
The Finale*: Structural 

Equation Modeling (SEM)
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• Topics:

➢ The Big Picture of SEM

➢ “Predictors” versus “Outcomes”

➢ What to do (and what NOT to do) if SEM breaks for you

▪ Parceling indicators

▪ Using single indicators (sum or factor scores)

▪ Multiple plausible values of factor scores

* For treatment of and examples using path analysis and mediation, see 
Lecture 6, Example 5a Part 2, Example 6a, and Example 6b from PSQF 6270 

https://www.lesahoffman.com/PSQF6270/index.html


Structural Equation Modeling (SEM)
• The term “SEM” gets used to describe many different models, 

but fundamentally, SEM consists of two distinct parts:

➢ Measurement model: Mapping of observed indicator outcomes to the 
latent variable(s) they measure (to create better, “latent” constructs) 

▪ “CFA” if indicators are continuous and “normal enough”

▪ “IFA” (or “IRT” or “CFA for categorical outcomes”) if indicators are binary or ordinal 

▪ “IRT” if indicators are nominal (no limited-information version available)

▪ “?name?” if indicators require some other link function (e.g., counts)

▪ Factors/thetas/traits are (usually) assumed to be multivariate normal

➢ Structural Model: Path analysis using those MVN latent variables

▪ And using other observed variables that are not used as 
part of the measurement model for those latent variables

▪ Other observed variables can be of whatever kind, so long as 
the observed outcomes have their distributions modeled properly

– e.g., a binary predictor variable (i.e., not in the likelihood) does not require a logit, 
but a binary outcome variable does (so then it’s on the CATEGORICAL statement)

– You must create your own contrasts to include categorical predictors in Mplus (i.e., 
there is no “CLASS variable” as in SAS, “factor variable” as in R, or “i. variable” as in Stata)
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SEM:  Model Identification
• SEM integrates both measurement and path models, 

so the identification rules for SEM borrow from both

➢ Measurement models for each latent variables must be locally 

identified → each factor has its own scale (mean and variance)

➢ The overall model must be identified (mathematically solvable)

• A necessary (but not sufficient) way of ensuring identification 

is the “t-rule” (i.e., a counting rule that I never use in SEM)

➢ Number of estimated (“free”) parameters must be less than the total 

number of means + variances/covariances of all observed variables (𝑣) 

in the likelihood: Total possible DF = 
𝑣∗(𝑣+1)

2
+ 𝑣

➢ Practical tip: don’t count, just look at your model, and see if it seems 

logical (e.g., don’t have a directed path AND a covariance between two 

variables), make sure all latent factors are locally identified, and beware 

of negative factor loadings (then factors won’t know which way is up)
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New (and Confusing) Terminology
• Predictors are known as exogenous variables (X-ogenous to me)

• Outcomes are known as endogenous variables (IN-dogenous to me)

• Variables that are both at once are called endogenous variables
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An example path model: 

2 exogenous variables (𝑥1 and 𝑥2)

2 endogenous variables (𝑦1 and 𝑦2)
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A modified example path model: 

𝑦1 predicts 𝑦2 (still endogenous)
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New Mplus code under MODEL:
y1 y2 ON x1 x2; y2 WITH y1;

New Mplus code under MODEL:
y1 y2 ON x1 x2; y2 ON y1;
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New (and Confusing) Terminology
• What parameters get estimated for exogenous “predictor” and 

endogenous “outcome” variables differs importantly by program!

➢ Only the intercepts, residual variances, and residual covariances 

of “outcome” variables are estimated as part of the likelihood…

➢ But what each program considers an “outcome” depends on estimation!

• By default in Mplus and in R lavaan (v 0.6-10), *truly* exogenous 

predictor variables cannot have missing data, as in any model

➢ Cases with missing predictors are listwise deleted (incomplete data then 

are assumed missing completely at random), no matter which estimator!

