One slope is sufficient to capture the mean difference between 
two categories for a binary 𝒙𝒊 or to capture a linear effect of a 
quantitative 𝑥𝑖 (or exponential for log 𝑥𝑖 or logistic for logit 𝑥𝑖)

➢ More than one slope may be needed to capture other nonlinear 
effects of a quantitative 𝑥𝑖 (e.g., quadratic or piecewise trends)

➢ 𝑪 − 𝟏 slopes are needed to capture the mean differences in the 
outcome across a categorical predictor with 𝑪 categories

➢ When multiple slopes are needed to describe the effect of a predictor, 
you will likely want a joint hypothesis test for all of them together…
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Multivariate Wald Tests of Fixed Effects
• General test for significance of multiple fixed effects at once 

(can be requested via SAS CONTRAST, STATA TEST; code differs by 
package in R)—you have likely already seen these special cases…

• GLM: Whether a set of fixed slopes significantly explains 𝑦𝑖 variance 
(i.e., if 𝑅2 > 0) is tested via “Multivariate Wald Test” or 𝑭-test”

➢ 𝐹 𝐷𝐹𝑛𝑢𝑚, 𝐷𝐹𝑑𝑒𝑛 =
𝑆𝑆𝑚𝑜𝑑𝑒𝑙/(𝑘−1)

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙/(𝑁−𝑘)
=

𝑁−𝑘 𝑅2

(𝑘−1)(1−𝑅2)
=

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝒌𝒏𝒐𝒘𝒏 𝑖𝑛𝑓𝑜

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝒖𝒏𝒌𝒏𝒐𝒘𝒏 𝑖𝑛𝑓𝑜

➢ 𝑭-test evaluates model 𝑅2 per DF spent to get it and DF leftover

➢ 𝑹𝟐 = 
𝑆𝑆𝑡𝑜𝑡𝑎𝑙−𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
= square of 𝒓 between predicted ෝ𝒚𝒊 and 𝒚𝒊

• e.g., “Omnibus” 𝐹-test for the slopes of the main effect of a variable 
with 𝐶 > 2 categories (or for its interaction with other predictors)

• e.g., Model R2 change 𝐹-test in hierarchical regression (for grouping 
sets of predictors together and testing their joint contribution)

• Btw, without denominator DF, 𝑭 is replaced by 𝝌𝟐 (= 𝐹 ∗ 𝐷𝐹𝑛𝑢𝑚)

• Btw, when testing only 1 slope, 𝑡2 = 𝐹 and 𝑧2 = 𝜒2
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A Taxonomy of Fixed Effect Interpretations
• In the most common statistical models, fixed effects will be either:

➢ An intercept that provides an expected (conditional) 𝒚𝒊 outcome, 

➢ Or a slope for the difference in 𝒚𝒊 per unit difference in 𝒙𝒊 predictor

▪ Slopes for quantitative and categorical predictors are treated the same

• All slopes can be described as falling within one of three categories: 

bivariate marginal, unique marginal, or unique conditional

➢ In models with only one fixed slope, that slope’s main effect is 

bivariate marginal (is uncontrolled and applies across all persons)

➢ In models with more than one fixed slope, each slope’s main effect is 

unique (it controls for the overlap in contribution with each other slope) 

▪ If a predictor is not part of an interaction term, its unique effect is marginal 

(it controls for the other slopes, but its effect still applies across all persons)

▪ If a predictor is part of one or more interaction terms, its unique effect is 

conditional, which means it is specific to each interacting predictor = 0

– Unique conditional effects are also called “simple main effects” (simple slopes) 
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Fixed Slope Interpretations: Example
• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝒆𝒊

➢ 𝜷𝟏 is “bivariate marginal”: difference in 𝒚𝒊 per unit 𝒘𝒊 (uncontrolled)

• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊 + 𝒆𝒊
➢ 𝜷𝟏 is “unique marginal”: diff in 𝒚𝒊 per unit 𝒘𝒊, controlling for 𝒙𝒊 and 𝒛𝒊

➢ 𝜷𝟐 is “unique marginal”: diff in 𝒚𝒊 per unit 𝒙𝒊, controlling for 𝒘𝒊 and 𝒛𝒊

➢ 𝜷𝟑 is “unique marginal”: diff in 𝒚𝒊 per unit 𝒛𝒊, controlling for 𝒘𝒊 and 𝒙𝒊

• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊
➢ 𝜷𝟏 is “unique marginal”: diff in 𝒚𝒊 per unit 𝒘𝒊, controlling for 𝒙𝒊 and 𝒛𝒊