➢ Because *truly* exogenous predictors are not part of likelihood function 

▪ Log-likelihood (LL) contains ෝ𝒚𝒊 for each person and 𝝈𝒆
𝟐 for each outcome 

▪ So (conditional) LL can’t be calculated without the predictors that create each ෝ𝒚𝒊

➢ But truly exogenous predictors also do not have assumed distributions…

▪ Good when you have non-normally-distributed predictors (e.g., ANOVA)!
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“Predictors” as Endogenous Outcomes
• What??? I thought full-information ML allows missing data???

➢ NO: only endogenous outcomes can be incomplete (then assumed missing 

at random, which means random only after conditioning on model variables)

➢ Btw, you can add other variables into the likelihood—but not the model—to 

help (untestable) missing at random assumption using AUXILIARY option

▪ Is a “saturated correlates” approach (they just covary with all outcomes)  

• Mplus and R lavaan each allow a work-around: bring exogenous 

predictors into the likelihood by listing their means, variances, or 

covariances as parameters → predictors then become “outcomes”

➢ Even if nothing predicts the predictor (i.e., it’s not really an outcome)

➢ Incomplete “endogenous predictors” can be included assuming missing 

at random (MAR), but they also then have distributional assumptions (MNV)

▪ Historically Mplus has not let endogenous predictors have other distributions, 

so you may have to make non-normal predictors an outcome of something else

▪ But there may be ways to trick it in doing this that I haven’t found yet…
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“Predictors” as Endogenous Outcomes
• SAS CALIS and STATA SEM both default to limited-info ML (uses listwise 

deletion and assumes MVN for ALL variables), but both can do full-info ML

➢ SAS CALIS: full-info via “FIML” (robust “MLMB” does not allow missingness)

▪ Can add variables into the likelihood but not the model (as “saturated correlates”) 
using the AUXILIARY option to help (untestable) missing at random assumption

➢ STATA SEM: full-info via “MLMV”;  can add “robust” SEs to mimic robust ML 

▪ No syntax to set up saturated correlates as AUXILIARY variables directly (I think)

• But using full-info ML FORCES the exogenous predictors into the 
likelihood—they are treated as endogenous outcomes whose means, 
variances, and covariances are estimated as model parameters

➢ So incomplete endogenous predictors can then be included assuming missing
at random (MAR), but they also then have distributional assumptions (MVN)

➢ STATA SEM “xconditional” default computes predictor means, variances, and 
covariances from the data to save time if complete data (or searches for them 
with “noxconditional” option, which it invokes on its own when needed)

➢ What happens for generalized path models in STATA GSEM? Stay tuned…
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Reconciling Confusing Vocabulary
• Distinction of “predictor” vs “outcome” is not as clear-cut as in usual regression

➢ Because in path models a variable can be both a predictor 

and an outcome at the same time! In that case, it’s an outcome

• Likewise, the distinction of “exogenous” from “endogenous” 

(as traditionally used in path models) is not really clear-cut

➢ In theory, predictors are exogenous and outcomes are endogenous…

➢ …But in practice, that depends on what your software is doing!

• New, more comprehensive rule: Is a variable in the likelihood?

➢ YES, if its means, variances, or covariances are model parameters

➢ YES, if it’s only a predictor but you are using full-info ML in SAS CALIS or STATA SEM

➢ IF YES, then I will call it an “outcome”: incomplete cases can then be included 

(with missing data assumed missing at random), but this flexibility comes at 

the (potential) cost of assuming a multivariate normal conditional distribution

➢ IF NO, then I will call it a “predictor”: it’s not in the likelihood, so cases with 

incomplete predictors will be dropped, but then no distribution is assumed
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SEM:  What goes into model fit
• Back in CFA/IFA, misfit was almost always due to covariances

➢ If each indicator has its own intercept or thresholds, then the indicator 

means or response category frequencies will be predicted perfectly

➢ If each (conditionally normal) indicator has its own residual variance, 

then the indicator total variance will (usually) be predicted perfectly

➢ Factor loadings are supposed to predict covariances among indicators, 

so once you have 4+ indicators in a model → potential for misfit

• The same is true in SEM, but with a catch, because only some 

covariances “count” towards model fit in Mplus (and R lavaan)

➢ Covariances amongst variables in the likelihood COUNT

➢ Covariances for “predictors” (NOT in the likelihood) with “outcomes” 

(in the likelihood) COUNT

➢ Covariances amongst “predictors” (NOT in the likelihood) do NOT count
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SEM:  What to do first?
• Because SEM is composed of two distinct parts… 

➢ Measurement model that maps latent variables onto observed indicators

➢ Structural model for relations involving those latent variables

• … you should build these models sequentially

➢ Start by ensuring each over-identified factor fits adequately

➢ THEN combine all latent factors and other observed variables in 
the same model, estimating all possible relations among them 
(this “saturated” model will be the best-fitting structural model)

▪ Helpful to phrase all associations as covariances to see bivariate relations first

▪ Local misfit will likely only be due to cross-construct mis-predicted covariances 
(remedy before continuing, creating a new saturated structural model if needed)

➢ Then modify the structural model to answer your questions, and see if 
any simpler model is NOT worse than the saturated structural model

▪ Can then change to regression paths to examine unique relations

▪ Will be a nested model only if not all structural relations are directly included

• Because the measurement model will dominate DF for model fit, 
informative tests of the structural model need to focus THERE only
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SEM:  What to do if I can’t do it?
• A simultaneous estimation of measurement and structural 

models in SEM is the gold standard, but may not work for you

• SEM is likely to break (i.e., not converge, give crazy SEs) when:

➢ Sample sizes are small (few persons relative to # estimated parameters)

➢ Many estimated parameters (especially with few persons)

➢ Some outcomes are non-normal (link functions are needed)

➢ Many latent variables are included (especially with link functions)

➢ Latent factors are not well-identified (two indicators is not enough)

➢ Latent variable interactions are included (which require numeric 
integration → repeated rectangling of the latent trait distributions)

➢ Switching to Bayes estimation may fix at least some of this, but if not…

• What to do next? Alternatives range from ok to terrible…
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2 Problems with SEM Alternatives
(that replace latent circles with observed boxes)

1. A single sum score assumes unidimensionality and parallel 
items: equal loadings (discrimination) + equal error variance

➢ Factor scores are equivalent to sum scores only under a parallel items model

➢ Otherwise, the sum score is inconsistent with the factor model estimated

2. Observed variables are assumed perfectly reliable (or said 
differently, that each person’s trait estimate is known exactly)

➢ If the trait standard error (𝑆𝐸)=0, then we know each person’s true value 
(otherwise, it comes from a distribution with variance given by 𝑆𝐸2)

➢ If zero variability of a person’s trait estimate is assumed, then the SEs 
for its relationships with other variables will be downwardly-based (so 
effects will look more precise and more significant than they should be)

➢ If reliability is not perfect, then the estimates of its relationships with 
other variables will be downwardly-biased (weaker than they should be)

• Let’s evaluate 3 strategies from this view of potential problems…
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Option 1:  Parceling Indicators

• Parceling = sum or average only some of the indicators

• For example, for a factor with 12 original indicators:

➢ ParcelA = i1+i2+i3+i4, ParcelB = i5+i6+i7+i8, ParcelC = i9+i10+i11+i12

➢ Factor BY ParcelA* ParcelB* ParcelC*; Factor@1; [Factor@0];

• Guess what happens to model fit???