➢ 𝜷𝟐 is “unique conditional”: diff in 𝒚𝒊 per unit 𝒙𝒊, controlling for 𝒘𝒊 and 𝒛𝒊, 
specifically when 𝒛𝒊 = 𝟎 (i.e., 𝜷𝟐 is a “simple” main effect slope)

➢ 𝜷𝟑 is “unique conditional”: diff in 𝒚𝒊 per unit 𝒛𝒊, controlling for 𝒘𝒊 and 𝒙𝒊,
specifically when 𝒙𝒊 = 𝟎 (i.e., 𝜷𝟑 is a “simple” main effect slope)

➢ 𝜷𝟒 is “unique marginal” (unconditional), but how do we interpret it???
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Interpreting Interaction Terms
• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊

➢ 𝜷𝟒 is “unique marginal” → interaction slope controlling for other slopes

➢ Rather than talk about what happens to the predicted outcome 𝒚𝒊, 
interaction slopes are described by what they do to their main effects

• Two-way interaction has two equally correct interpretations:

➢ How slope of 𝒙𝒊 is moderated by 𝒛𝒊: 𝜷𝟒 = difference in 𝜷𝟐 per unit 𝒛𝒊

➢ How slope of 𝒛𝒊 is moderated by 𝒙𝒊: 𝜷𝟒 = difference in 𝜷𝟑 per unit 𝒙𝒊

• So model-implied effects of 𝒙𝒊 and 𝒛𝒊 are linear combinations 
(find common terms, factor out predictor the slope is for, and 
then the term in brackets is model-implied predictor effect)

➢ Model-implied effect of 𝒙𝒊:  𝜷𝟐 𝒙𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 → 𝜷𝟐 + 𝜷𝟒 𝒛𝒊 𝒙𝒊

➢ Model-implied effect of 𝒛𝒊:  𝜷𝟑 𝒛𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 → 𝜷𝟑 + 𝜷𝟒 𝒙𝒊 𝒛𝒊

➢ Result can be found using SAS ESTIMATE, STATA LINCOM, or R GLHT

➢ Many of our examples this semester will have interaction terms!
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Only 4 Kinds of Interactions
• There are only 4 kinds of interactions: they make each 

of their main effect slopes (more/less) (positive/negative) 

➢ More positive or more negative → effect becomes stronger, 

known as “over-additive” interaction

➢ Less positive or less negative → effect becomes weaker,

known as “under-additive” interaction

• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊

Slope of 𝒙𝒊
is 𝜷𝟐=

Interaction 

Slope is 𝜷𝟒=

So the effect of 𝒙𝒊 is

??? per unit higher 𝒛𝒊

10 2 more positive (by 𝜷𝟒)

10 -2 less positive (by 𝜷𝟒)

-10 -2 more negative (by 𝜷𝟒)

-10 2 less negative (by 𝜷𝟒)
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When There’s More than One Interaction
• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊

+ 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 + 𝒆𝒊

• Now all main effect slopes are “unique conditional” (simple):

➢ 𝜷𝟏 = diff in 𝒚𝒊 per unit 𝒘𝒊 specifically when 𝒛𝒊 = 𝟎

➢ 𝜷𝟐 = diff in 𝒚𝒊 per unit 𝒙𝒊 specifically when 𝒛𝒊 = 𝟎

➢ 𝜷𝟑 = diff in 𝒚𝒊 per unit 𝒛𝒊 specifically when 𝒘𝒊 = 𝟎 and 𝒙𝒊 = 𝟎

• Interaction slopes (𝜷𝟒 and 𝜷𝟓) are “unique marginal”

➢ 𝜷𝟒 is now controlling for 𝜷𝟓, but interpretation of 𝜷𝟒 is unchanged:

How slope of 𝒙𝒊 is moderated by 𝒛𝒊: 𝜷𝟒 = difference in 𝜷𝟐 per unit 𝒛𝒊
How slope of 𝒛𝒊 is moderated by 𝒙𝒊: 𝜷𝟒 = difference in 𝜷𝟑 per unit 𝒙𝒊

➢ New 𝜷𝟓 has two equally correct interpretations:

How slope of 𝒘𝒊 is moderated by 𝒛𝒊: 𝜷5 = difference in 𝜷𝟏 per unit 𝒛𝒊
How slope of 𝒛𝒊 is moderated by 𝒘𝒊: 𝜷5 = difference in 𝜷𝟑 per unit 𝒘𝒊
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When There’s More than One Interaction
• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊

+ 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 + 𝒆𝒊

• Model-implied effects of 𝒘𝒊, 𝒙𝒊 and 𝒛𝒊 are linear combinations 

(find common terms, factor out predictor the slope is for, and 

then the term in brackets is the equation for the simple effect)