➢ Total possible DF for actual 12 indicators = 
12 12+1

2
+ 12 = 90

➢ Estimated DF for actual 12 indicators = 12𝜆𝑖+12𝜇𝑖+12𝜎𝑒𝑖
2 = 36

➢ Model DF leftover = 90 − 36 = 54 = lots of room for misfit

➢ Total possible DF for 3 “parcels” = 
3 3+1

2
+ 3 = 9

➢ Estimated DF for 3 “parcels” = 3𝜆𝑖+3𝜇𝑖+3𝜎𝑒𝑖
2 = 9

➢ Remaining DF leftover = 9 − 9 = 0 = fit is “perfect” (just-identified)
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Option 1:  Parceling Indicators
• So contrary to what others may say… PARCELING IS

TOTALLY CHEATING AND YOU SHOULD NOT DO IT

• That being said, here’s how to parcel responsibly if you must:

➢ Recognize that parceling assumes tau-equivalence (equal loadings) 
of the indicators within each parcel, so verify that ahead of time

➢ Otherwise, you will get different model fit and parameter estimates 
across parceling options → should report this “parceling allocation 
variability”; see Sterba & Rights (in press) for more info

➢ Be honest that parceling is an intermediate choice between:

▪ Summing completely (one sum score to replace a latent factor)

▪ Summing sort of (parceling only some of the indicators together)

▪ An actual indicator-specific measurement model that reflects all the data

➢ Recognize that different combinations of indicators to parcels can 
create very different results (especially for “subscales” of subscales), 
and do NOT use parcels as a way to “control for” or HIDE misfit
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Instead, try a simpler measurement model
• One way to save estimated parameters—if can be done without hurting 

model fit too much—is to fit constrained measurement models

• For example, for a factor with 12 original indicators:

➢ Total possible DF for actual 12 indicators = 
12 12+1

2
+ 12 = 90

➢ Used DF for full one-factor model = 12𝜆𝑖+12𝜇𝑖+12𝜎𝑒𝑖
2 = 36

➢ Used DF for tau-equivalent (Rasch) factor model = 1𝜆𝑖+12𝜇𝑖+12𝜎𝑒𝑖
2 = 25

▪ It is more difficult to estimate more loadings than more 𝝁𝒊 or 𝝈𝒆𝒊
𝟐

➢ Used DF for parallel items factor model: 1𝜆𝑖+12𝜇𝑖+1𝜎𝑒𝑖
2 = 14

➢ Used DF for an “empty means” parallel items model: 1𝜆𝑖+1𝜇𝑖+12𝜎𝑒𝑖
2 = 3

➢ If not all loadings/residual variances/intercepts can be constrained 
equal across indicators, perhaps at least some of them can? 

▪ You can test the fit of constraints that parceling would have just assumed!

▪ SEM allows you to consider and test intermediate possibilities, not just 
all or nothing with respect to each indicator gets its own parameter(s)

• In IFA/IRT, consider recoding sparse category responses 
into the next category (fewer thresholds to estimate)
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Option 2a: Single-Indicator Models
• If you have determined that a single latent factor fits a set of indicators, 

one common option is a “single-indicator” sum score replacement

• Assuming perfect reliability (i.e., omega=1) would look like this:

➢ Factor BY sumscore@1; sumscore@0; Factor*; 

➢ So sumscore’s residual variance = 0 because its variance all goes to “factor variance”

• Better: Correct for omega reliability (as estimated from your own data, 
or a plausible upper-bound for reliability based on previous research):

➢ Omega: 𝛚 = 𝐕𝐚𝐫 𝑭𝒔 ∗ (𝚺𝝀𝒊)
𝟐 / [𝐕𝐚𝐫 𝑭𝒔 ∗ (𝚺𝝀𝒊)

𝟐+ 𝚺 𝐕𝐚𝐫(𝒆𝒊𝒔) + 𝟐𝚺(𝒆𝒊𝒔 𝐜𝐨𝐯)]

➢ Factor BY sumscore@1; sumscore* (ResVar); Factor*;

➢ MODEL CONSTRAINT: ResVar = (𝟏 − 𝛚) ∗ 𝐕𝐚𝐫(𝒔𝒖𝒎𝒔𝒄𝒐𝒓𝒆𝒔);

▪ Need to know variance of sumscores (as “total” variance) for inclusion in ResVar formula

➢ Sumscore residual variance is then its “error” variance only (rest → “true” factor variance)

➢ Note: this is not possible if using IRT/IFA factors (because reliability varies across the trait)

• Either way, the factor can be “mean-centered” by fixing its mean = 0:   

• [sumscore*]; [Factor@0]; So sumscore intercept holds its mean instead
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Option 2b: Single-Indicator Models
• Can I just treat the factor scores as observed? Not really…

• Factor score = random effect = central tendency of a person’s 
unobserved latent variable distribution 

➢ EAP estimates in ML → mean; MAP estimates in WLSMV → mode (worse)

➢ Variance of each person’s latent distribution is given by factor score 𝑆𝐸2

• Because they are from a latent variable, each factor score really 
has a distribution of possible values for each person

➢ Factor scores are estimated from a multivariate normal prior distribution, 
and thus will be shrunken (pushed to mean) given low reliability

➢ There is likely much uncertainty per person, especially for few indicators

▪ Although factor scores (thetas) are routinely used in IRT, it’s because they 
are usually based on dozens of items per factor (→ “small enough” SE)

• Btw, you CANNOT create factor scores by using the loadings as such:

➢ 𝑭𝒔 = 𝝀𝟏𝟏𝒚𝟏𝒔+ 𝝀𝟐𝟏𝒚𝟐𝒔+ 𝝀𝟐𝟏𝒚𝟑𝒔→ Is a COMPONENT model, not a FACTOR model
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Option 2b: Single-Indicator Models
• An EAP factor score is an observed variable (just like a sum score is), 

but it is more consistent with factor model structure it came from

• Assuming perfect factor score (fscore) reliability would look like this:

➢ Factor BY fscore@1; fscore@0; Factor*; 

➢ So fscore’s residual variance = 0 because its variance all goes to “factor variance”

• Better: In CFA, you can use factor score reliability estimated from your
data (proportion of true trait differences relative to total trait variance):

➢ Factor score reliability: 𝝆 =
𝛔𝐅
𝟐

𝛔𝐅
𝟐+𝐒𝐄𝐅𝐒

𝟐

➢ Factor BY fscore@1; fscore* (ResVar); Factor*;

➢ MODEL CONSTRAINT: Resvar = (𝟏 − 𝝆) ∗ (𝛔𝐅
𝟐+𝐒𝐄𝐅𝐒

𝟐 );

▪ Need to compute “total” variance (of factor scores + error variance) for inclusion in ResVar formula

➢ Fscore residual variance is then its “error” variance only (rest → “true” factor variance)

➢ Note this is NOT the same thing as Omega reliability for sum scores, and it’s still 
not possible to do if for IRT/IFA factors (because reliability varies across the trait)

• Either way, the factor can be “mean-centered” by fixing its mean = 0:   

• [fscore*]; [Factor@0]; So subscale intercept holds its mean instead
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Example: Estimating Reliability
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SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES 

     SAMPLE STATISTICS 

           Means 

              SITP          SITP_SE       SITN          SITN_SE 

              ________      ________      ________      ________ 

 1              0.000         0.472         0.000         0.418 

           Covariances 

              SITP          SITP_SE       SITN          SITN_SE 

              ________      ________      ________      ________ 

 SITP           0.777 

 SITP_SE        0.000         0.000 

 SITN           0.533         0.000         0.825 

 SITN_SE        0.000         0.000         0.000         0.000 

New/Additional Parameters 

    OMEGAP             0.744      0.020     37.956      0.000 

    OMEGAN             0.775      0.014     56.803      0.000 

Factor Score Reliability 

(proportion of true

individual differences)