➢ Effect of 𝒘𝒊:  𝜷𝟏 𝒘𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 → 𝜷𝟏 + 𝜷𝟓 𝒛𝒊 𝒘𝒊

➢ Effect of 𝒙𝒊:  𝜷𝟐 𝒙𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 → 𝜷𝟐 + 𝜷𝟒 𝒛𝒊 𝒙𝒊

➢ Effect of 𝒛𝒊:  𝜷𝟑 𝒛𝒊 + 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 → 𝜷𝟑 + 𝜷𝟒 𝒙𝒊 + 𝜷𝟓 𝒘𝒊 𝒛𝒊

• For quantitative moderators, regions of significance (see Hoffman 

2015 ch. 2; Finsaas & Goldstein, 2021) can identify moderator 

boundary values for direction and significance of main effect slope

➢ e.g., at what values of moderator 𝒛𝒊 does the effect of 𝒘𝒊 go from: 

(a) significantly negative to nonsignificant? 

(b) nonsignificant to significantly positive?
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Interactions Involving Categorical Predictors
• When using manual contrasts for predictors with 3 or more categories, 

interactions must be specified with separate dummy-coded predictors

• If the program creates the dummy-coded predictors for you, all needed 
interaction predictors will be automatically included (but be careful!)

• e.g., Adding an interaction of 4-category “group” with age (0=85):

➢ New predictors d1= 0, 1, 0, 0  → difference between Control and Treat1 
we must create d2= 0, 0, 1, 0  → difference between Control and Treat2
for the model: d3= 0, 0, 0, 1  → difference between Control and Treat3

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) +𝜷𝟒 𝑨𝒈𝒆𝒊 − 𝟖𝟓
+ 𝜷𝟓(𝒅𝟏𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 + 𝜷𝟔(𝒅𝟐𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 +𝜷𝟕(𝒅𝟑𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 + 𝒆𝒊

• Multivariate Wald test would be needed to lump together the interaction 
contrasts (𝜷𝟓, 𝜷𝟔, and 𝜷𝟕) in order to test the “group*age” interaction

• Group difference slopes (𝜷𝟏, 𝜷𝟐, and 𝜷𝟑) are each conditional on age = 85

• Age slope (𝜷𝟒) is specific to the control group (when interactions = 0)

• But the model provides age slopes for each group, as well as group 
differences at any age as linear combinations of the fixed effects…

22



PSQF 6270: Lecture 1

Interactions Involving Categorical Predictors
• Adding an interaction of 4-category “group” with age (0=85):

➢ New predictors d1= 0, 1, 0, 0  → difference between Control and Treat1 
we must create d2= 0, 0, 1, 0  → difference between Control and Treat2
for the model: d3= 0, 0, 0, 1  → difference between Control and Treat3

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒅𝟏𝒊) + 𝜷𝟐(𝒅𝟐𝒊) + 𝜷𝟑(𝒅𝟑𝒊) +𝜷𝟒 𝑨𝒈𝒆𝒊 − 𝟖𝟓
+ 𝜷𝟓(𝒅𝟏𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 + 𝜷𝟔(𝒅𝟐𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 +𝜷𝟕(𝒅𝟑𝒊) 𝑨𝒈𝒆𝒊 − 𝟖𝟓 + 𝒆𝒊

• Equations for model-implied effects: [slope] (predictor)

➢ Effect of Age in Control group:  𝜷𝟒 + 𝜷𝟓 0 + 𝜷𝟔 0 + 𝜷𝟕 0 𝑨𝒈𝒆𝒊 − 𝟖𝟓

➢ Effect of Age in Treat1 group:    𝜷𝟒 + 𝜷𝟓 𝟏 + 𝜷𝟔 0 + 𝜷𝟕 0 𝑨𝒈𝒆𝒊 − 𝟖𝟓

➢ Effect of Age in Treat2 group:    𝜷𝟒 + 𝜷𝟓 0 + 𝜷𝟔 𝟏 + 𝜷𝟕 0 𝑨𝒈𝒆𝒊 − 𝟖𝟓

➢ Effect of Age in Treat3 group:    𝜷𝟒 + 𝜷𝟓 0 + 𝜷𝟔 0 + 𝜷𝟕 𝟏 𝑨𝒈𝒆𝒊 − 𝟖𝟓

➢ Control vs. Treat1 for any age: 𝜷𝟏 + 𝜷𝟓 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟏𝒊

➢ Control vs. Treat2 for any age: 𝜷𝟐 + 𝜷𝟔 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟐𝒊

➢ Control vs. Treat3 for any age: 𝜷𝟑 + 𝜷𝟕 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟑𝒊

➢ T1 vs T2 for any age: 𝜷𝟐 + 𝜷𝟔 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟐𝒊 − 𝜷𝟏 + 𝜷𝟓 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟏𝒊

➢ T1 vs T3 for any age: 𝜷𝟑 + 𝜷𝟕 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟑𝒊 − 𝜷𝟏 + 𝜷𝟓 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟏𝒊

➢ T2 vs T3 for any age: 𝜷𝟑 + 𝜷𝟕 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟑𝒊 − 𝜷𝟐 + 𝜷𝟔 𝑨𝒈𝒆𝒊 − 𝟖𝟓 𝒅𝟐𝒊
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What about 3-way interactions???
• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊

+ 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 + 𝜷𝟔 𝒙𝒊)(𝒘𝒊

+ 𝜷𝟕 𝒘𝒊 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊

• Simple main effects make the predicted outcome higher or lower

➢ 1 possible interpretation for each simple main effect slope

➢ Each simple main effect is conditional on other interacting predictors = 0

• Each 2-way interaction (3 of them in a 3-way model) makes 

its simple main effect slopes (more/less) (positive/negative)

➢ So there are 2 possible interpretations for each 2-way interaction

➢ Each simple 2-way interaction is conditional on third predictor = 0

• The 3-way interaction makes each of its 2-way simple 

interaction slopes (more/less) (positive/negative)

➢ So there are 3 possible interpretations of the 3-way interaction

➢ Is highest-order term in model, so is unconditional (marginal)
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3-way Interactions Follow the Same Rules

• Model: 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏 𝒘𝒊 + 𝜷𝟐 𝒙𝒊 + 𝜷𝟑 𝒛𝒊
+ 𝜷𝟒 𝒙𝒊)(𝒛𝒊 + 𝜷𝟓 𝒘𝒊)(𝒛𝒊 + 𝜷𝟔 𝒙𝒊)(𝒘𝒊

+ 𝜷𝟕 𝒘𝒊 𝒙𝒊)(𝒛𝒊 + 𝒆𝒊

• Model-implied simple (conditional) main effects:

➢ Effect of 𝒘𝒊: 𝜷𝟏 + 𝜷𝟓 𝒛𝒊 + 𝜷𝟔 𝒙𝒊 + 𝜷𝟕 𝒙𝒊)(𝒛𝒊 𝒘𝒊

➢ Effect of 𝒙𝒊:  𝜷𝟐 + 𝜷𝟒 𝒛𝒊 + 𝜷𝟔 𝒘𝒊 + 𝜷𝟕 𝒘𝒊)(𝒛𝒊 𝒙𝒊

➢ Effect of 𝒛𝒊:  𝜷𝟑 + 𝜷𝟒 𝒙𝒊 + 𝜷𝟓 𝒘𝒊 + 𝜷𝟕 𝒘𝒊)(𝒙𝒊 𝒛𝒊

• Model-implied simple (conditional) 2-way interactions:

➢ Effect of 𝒙𝒊 by 𝒛𝒊:  𝜷𝟒 + 𝜷𝟕 𝒘𝒊 𝒙𝒊 𝒛𝒊

➢ Effect of 𝒘𝒊 by 𝒛𝒊:  𝜷𝟓 + 𝜷𝟕 𝒙𝒊 𝒘𝒊 𝒛𝒊

➢ Effect of 𝒙𝒊 by 𝒘𝒊:  𝜷𝟔 + 𝜷𝟕 𝒛𝒊 𝒙𝒊 𝒘𝒊
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Interpreting Interactions:  Summary

• Interactions represent “moderation” – the idea that the effect 

of one predictor depends upon the level of the other(s)

• The main effect slopes WILL CHANGE once their predictors are 

part of an interaction, because they now mean different things:

➢ Main effect → Simple effect specifically when interacting predictor(s) = 0

➢ Need to have 0 as a meaningful value for each predictor for that reason

• Rules for interpreting conditional (simple) fixed slopes:

➢ Intercepts are conditional on (i.e., get adjusted by) main effect slopes

➢ Main effects are conditional on two-way interactions

➢ Two-way interactions are conditional on three-way interactions

➢ Highest-order term is unconditional → same regardless of centering
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Table 10.3 on p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. 

Guilford.
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Bonus: Dummy vs. Effect Coding
• Indicator and sequential coding 

each use one designated category 

as the reference

• Helmert coding “quantifies the 

difference in means between one 

group and the mean of the means 

in all higher-coded groups”

• Effect coding uses the grand 

mean across (equally weighted 

categories) as the reference; 

slopes give mean differences 

relative to grand mean
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