SitP: 𝜌 =
1

1+ .4722
= .818

SitN: 𝜌 =
1

1 + .4182
= .851

Omega Reliability 

for Sum Scores



Option 2: Single-Indicator Models
• Re-considering the two potential problems with single-indicator 

representations of latent factors (sum scores or factor scores):

1. A single sum score assumes unidimensionality and parallel 
items: equal loadings (discrimination) + equal error variance

➢ For sum scores: multidimensionality could be a big problem without 
any latent trait analyses to support the implied factor structure 

▪ Even if unidimensionality holds, if parallel items does not fit, the sum scores are 
not consistent with the model (and may not be available given missing items)

➢ For factor scores: these reflect the estimated model, but will be shrunken 
towards the mean (more so for fewer items and greater unreliability)

▪ Research suggests that they should be obtained from models that have same 
covariates as will be used in eventual structural models (see Curran et al., 2018)

2. Assuming perfect reliability of observed variables (or said 
differently, that that each person’s trait estimate is known exactly)

➢ This is a problem unless correcting the single indicator for reliability, 
but this only possible when using CFA (in which reliability is constant)

➢ So what to do in IRT/IFA models instead???
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Option 3: Multiple Plausible Values
• Uncertainty in the factor scores from IFA/IRT models 

can be represented explicitly using multiple so-called 

“plausible values” of factor scores

➢ Strategy used in some large-scale testing programs (e.g., NAEP)

➢ Generate 𝑥 draws from a person’s factor score distribution, save those 

draws to separate datasets, analyze each dataset, then combine results 

using procedures and rules for multiple imputation of missing data

➢ That way the uncertainty of factor scores per person is still represented, 

along with the factor model parameters that distinguish the indicators

➢ Research suggests a minimum of 5 values and a max of ??? 

(but with diminishing returns after 100 or so)

➢ Mplus now provides this using a 4-step process (btw, the amount 

of analyst effort is the same no matter how many draws you use)

• Could also be implemented given MCMC estimation by 

using trait values from chain (weighted by 1/#values)
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Plausible Values in Mplus, Step by Step

• Step 1: Estimate factor model using ML/MLR, save syntax for estimated 

parameters as start values (use OUTPUT: SVALUES to save typing)

• Step 2: Feed in estimated parameters as fixed parameters (replace all *

with @), re-estimate model using ESTIMATOR=BAYES to generate the 

factor score draws for each person and save to separate data sets

➢ Could do BAYES estimation for all of it, but if you have been using ML/MLR, 

you should use those parameters instead of letting it find new ones

• Step 3: Merge separate datasets together to create 𝑥 complete datasets 

for analysis (e.g., using my SAS macro as part of Example 9c in this older class)

• Step 4: Tell Mplus to estimate your model using the factor scores as 

observed variables on each of the 𝒙 datasets, and to combine the results 

(TYPE = IMPUTATION)

➢ Will be easier and go faster than analyses of the original latent variables, 

but still preserves the uncertainty in the factor score estimates per person, 

along with the factor model from which those factor scores were derived
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SEM: My Big Picture
• SEM is great when you can do it

➢ Provides a way to make almost any measurement idea an empirical question

➢ Measurement models create latent constructs (= random effects) that 
better represent trait individual differences than can any one outcome

➢ Structural models test relations involving those latent constructs

➢ Measurement models will dominate global fit tests, so use a saturated 
structural model as baseline when testing nested structural models

▪ Do omitted structural relations make the model fit not worse than saturated?

• SEM is not a panacea for everything

➢ ML MAY BREAK when your models get too complicated (or realistic)

➢ You have named your factors, but it doesn’t mean you are right! (Validity)

➢ Distributional assumptions matter, but so do linear model assumptions 
(nonlinear measurement and structural models may be needed)

➢ Factor scores are not perfectly determined (and neither are sum scores), 
so make sure to represent their uncertainty in any SEM alternative
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